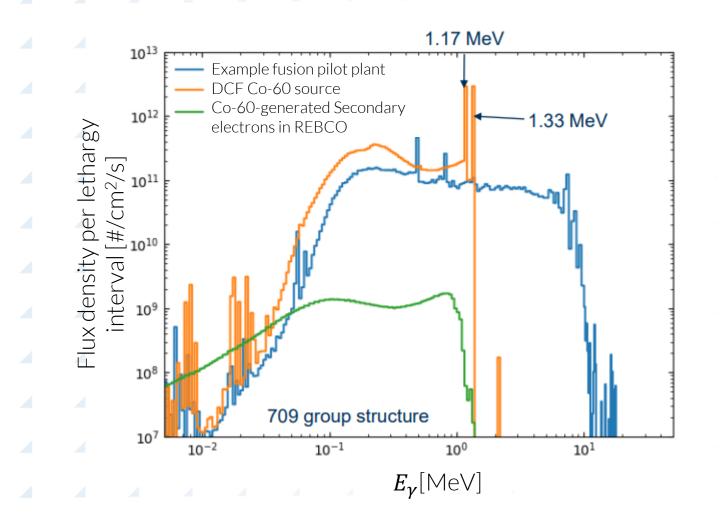
TE Magnetics

Effect of Gamma Radiation on HTS – Present Understanding Simon Chislett-McDonald

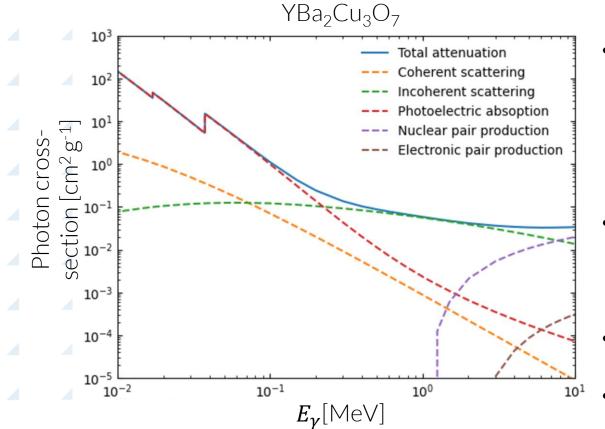
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A


© 2025 Tokamak Energy Ltd. A second sec

	Cor	ne	nts																	
	• 🛛 R	atio	nale	9 – W	'hy c	are	abo	ut ga	amm	na irr	radi	atio	n?							
	• ~ H	listc	orica		ervie	2W														
	• R	ecel	nt w	ork (over	rviev	\sim													
								4												
	• C	omi	men	its or	n coi	nflic	ting	liter	ratui	re										
	• ZS	umr	nari	sing	the	pres	sent	und	lerst	and	ing	& fu	iture	e ou	tlooł	<				
© 202	5 Tokamak	k Energy	Ltd. 🚄																2	

	• ⊿ R	Ratio	onale	e – W	'hy c	area	abol	ut ga	mm	airr	adia	atior	า?							
	• - +	listc	orica	000	ervie	2W														
	• R	ere	nt w	rork	over	rviev	A/													
	•	Com	men	ts oi	1 COI	nflic	ting	liter	ratu	re										
	• ⊿ S	umr	nari	sing	the	pres	sent	und	lerst	and	ing	& fi	iture	e out	tlool	<				
© 20	25 Tokama	ak Energy	Ltd. 4																3	

Why care about gamma irradiation?

