Normal conducting magnet activities at CERN (incl. FCC-ee magnet development)

J. Bauche, D. Schoerling

Outline

- Normal Conducting (NC) magnets in the CERN accelerator complex
- The NCM section
 - Our facilities
 - Maintenance and consolidation
 - Production and procurement
 - Quality assurance
- Project examples
 - Medical application: DEFT
 - FCC-ee

NC magnets in the CERN accelerator complex

The CERN accelerator complex

ACE seminar – ULiège @ CERN

CERN

A large magnet zoo

CERN

The Normal Conducting Magnet section (TE-MSC-NCM)

The NCM Team

~40 persons (MPE + MPA)

CERN

Our radioactive magnet workshops

We certify for use ~70 magnets/year for spare use or installation. The majority is used for preventive maintenance and new installations. Catia 3D Design and Ansys engineering simulations

Example of consolidation: PSB quadrupoles

Electro-magnetic analysis

- Reverse engineering to build 12 new identical spare magnets, including:
 - Lamination procurement
 - Yoke manufacturing
 - Magnet assembly and qualification
- Refurbishment of the original (radioactive) magnets, including:
 - Dismantling of bonded assemblies
 - Coil forming and machining
 - Assembly, impregnation and qualification

CNC machining of bent and wrapped coil parts

Mechanical and electrical test samples

Single aperture mock-up

Magnet production in our proto lab

Isolde triplet/doublet Spare coils

CÉRN

ESC Coil (Quench induction coil for SMC Magnet)

SPS MBB Coil winding line

FCC-ee Booster Dipole Prototype Construction

Magnet procurement

- We have to procure 50 different magnet/coils for the consolidation of the accelerator complex
- This year, we have launched 10+ Invitation to Tenders and Price Enquiries
- Almost 30 travel.persons during the year for follow-up of contracts

NCM Quality Assurance

NORMA Database

We have developed our own database and maintenance support tool

- To secure all the magnet data
- To coordinate our maintenance plan

New version under development with EAM

Risk assessment

Risk analysis of installed magnets mutually reviewed in the section establishing mitigation measures

We keep track of the magnet life to establish targeted maintenance and consolidation plans

NORMA DB

NORMA DB mock-up

NCM projects

List of present projects

Studies for Magnet Systems for future CERN accelerators

- FCC-ee collider magnets (J. Bauche, C. Eriksson)
- FCC-ee booster magnets (L. von Freeden, H. Deveci)
- FCC-ee transfer line magnets (P. Thonet)
- CLIC (J. Bauche)

Consolidation activities

- SPS MBB spare coils (P. Schwarz)
- PSB quadrupoles (A. Newborough, I. Garcia)
- ISOLDE triplets (C. Eriksson, M. Dumas)
- AD quad and dipole target magnets (P. Thonet)
- AD electron cooler (L. von Freeden, D. Gerard)
- TCC2 magnets (MSN, MTN, QSL) (P. Schwarz)
- Refurbishing of existing magnets (production plan)
- Spare coils for existing magnets (production plan)
- Electrical cover project (O. Crettiez)

New magnets for CERN accelerators & approved experiments

- AWAKE2c magnet system (P. Schwarz)
- AWAKE, CLEAR and DEFT solenoids (R. Key)
- LHC BGI magnet system (D. Bodart)
- McKeehan coils for ASACUSA (M. Dumas)
- ALPHA solenoid (L. von Freeden, R. Key)
- SHiP/BDF hadron shielding (P. Schwarz)

Collaborations

- EuroSIG scanning magnet (P. Schwarz)
- DEFT (FLASH) magnet system (J. Bauche, R. Key)
- ESC coil for SMC quench induction (I. Garcia)
- LHCb magnet consolidation (P. Thonet)
- EP experimental magnets (P. Schwarz)
 iects

Diversity program: DEFT, a radiation therapy accelerator

Magnets for FCC-ee: Collider

5680 units x 10.5 m ≈ 60 km

2840 units x 2.9 m ≈ 8 km

4672 units x 1.3 m ≈ 6 km

FCC-ee: 90 km ring, 75 km of magnets!

Lifetime cost optimization of magnet circuits

Magnet prototypes

CÉRN

Magnets for FCC-ee: Booster

T/kA)

We showed that 20 GeV injection field seems feasible!

Completed main magnet design fulfilling the v. 24 optics requirements

Validated >99% predictive accuracy of hysteresis modeling

Magnet development for FCC-ee: next steps

FCC timeline (M. Benedikt, FCC Week 2024)

Magnet development during pre-TDR phase

- Magnet design and optimization for collider, booster and injector
 - Study for alternative collider optics (LCC vs. GHC, or else)
 - EM vs. PM magnets for injector booster transfer line
 - Orbit correctors
- **Prototype** construction and measurements
 - 1 of each main magnets
- Study of **industrialization strategy** and manufacturing methods
 - Manufacture
 - Measurements and qualification

EMC mitigation studies

SR shielding integration

Thank you for your attention.

