Topical Workshop on RADiation effects in Superconducting Magnets (RADSUM 2025)

Design of superconducting magnets and shieldings for high-radiation environments:

Research and development of ceramic-insulated HTS magnets for high-radiation environments

<u>Masami lio</u>

Cryogenics Section, J-PARC

Cryogenics Science Center, KEK

Contents

1. Introduction

- 1. 1. J-PARC MLF 2nd target station (TS2)
- 1. 2. Conceptual design of a pion capture solenoid for MLF-TS2
- 1. 3. Possibility of ceramic-insulated HTS magnet

2. R&D of ceramic-insulated HTS magnet

- 2. 1. Application of ceramic coating to electrical insulation of HTS coils
- 3. 2. Prototype production of small double pancake circular coil
- 3. 3. Prototype production and performance evaluation of long racetrack coils in US-Japan collaboration

3. Summary

1. Introduction

J-PARC MLF 2nd target station

Conduction-cooled HTS based solenoid

TS2-PSC conceptual design

Basic design of TS2-PSC

Stack of double pancake coil Conductor : REBCO, W=4 mm, T=0.1 mm ID=<u>1600</u> mm, T=21 mm, L=10 mm, <u>70</u> turns/layer Number of double pancake coils: <u>60</u> (20 x3) Length of solenoid: <u>680</u> mm Operation Temperature: <u>20 K</u> (He gas cooling with pipe) Transport current: <u>200 A</u> (Load line ratio: 0.48) Peak Field: <u>1.1 T</u> at center, <u>2.3 T (B//c)</u> at coil (200 A)

Current density: 128 A/mm² Load line ratio: 48%

HTS Solenoid

720

3

Ö

200 200 200

Iron Return Yoke

Challenging issue (Insulation materials)

- Radiation reduces the strength of polymer materials due to molecular chain scission
- Epoxy deteriorates at doses higher than a few MGy
- Polyimide may be acceptable below 80 MGy
- Cyanate and <u>BT</u> based materials will withstand up to 100 MGy.

Ref.: CERN Yellow Reports 2001-006

 Table 2: Classification of adhesives according to their radiation resistance

The end-point criterion is chosen at **50%** of the initial value (prior to irradiation) for the **<u>strength</u>** or for the <u>**deformation at break**</u>.

Ceramic-insulated accelerator magnet

Inorganic materials are likely to be usable even at dose over 100 MGy.

Accelerator magnets based on magnesium oxide insulated copper conductors (MIC) are already in practical use around the world.

Application researches of ceramic insulation to superconducting magnets have been performing

Ref.: CERN Yellow Reports 1982-005

3. R&D of ceramic-insulated HTS coils

Ceramic molding

Advantages ceramic insulation

- Higher radiation tolerance of mechanical strength than resin materials
- Better thermal conductivity (Al₂O₂:32, SiO₂:10 >> EP resin:0.3 [W/m·K @300K])
- Close to the coefficient of thermal expansion of cable

Ceramic firing temperature >1000°C

Superconductivity of REBCO disappears

Heat treatment temperature of less than 200°C and for a short period of time

Application of ceramic coatings by sol-gel process

Heat treatment: Evaporation of water and alcohol

Application of ceramic coating technology

Target film thickness: 50 mm, Withstand voltage: > 2 kV

Optimized coating conditions

- Coating material: Al_2O_3 : $SiO_2 = 1 : 1$ (G-92-5, NIKKEN .Ltd)
- Cycle forming of 10 µm thick by spray method (Drying temp. 80°C)
- Final heat treatment: 100°C, 20 min

Class 0 (0/100)

Ceramic coating trial of REBCO tapes

SCS4050-AP (SuperPower)

Withstand voltage - t=16 μm : 0.679 kV - t=24 μm : 2.006 kV - t=38 μm : 2.693 kV

Applied load with AC voltage(50 Hz)

The withstand voltage is well above <u>2 kV</u> with a thickness of <u>30 μm</u>.

No deterioration of the I_C of the REBCO due to the coating process was observed.