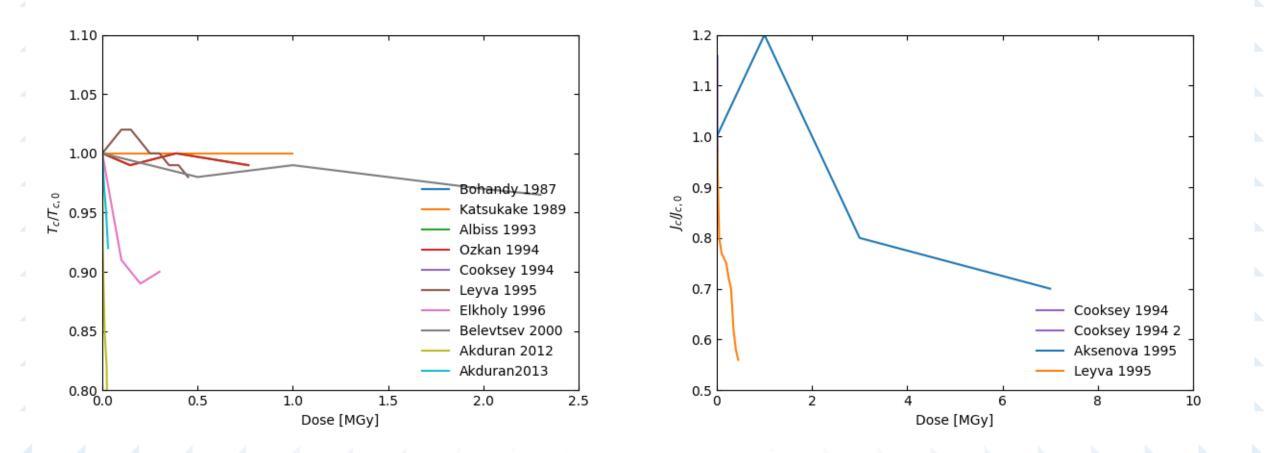


- (n, gamma) interactions produce a broad spectrum photon flux incident on the magnets (the spectrum is a function of shielding material and thickness).
- The interaction of gamma rays with the magnet cold mass can generate a significant heat load on the cryogenics system.

🔆 TE Magnetics

Chislett-McDonald S B L et al., "Gamma In-Situ Cryogenic Experiment (ICE)", IREF 2023

Why care about gamma irradiation?

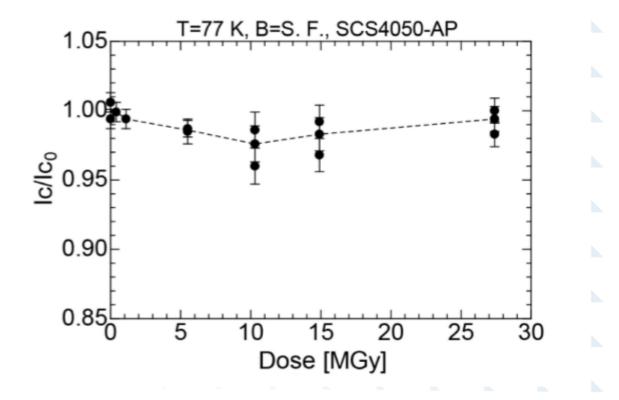


https://physics.nist.gov/PhysRefData/Xcom/html/xcom1.html

- The primary interaction mechanisms with fusion spectrum gamma rays are via electrons:
 - Photoelectric absorption (< 0.3 MeV)
 - Incoherent scattering (0.3 6 MeV)
 - Nuclear pair production (> 6 MeV)
- Gamma ray and secondary electron energies far exceed the binding energies of lattice ions (few 10s eV) or Cooperpairs (few 10s meV).
- Is the REBCO lattice sufficiently damaged to degrade $I_c \& T_c$?
- Are sufficient Cooper-pairs unbound to suppress superconductivity in-situ?

