

Dynamics aperture study for HL-LHC

End of levelling results with flat optics

Colas Droin, for the beam-beam team

03/09/2024

Supervisor: Guido Sterbini

Context

We present the latest DA results for the HL-LHC (run 4, optics v1.6), at the End of Levelling (EoL) phase, for the latest available flat optics:

opt_flathv_75_180_1500_thin.madx

opt_flatvh_75_180_1500_thin.madx

opt_flatvh_75_300_1500_thin.madx

Constant settings for the DA simulations are:

$E = 7 TeV \qquad CC = -190 \,\mu rad$

- $\Phi/2_{IP_{2,V}} = -170\mu$ rad $\Phi/2_{IP_{8,V}} = 170\mu$ rad
 - $\varepsilon_n = 2.5 \ \mu m$ $C^- = 0.001$
 - or Q' = 5 Polarity IP_{2,8} = + 1/ + 1

Bunch intensity is optimised to be maximal within constraints, i.e.: $L_{1.5} \le 5 \times 10^{34} \, Hz/cm^2$ $PU_{1.5} \le 160$

Separation in IP2 is 5σ

Separation in IP8 is optimised to reach $L_8 = 2 \times 10^{33} H_z/cm^2$

As usual, we study the worst bunch in terms of Head-On (HO) + Long-Range (LR) schedule.

Filling scheme and bunch schedule

We consider the "27 hundreds" filling scheme, a.k.a:

- 25ns_2760b_2748_2492_2574_288bpi_13inj_800ns_bs200ns

Filling scheme and bunch schedule

	ISelected bunch					
	 		•••			
••••	 	 • • • • • • • •	•••	•••••	•••••	•••••

ISelected bunch	••••••••	••••	•••••
' 			
- 			

•	IS alacted hunch]		
		(172, 49) trace 4	••••	• • • • • • • • •	••••••
	1				
	1				

• • • • • • • • • • •	ISelected bunch	•••				
	1		• • • • • • • • • • • • • • • • • • • •	•••••		
	1					
	I					
	1					
	1					
40 25ns slot	1(50 1	80	200 220		

Colliding in IP
Not colliding in IP

Simulations result

opt_flathv_75_180_1500_thin.madx

Simulations result

opt_flatvh_75_180_1500_thin.madx

8

Simulations result

opt_flatvh_75_300_1500_thin.madx

7.5 7.0 - 6.0 mnuiuiW - 5.0

- 4.5

4.0

Simulations result Comparison with round optics (IPAC) Q' = 15opt_flathv_75_180_1500_thin.madx

Simulations result Octupoles and Q' scan at optimal tune (.15, .20)

b opt_flatvh_75_180_1500_thin.madx HL-LHC v1.6. E = 7.0 TeV. CC = -190.0 µrad. $L_{1/5} = 5.21 \times 10^{34} \text{ cm}^{-2} \text{ s}^{-1}, L_2 = 8.79 \times 10^{29} \text{ cm}^{-2} \text{ s}^{-1}, L_8 = 1.99 \times 10^{33} \text{ cm}^{-2} \text{ s}^{-1}$ $PU_{1/5} = 135, \beta_{x,1}^* = 0.075 \text{ m}, \beta_{y,1}^* = 0.18 \text{ m}, \text{ polarity } IP_{2/8} = 1/1$ $\Phi/2_{1(V)} = 250 \mu rad, \Phi/2_{5(H)} = 250 \mu rad, \Phi/2_{2,V} = -170 \mu rad, \Phi/2_{8,V} = 170 \mu rad$ $\sigma_z = 7.61 \text{ cm}, \epsilon_n = 2.5 \mu \text{m}, C^- = 0.001$ 25ns_2760b_2748_2492_2574_288bpi_13inj_800ns_bs200ns_converted.json. Bunch 149. 5.2 $5.0 \le 5.0 \le 5.0$

8.0

- 7.5

- 7.0

I [A]

