ACTS DD4hep plugin

MuColl / Key4hep tracking meeting

Leonhard Reichenbach
2024-09-02

Clarifications

= Both DD4hep and ACTS have a plugin mechanism

= | will talk about a plugin in ACTS that is used to load DD4hep geometries :)

= | will first talk about the old plugin, then about the ACTS tracking geometry
version 2 and 3

Geometry plugins in ACTS

= GeoModel: not exactly relevant for us
= TGeo: used by MuColl at the moment, 100s of lines (as far as | can see)
= DD4hep: the solution? Ideally only this

m_trackingGeo = Acts::convertDD4hepDetector (dd4hepGeo->world(), ...);

DD4hep plugin (old)

= Utilizes some information from DD4hep and a lot of VariantParameters added

to the DD4hep geometry to parse the structure
= Under the hood has a thin wrapper around the TGeo plugin to convert the

geometry after all the parts are arranged correctly
= Heavily used by the ACTS developers to load the OpenDataDetector, sadly also one

of the only detectors that load

DD4hep plugin requirements (old)

= Positive endcap, negative endcap and barrel have to be 3 distinct detector elements
with the same parent

= In particular if an endcap is positive or negative is determined by the z component
of the placement. In k4geo this is most often 0, due to usage of assemblies at this
level

= Layers of a sub-detector are selected using a RegEx attached as VariantParameter
to the geometry

= Also some VariantParameters to assign material and envelopes but not as strictly

required as the above

ACTS tracking geometry v2 (Blueprint)

= Newer mechanism to build a “layer-less” geometry

= Completely independent of the vl geometry

= The last time | checked it could not do tracking yet. ..

= Tons of VariantParameters needed to describe everything

= ~550 extra lines of xml per sub-detector

<argument
<argument
<argument
<argument
<argument
<argument
<argument
<argument
<argument
<argument
<argument
<argument

<argument

ACTS tracking geometry v2 (Blueprint)

<plugin name="DD4hep_ParametersPlugin'">

value="/world/OpenDataTracker/ShortStrips/ShortStripBarrel
true"/>
3||/>

value="acts_volume_internals: bool =

value="acts_volume: bool =
value="acts_volume_type: int =
true"/>
value="acts_volume_internals_type: str = layer"/>
value="acts_volume_internals_measure: str = z,r"/>
value="acts_volume_internals_clearance: double = ss_b_clea
ss_b_sf_b"/>
equidistant"/>
value="acts_surface_binning_ z_autorange: bool = true"/>

ss b sf b z"/>

ss b sf e z"/>

value="acts_surface_binning dim: int =

value="acts_surface_binning z_type: str =

value="acts_surface_binning z n: int =
value="acts_surface_binning z_exp: int =

S . q 7
value="acts_surface_binning phi_type: str = equidistant"/>

<argument
<argument
<argument
<argument
<argument
<argument
<argument
<argument
<argument
<argument
<argument
<argument
<argument

<argument

ACTS tracking geometry v2 (Blueprint). ..

value="acts_surface_binning phi_n: int = ss_bO_sf_b_phi"/>

value="acts_surface_binning phi_exp: int = ss_b_sf_e_phi"/
value="acts_portal_proto_material_2: bool = true"/>
2||/:

value="acts_portal_proto_material_2_binning z_type: str =

value="acts_portal_proto_material_2_binning dim: int =

value="acts_portal_proto_material_2_binning z_n: int = ss_
value="acts_portal_proto_material_2_binning z_autorange: b
value="acts_portal_proto_material_2_binning phi_type: str
value="acts_portal_proto_material_2_binning phi_n: int = s
value="acts_portal_proto_material_3: bool = true"/>
value="acts_portal_proto_material_3_binning dim: int = 2"/
value="acts_portal_proto_material_3_binning_ z_type: str =
value="acts_portal_proto_material_3_binning_z_autorange: b

. . . . 8 .
value="acts_portal_proto_material_3_binning z n: int = ss_

ACTS tracking geometry v2 (Blueprint)

<argument value="acts_portal_proto_material_3_binning_ phi_type: str :
<argument value="acts_portal_proto_material_3_binning phi_n: int = s

</plugin>

= Needed for every individual layer
= Maybe not the most optimal solution?

ACTS tracking geometry v3

= WIP Attempt to take the best parts of vl and v2 without all the chaos
= Driven by GeoModel plugin development

10

Status and plans for the future of the plugin

= Ideal goal: use as much of the existing information in DD4hep
= After all, we already have enough information to do tracking!
= After discussing with Paul Gessinger we agreed on the following:
= For the beginning only use DD4hep information to arrange all parts of the detector
correctly
= |.e. parse the CelllD encodings of the sensitive surfaces to identify which detector
elements need to be converted to ACTS
= Puzzle them together using the Protolayer functionality of ACTS
= Let ACTS worry about everything else (material description will slightly differ)
= Later on try to directly convert DDRec surfaces to ACTS surfaces

11

Obstacles identified so far

= CLD geometry loads too slow for efficient development (fixed in CLD_o2_vO07)

= Needs to be validated against OpenDataDetector, but
= ODD encoding scheme is different for every sub-detector and has no sides (fix in
preparation)
= ODD surfaces added twice to SurfaceManager. .. (fix submitted)
= ODD surfaces point in changing directions (to be fixed for part 2, but easy)

s CLD passive surfaces all have cel1ID == 0 as it was not needed for readout
= CLD geometry has alternating active and passive surfaces that have different
parents so the grouping into a common volume needs some work

12

Obstacles identified so far

13

= Maybe only a couple more days added to have a working prototype.
= Unfortunately | have only negative time left to work on this until the end of
October. ..

14