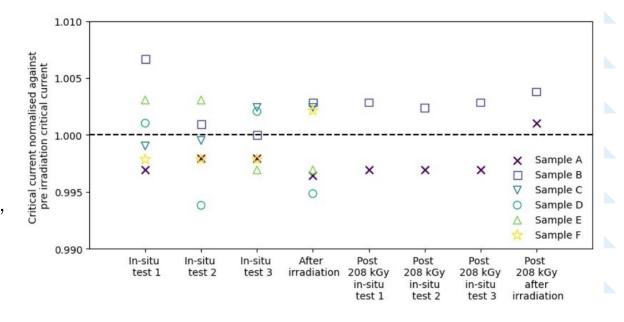
C TE Magnetics

	• ⊿ R	latio	nale	e — W	vhy c	are	abo	ut ga	amm	na irr	radi	atic	n?							
	• -	listc	orica	love	ervie	2W														
	• R		ntw	ork			∡ ∧ /													
								4												
	• _ C	Comi	men	ts or	1 COI	nflic	ting	liter	ratu	re										
	• ~ S	umr	naris	sing	the	pres	sent	und	lerst	and	ing	& fi	iture	e out	tlool	<				
© 20	25 Tokama	k Energy	Ltd. 🚄																6	

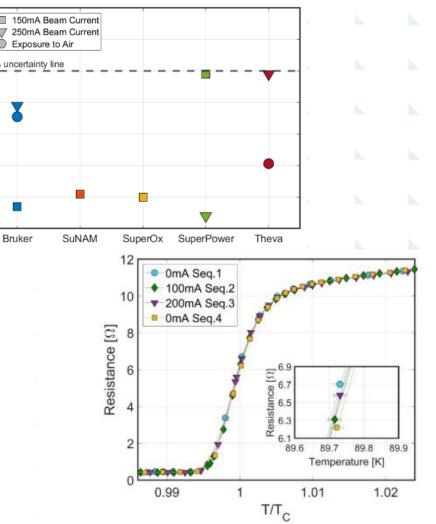

It's difficult to draw quantitative conclusions from these studies...

TE Magnetics

7

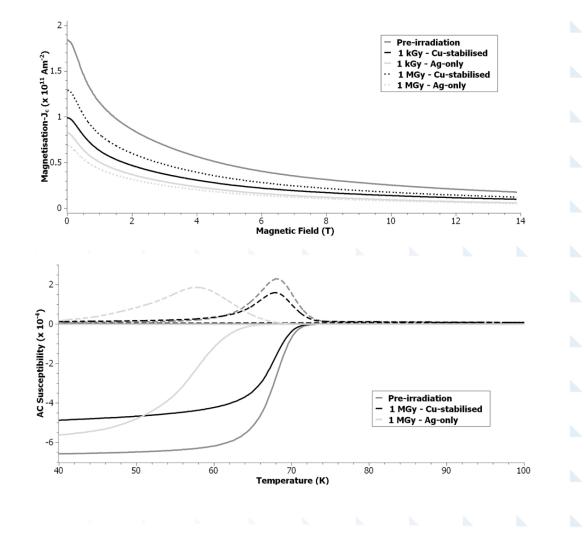

	• ⊿ R	atio	nale	è − W	vhy c	are	abo	ut ga	amm	na iri	radi	atic	n?							
	• -	listc	orica	076	ervie	2W														
	• R		ntw	orka	∩\/er		\													
							4													
	• _ C	Ìomi	men	ts or	n coi	nflic	ting	liter	ratu	re										
	• ~ S	umr	nari	sing	the	pres	sent	und	lerst	and	ing	& fl	uture	e ou [.]	tlool	<				
© 202	25 Tokamal	k Energy	Ltd. 🚄																8	

- Iio M et. al. "Investigation of Irradiation Effect on REBCO Coated Conductors for
 Future Radiation-Resistant Magnet Applications"
- Max Dose: 27.4 MGy
- Change in ex-situ I_{c, transport}: No.
- Sample type: Commercial REBCO tape
- Sample condition: Irradiated at room temperature, inside evacuated capsules
- Irradiation location: National institutes for Quantum Science and Technology, Takasaki, Japan Gamma ray source: Co-60