Trail winding of ceramic-insulated coil

Small demonstration double pancake coil was wound using wet winding technique with ceramic adhesives

Aron Ceramic Type C (Toagosei Co., Ltd)	
Main Ingredients	Silica (SiO ₂)
Viscosity	70,000 mPa•s
CTE	13 X 10 ⁻⁶ (0-600°C)
Heat Treatment	16 h at R.T. →1 h at 90 °C →1 h at 150 °C

Tape: L=14 m, W= 4 mm (Ceramic coated) Coil: ID = 80 mm, 1st: 26 turns, 2nd: 24 turns

No significant change in T_c due to coil manufacturing process
 I_c decrease is less than 10%

Cooling and excitation test @BNL

- **D**As a next step, ceramic-insulated coils were tested at BNL under the US-Japan cooperative program.
- [Common coil type test stand with Nb₃Sn coils]
- > Temperature: <u>4.2 K</u>(LHe bath cooling)
- Backup magnetic field: ~9 T
- Insert opening: <u>31 mm x 335 mm</u>

Insert coil design

Fujikura FESC-SCH04(40)

- Type: <u>EuBCO</u>, I_C (77K, S.F.): 201 A
- Fractional Thick. Thick. Thick. of Cu: 40 μ m (one side)
- Width (Avg. of meas.): 4.08 mm
- Thickness (Avg. of meas.): 0.16 mm
- Thickness of coating: 0.025 mm (one side)
- Thickness per turn: 0.25 mm (Tape + Coating+ Adhesive)
- Number of turns per layer: 24 turns

the HTS layer upper side in the figure

<u>_00000000--0--0--0</u>

75 µm thick substate

Tensile bending

77.3 K, self-field

GdBCO

1.2

1

0.8

0.4

0.2

0.6

17/22

O load

□ unload

Insert coil production

3 double pancake long race track coils were wound using wet winding technique with ceramic adhesives

Aron Ceramic Type C (Toagosei Co., Ltd)	
Main Ingredients	Silica (SiO ₂)
Viscosity	70,000 mPa•s
CTE	13 X 10 ⁻⁶ (0-600°C)
Heat Treatment	16 h at R.T. →1 h at 90 °C →1 h at 150 °C

18/22

Confirmed Issues

- \Box The coating on the outside of conductors in the curved section has peeled off \rightarrow Inside coating OK
- □ Short circuit between coil and support parts (ceramic-coated SS) → Insulation between coil block and test stand
- □ The conductor was damaged. Normal conductive components were found in the two coils after cooling.

Present status

□ Three coils were assembled and they were tested at 77 K and a self-magnetic field before shipping

- Transport current limit of two coils is <u>100 A</u>, which is <u>17%</u> lower than the expected value (120 A, ~0.15 T).
- Two of the three coils appeared to have some conductor damage during the winding and assembly process.
- The coil without problems (#1) and the coil with relatively minor damage (#2) were transported to BNL.

The transported coils were tested at 77 K and a selfmagnetic field at BNL

Results similar to the pre-shipment test at KEK were obtained.

□ The setup and cooling and excitation test at BNL

- Pre-test: current transfer of ±200 A to coil#1 and coil#2 cooled to 4.5 K was carried out without backup magnetic field
- Excitation test: Stepwise current transfer to HTS coils with backup magnetic field

Latest results of the excitation test

Coil # 2 (Damaged, B//c)

The quench trigger was activated at 241A due to the voltage increase caused by the normal conductive component

Coil # 1 (B//ab)

□ 1st quench occurred at 1250A in an external magnetic field of 6T (1st layer coil) \rightarrow ~60% of the predicted value [~8.5T (B_{BK}+S.F.), 17% degradation] □ 2nd quench: 541A, B_{Fxt}=3T, 3rd quench: 554 A, B_{Fxt}=3T (Degraded) Analysis of experimental data and verification by FEM simulation are currently underway

Summary

- R&D of ceramic-insulated superconducting magnets based on HTS is underway with the aim of realizing future radiation-resistant superconducting magnets that can operate in high radiation environments exceeding 100 MGy.
- Trials of ceramic coating succeeded in forming an insulating film on the surface of REBCO tapes reaching a withstand voltage of 2 kV with a thickness of 30 μm.
- The wet winding technique using ceramic bonding was verified by fabricating a small circular coil.
- Long racetrack coils for high-field testing at BNL was fabricated. Two coils were shipped to BNL, one with no problems and one with slight damage to the conductor.
- Cooling and excitation tests have been performed using common coil test facility of BNL.
- A maximum current of 1243 A was transported through the HTS coil in a 6 T backup magnetic field. This corresponds to about 60% of the predicted value, and analysis is ongoing.