- 6.5 b - 6.0 unuiui - 5.5 V

- 5.0

- 4.5

- 4.0

Simulations result Xing angle scan along the upper diagonal

HL-LHC v1.6. E = 7.0 TeV. CC = -190.0 µrad. $L_{1/5} = 5.22 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1}, L_2 = 4.22 \times 10^{29} \text{ cm}^{-2} \text{s}^{-1}, L_8 = 2.02 \times 10^{33} \text{ cm}^{-2} \text{s}^{-1}$ $PU_{1/5} = 136$, $\beta_{x,1}^* = 0.075$ m, $\beta_{y,1}^* = 0.18$ m, polarity $IP_{2/8} = 1/1$ $\Phi/2_{2,V} = -170 \mu rad, \Phi/2_{8,V} = 170 \mu rad$ $\sigma_z = 7.61 \text{ cm}, \epsilon_n = 2.5 \mu\text{m}, Q' = 5.0, I_{MO} = 60.0 \text{ A}, C^- = 0.001$ 25ns_2760b_2748_2492_2574_288bpi_13inj_800ns_bs200ns_converted.json. Bunch 149. 62.329 62.327 62.325 -0.005 62.323 -62.321 +62.319 \bigcirc 62.317 62.315 with 62.313 \mathbf{O} 62.31 62.309 0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 $62.307 - \le 5.0 \le 5.0$ $\leq 5.0 \leq 5.$ $62.305 - \le 5.0 \le$ $120_{.0}^{1}140_{.0}^{1}160_{.0}^{1}180_{.0}^{2}200_{.0}^{2}220_{.0}^{2}240_{.0}^{2}260_{.0}^{2}$ Crossing angle [mrad] in $IP_{1,5}$

opt_flatvh_75_180_1500_thin.madx

Conclusion

- •VH and HV optics yield very similar DA results
- •6 σ target can be reached for Q'= 5 and Q' = 15 in the 7.5/30cm case
- •6 σ target can be reached for Q' = 5 and very marginally for Q' = 15 in the 7.5/18cm or 18/7.5cm case
- •Comparison with round results (15cm) with negative octupoles (-60A) deliver slightly worse results than flat (18/7.5cm) with positive octupoles (60A).
- •Octupoles vs Q' scan for 7.5/18cm shows that optimal DA can be reached for various combinations of values. Making a 3D scan (with tune) would probably help understand.
- •Crossing angle limit is about 220 murad for the 7.5/18 cm case with Q'=5

Thank you!

Additional results from previous simulations

Octupoles scan (IPAC, round optics)