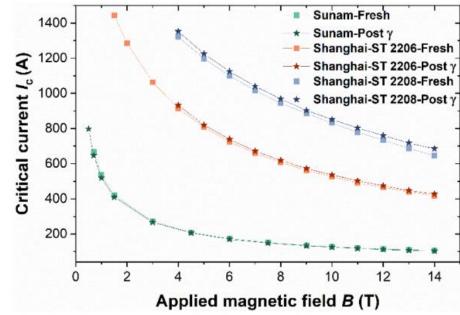

C TE Magnetics

- Chislett-McDonald S B L et al. "In-situ critical current measurements of REBCO
 coated conductors during gamma irradiation"
 - Max Dose: 208 kGy
- Change in in-situ I_{c, transport}: No
- Change in ex-situ I_{c, transport} : No
- Sample type: Commercial REBCO tape
- Sample condition: Irradiated submerged in LN₂, followed by room temperature irradiation in air Irradiation location: Dalton Cumbrian Facility, UK Gamma ray source: Co-60

0

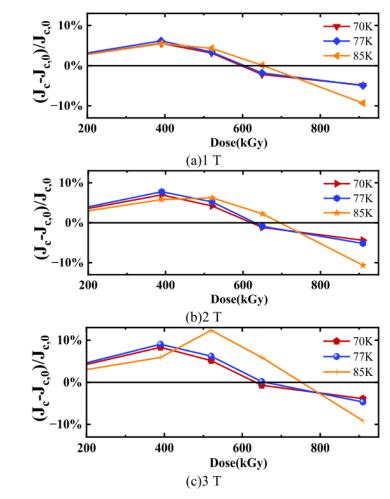

- Krkotić P et al. "Performance of high-temperature superconducting
 REBCO coated conductors under synchrotron irradiation for future circular colliders"
 - Max Dose: 400 Gy
- Change in ex-situ surface resistivity: No
- Change in in-situ T_{c, resistivity}: No
- Change in in-situ surface impedance: Yes* (changes in surface impedance consistent with a drop in performance due to beam heating)
- Sample type: Commercial REBCO tape
- Sample condition: Irradiated (1) inside a vacuum chamber at room temperature (2) on cold-finger inside a cryostat
- Irradiation location: ALBA synchrotron, Spain
- X- ray source: see paper for spectrum

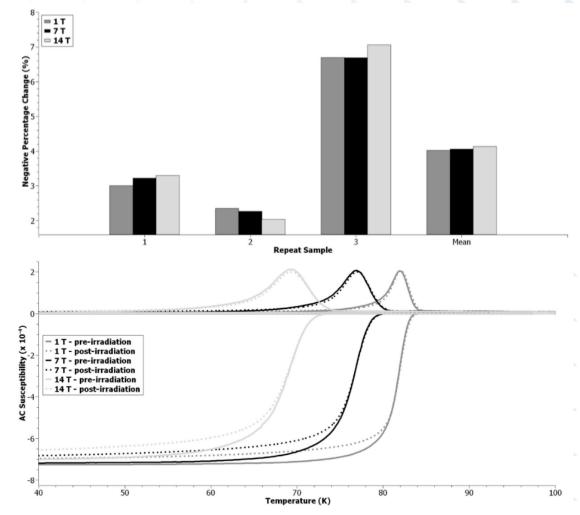
C TE Magnetics


 \triangleleft

- Campbell H J et al. Probing Evolution of the Flux-Pinning Landscape in REBCO
 Coated Conductors Caused by Gamma Irradiation Using DC and AC Magnetometry
- Max Dose: 1 MGy
- Change in ex-situ J_{c, magnetisation} : Yes
- Change in ex-situ T_{c, susceptibility}: Yes
- Sample type: Commercial REBCO tape (some without Cu outer layer)
- Sample condition: Irradiated at room temperature in air
- Irradiation location: Dalton Cumbrian Facility, UK
- Gamma ray source: Co-60

Contract TE Magnetics


- Taheri B et al. "Sensitivity of REBCO Tapes and Thin Film to Y-Irradiation"
- Max Dose: 1 kGy
- Change in ex-situ T_{c ,resistivity}: No
- Change in ex-situ I_{c, transport} : No
- Change in ex-situ c-axis lattice parameter: No.
- Sample type: Commercial REBCO tape & thin films
- Sample condition: Irradiated at room temperature, inside evacuated capsules
 - Irradiation location: Calliope irradiation facility, Italy Gamma ray source: Co-60


Sample	Parameter	Fresh	Post γ-exposure
YBCO/STO	T_{c} (K) RRR ΔT (K)	$\begin{array}{c} 90.4 \pm 0.2 \\ 2.9 \pm 0.1 \\ 0.39 \pm 0.06 \end{array}$	$\begin{array}{c} 89.9 \pm 0.2 \\ 3.1 \pm 0.2 \\ 0.42 \pm 0.05 \end{array}$
YBCO/LAO	T_c (K) RRR ΔT (K)	$\begin{array}{c} 89.8 \pm 0.1 \\ 3.1 \pm 0.1 \\ 0.43 \pm 0.02 \end{array}$	$\begin{array}{c} 89.3 \pm 0.3 \\ 3.1 \pm 0.1 \\ 0.45 \pm 0.03 \end{array}$

Carl TE Magnetics

- Zheng Y et al "Gamma radiation effects on high-temperature superconducting
 ReBCO tape"
- Max Dose: 910 kGy
- Change in ex-situ J_{c,magnetisation} : Yes
- Sample type: Commercial REBCO tape
- Sample condition: Irradiated at room temperature (atmosphere undisclosed)
- Irradiation location: University of Science and Technology of China.
- Gamma ray source: Co-60

- Campbell H J et al. Investigation of Gamma-Induced Changes to Screening Currents and AC Losses in Mono- Versus Multi-filamentary REBCO Coated Conductors Using DC and AC Magnetometry
- Max Dose: 5 MGy
- Change in ex-situ J_{c, magnetisation} : Yes
- Change in ex-situ T_{c, susceptibility}: No
- Sample type: Commercial REBCO tape (some multifilamentary)
- Sample condition: Irradiated at room temperature in air
- Irradiation location: Dalton Cumbrian Facility, UK
- Gamma ray source: Co-60

🔆 TE Magnetics

Campbell H J et al. 2024, Journal of Superconductivity and Novel Magnetism, 37, 1349-1369

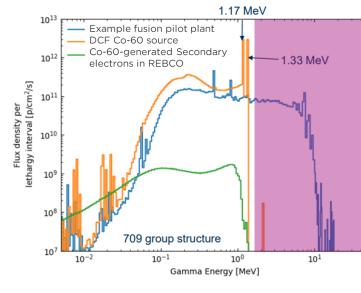
	• ⊿ R	Ratic	onale) – W	vhy c	are	abo	ut ga	amm	na irr	radi	atic	n?							
	• -	listc	orica		ervie	2W														
	• R	ere	nt w	vork	∩\/er		∧ <i>I</i>													
								4												
	• (Com	men	ts or	n cor	nflict	ting	liter	atur	e										
	• ⊿ S	umr	nari	sing	the	pres	sent	und	lerst	and	ing	& fi	uture	e ou	tlool	<				
© 202	25 Tokama	ak Energy	Ltd. 🖌																16	

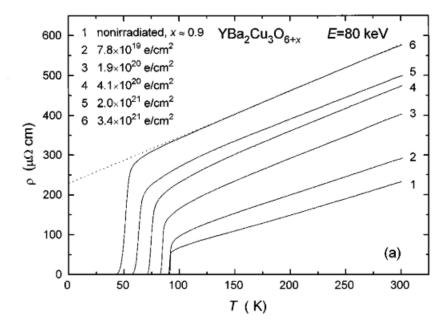
- Why is the literature so contradictory? Some thoughts...
- Irradiated samples compared to a 'control' sample rather than themselves prior to irradiation.
- Few or no repeat samples in many studies some conclusions are drawn from a statistically insignificant dataset.
- Irradiation conditions not well controlled: Ionising radiation produces free radicals that damage REBCO via chemical processes rather than through radiation damage (per se) reducing performance (particularly for samples with no protective metal layers) see Aksenova T et al. 1995, Radiation Physics and Chemistry 46, 533-536.
 - Samples irradiated under vacuum, or a dry atmosphere, appear not to suffer degradation