	H	L-]	LH	C	v1.	6.	E =	= 7	.0 '	Te	V
	$L_{1/5} =$	= 5.	27	X	10^{3}	⁴ c1	m [–]	$^{2}s^{-1}$	-1,	L_2	=
			PU	1/5	=	13	8,	$\beta_{x,}^*$	₁ =	= 0.	1.
	$\Phi/2_{1(H)}$) =	:25	50 j	ura	d,	Φ/	$2_{5(}$	V)	=2	25
					σ	z =	= 7.	61	cn	n, e	En
	25ns_2	276	50b	_2	74	8_	249	92_	_25	574	
	62.329 -	≤4.0	≤4.0	≤4.0	≤4.0	≤4.0	≤4.0	≤4.0	≤4.0	≤4.0	≤4.
	62 227 -	≤ 4.0	≤ 4.0	≤ 4.0	≤ 4.0	≤ 4.0	≤ 4.0	≤ 4.0	≤ 4.0	≤ 4.0	≤4. <4.
	02.321	 ≤4.0	≤ 4.0	≤ 4.0	≤4.0	≤4.0	≤4.0	≤4.0	≤4.0	≤ 4.0	
	62.325 -	≤4.0	≤4.0	≤4.0	≤4.0	≤4.0	≤4.0	≤4.0	≤4.0	≤4.0	≤4.
	(2,222)	≤4.0	≤4.0	≤4.0	≤4.0	≤4.0	≤4.0	≤4.0	≤4.0	≤4.0	≤4.
002	62.323 -	≤ 4.0 ≤ 4.0	≤ 4.0 ≤ 4.0	≤ 4.0 ≤ 4.0	≤ 4.0 ≤ 4.0	≤ 4.0 ≤ 4.0	≤ 4.0 ≤ 4.0	≤ 4.0 ≤ 4.0	≤ 4.0 ≤ 4.0	≤ 4.0 ≤ 4.0	≤ 4 . ≤ 4 .
0.(62.321 -		≤4.0	≤4.0	≤4.0	≤4.0	≤4.0	≤4.0	≤4.0	≤4.0	≤4.
+		≤4.0	≤4.0	≤4.0	≤4.0	≤4.0	≤4.0	≤4.0	≤4.0	≤4.0	≤4.
	62.319 -	≤4.0	4.3-	4.3	4.6	4.2	4.3	4.0	≤4.0	4.2	4.2
O x	62 317 -	4.7	4.7 5.0	5.2	5.05.5		5.0	5.2	4.7 5.5	4.7- 	-4.3 . 5 5.2
	02.317	4.9		4.6	5.0		5.5	5.9		6.0	5.9
$\sum_{i=1}^{n}$	62.315 -	4.9	5.0	5.0	5.0			5.8	<u>}</u> *	6.3	6.3
th	(2, 212)	4.8	<i>p</i> .1	5.0		5.0		5.0		5.9	6.0
Wİ	62.313 -	4.9	5.2 5	0 ^{.2} 5.0	5.2	5.0	5.2 5.0				5.0 5.2
Ŏ	62.311 -	4.6	4.8	-4.9_	4.9	5.2	5.4				5.4
		≤4.0	4.1	4.3	4.4	5.0	5.2	5.2	5.3		5.5
	62.309 -	≤ 4.0	≤4.0	≤4.0	4.4	4.4	4.6	5.1	5.3		5.8
	62 307 -	4.2	4.0	4.0	≤ 4.0	≤ 4.0 ≤ 4.0	≤ 4.0	4.0 ≤4.0	4.2 ≤4.0	5.5 ≤4.0	4.1
	5 2. 301	4.3	4.3	4.2	4.2	4.3	4.3	≤4.0	≤4.0	≤4.0	≤4.
	62.305 -	4.8	4.2	4.3	4.1	4.1	4.5	4.3	4.3	4.0	≤4.
	~6	00	~5 0	00	~4 0	00	~3 0	00	\tilde{c}	00	~
		ĩ		- (•		•		-4-	

7. $CC = -190.0 \ \mu rad. N_b \simeq 1.13 \times 10^{11} \text{ ppb},$ = $1.43 \times 10^{30} \text{ cm}^{-2} \text{s}^{-1}, L_8 = 1.98 \times 10^{33} \text{ cm}^{-2} \text{s}^{-1}$ = $15 \text{ m}, \beta_{y,1}^* = 0.15 \text{ m}, \text{ polarity IP}_{2/8} = 1/1$ = $50 \ \mu rad, \Phi/2_{2,V} = -170 \ \mu rad, \Phi/2_{8,V} = 170 \ \mu rad$ = $2.5 \ \mu m, Q' = 15, C^- = 0.001$ = $288 \text{ bpi}_{13} \text{ inj}_{8} 00 \text{ ns}_{5} \text{ bs}_{2} 00 \text{ ns}_{5} \text{ son}. \text{ Bunch 150}.$

< 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.5 ≤4.0 4.2 4.3 $4.0 \leq 4.0 \quad 4.0 \quad 4.1 \quad 4.2$

 $200.0^{-1}00.0^{-1}00.0^{-1}00.0^{-2}00.0^{-3}00.0^{-4}00.0^{-5}00.0^{-6}00.0^{-6}$ Octupoles Intensity (A)

Additional results from previous simulations

Tune scan with hybrid scheme, HL 1.5. No CC.