	• ⊿ R	Ratio	nale) — W	vhy c	are	abo	ut ga	amn	nairi	radi	atic	n?							
	• -	listc	orica	000	ervie	eW														
	• R	lece	nt w	ork	over	rviev	∡ N													
								-												
	• _ C	Comi	men	ts oi	n coi	nflic	ting	lite	ratu	re										
	• ∠ S	umr	naris	sing	the	pres	ent	und	erst	andi	ng &	k fut	ture	outl	ook					
© 20:	25 Tokama	ik Energy	Ltd. 🖌																18	

Prese	ent	Und	ders	tand	ding																
							fusio	on re	levan	t gamm	a dos	es ha	ive a	signi [.]	ficant	t effe	ct on	REB	CO		
super	conc	JUCU	ng pe	erior	man	ce															
No in-	situ	effe	ct (be	eside	es hea	ating)) has	beer	obse	rved											
	_ :		∕					di -	+:		<u>-</u>	:I	ما م م		•						
Irradi	atior	n cor	naitio	ns m	latte	r: gan	nma r	radia	tion c	atalyse	s chei	mical	aegr	radat	ION						
				R	esult	sare	pron	nisina	g for fi	usion ar	nd acc	elera	itor a	pplic	ation	S					
					1	4	p		5.0.1						×	•					
🔅 TE Magr	netics																			19	

What are we missing?

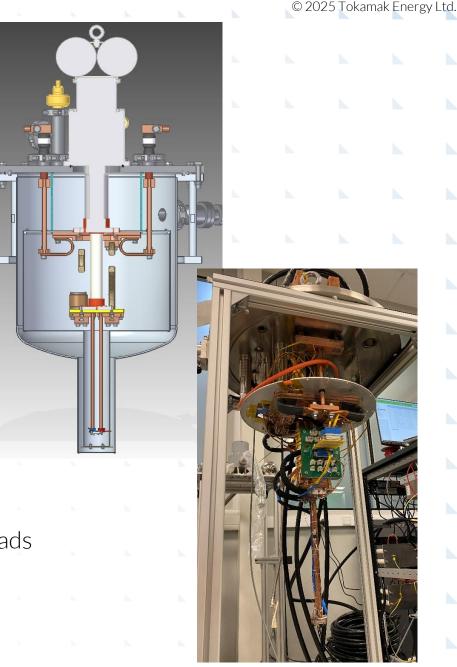

Higher energies of ~ 10 MeV


• Some fusion spectrum gamma rays are of higher energies than Co-60. These photons mainly interact through nuclear pair production – does this different mechanism result in different damage and/or interaction with Cooperpairs?

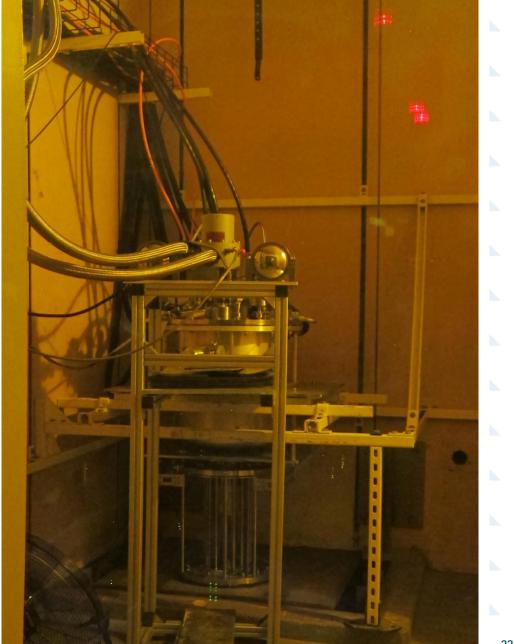
Higher doses up to 10s MGy

Are gammas producing *any* microstructural damage, or have the doses simply been too low to see an effect?

• T_c has been observed to drop after a ~ 10^{20} e/cm² dose of electrons, and gamma irradiation produces secondary electrons... so a 'high enough' dose may degrade superconductivity. e.g. the 27 MGy from lio et al. corresponds to a (broad band) secondary electron dose of ~ 10^{14} - 10^{15} e/cm²



C TE Magnetics


Tolpygo S K et al. 1996, Physical Review B, 53, 12463-124784

Tokamak Energy's GAMMA experiment Coil Design

- 18 coils made with tape from key suppliers
- 4 mm x 1.6 mm radial thickness (12-24 turns depending on tape)
- No insulation coil structure
- Ensures all turns are operating at or close to *I*_c and the entire coil is uniformly irradiated
- Cryogenic System Design
- Cryocooled system
- 1 kA current capacity
- 20 50 K coil temperature (current dependent)
- Optimised current leads taking accounting for gamma heating along leads
- Voltage, temperature and magnetic field monitoring

- Tokamak Energy's GAMMA experimentTest Protocol
 - Coil cooled and energised
 - Co60 array positioned to provide gamma dose of 7 Gy/sec
 - System re-stabilises in reaction to heat load
 - Irradiation continued for ~16.5 days to 10 MGy
 - ✓ System functioned reliably under challenging operation conditions
 - \checkmark Key sensors worked as expected
 - ✓ Several coils irradiated to 10 MGy

																	© 20	25 Tokan	nak Energ	y Ltd.
						4														
		E	Ma		ne	tic	5													
4				4																
					, f			of												
Op)er		IS I	Iev	\mathbf{V}			01	pe	ΓI		IIa		e						
Magne																				
fusion	, rene	ewabl	e ener	ʻgy, m	edicin	e, scie	nce a	nd pro	opulsio	on in v	wateı	r, land	, air ai	nd spa	ace.					

References – Recent Work

- Campbell H J et al. 2024, Journal of Superconductivity and Novel Magnetism, 37, 1349-1369
- Zheng Y et al. 2024, Superconductor Science and Technology, 37, 045013
- Taheri B et al. 2024, IEEE Transactions on Applied Superconductivity, 34, 6600105
- Campbell H J et al. 2023, Journal of Superconductivity and Novel Magnetism, 37, 41-55
- Krkotić P et al. 2023, Superconductor Science and Technology, 36, 105009
- Chislett-McDonald S B L et al., Superconductor Science and Technology, 36, 095019
- lio M et al. 2022 IEEE Transactions on Applied Superconductivity 32 6601905 Bartunek V et al. 2020 Ceramics International, 46, 15400-15407

References – Historical Work							
Akduran N 2013, Radiation Physics and Chemistry 83, 61-66							
Akduran N 2012, Radiation Effects & Defects in Solids 167, 281-288							
Leyva A et al. 2001, Nuclear Instruments and Methods in Physics Researc	:h B 1	74, 2	22 -2	224			
Belevtsev B I et al 2000, Physica C: Superconductivity 341, 2015-2016							
Elkohly M et al. 1996, Radiation Physics and Chemistry 47, 691-694							
Leyva A et al. 1995, Superconductor Science and Technology 8, 816-821							
Aksenova T et al. 1995, Radiation Physics and Chemistry 46, 533-536							
Cooksey J et al. 1994, IEEE Transactions on Nuclear Science 41, 2521-25	524						
Özkan H et al. 1994, Journal of Superconductivity 7, 885-888							
Albiss B et al. 1993, Solid State Communications 88, 237-240							
Luo L et al. 1991, Physica C: Superconductivity 178, 11-14							
Kutsukake T et al. 1989 Japanese Journal of Applied Physics 28, L1393							
Vassek P. et al. 1989 Solid State Communications 69, 23-25							
Bohandy J et al. 1987, Applied Physics Letters 51, 2161							
* TE Magnetics						25	