Current and expected precision in the determination of the CKM triangle

Luiz VALE SILVA (U. CEU Cardenal Herrera, València-Spain)

LHCb FIP Physics (CERN), 05/02/2025

MINISTERIO DE CIENCIA, INNOVACIÓN Y UNIVERSIDADES

Flavor in the quark sector

(Gauge couplings to fermions)

 $\mathcal{L}_{SM} \sim -\frac{1}{4} (F_{\mu\nu})^2 + i \bar{\psi} \not{D} \psi$

(Higgs self-interaction)

 $+ |D_{\mu}H|^2 - V(H)$

(short-range weak interactions)

+ $\mathbf{Y}H\bar{\psi}\psi$ + h.c.

(spectrum of fermion masses, CKM matrix)

Experimental data Theoretical inputs

- Goal is **testing the SM**, and **possibly point out tensions**
- Many flavour observables enjoy the status of precision physics, thanks to progress in different fronts (e.g. <u>QCD inputs</u>)
- Flavor transitions pattern is likely to change in the presence of NP

Theo. inputs: hadronic effects

	$B_{(s)}\overline{B}_{(s)}, \ \overline{K}\overline{K}$: bag-parameters
Meson-mixing	$\widehat{B}_{B_s}, \widehat{B}_{B_s}/\widehat{B}_{B_d}$, \widehat{B}_K
	$\frac{2}{3}m_{K}^{2}f_{K}^{2}B_{K} = \langle \overline{K} (\overline{s}\gamma^{\mu}P_{L}d)(\overline{s}\gamma_{\mu}P_{L}d) K\rangle$
	$\pi \rightarrow \ell \nu$, $K \rightarrow \pi \ell \nu$, etc.: decay constants, form factors
(semi-)leptonic decays	Ex.: f_{π} , $f_{+}^{K \to \pi}(0)$
	$-oldsymbol{p}_{\mu}oldsymbol{f}_{\pi}=\langle 0 (ar{d}\gamma_{\mu}\gamma_{5}u) \pi(oldsymbol{p}) angle$,
	$f_+^{K\to\pi}(q^2)(p+p')_\mu+f^{K\to\pi}(q^2)(p-p')_\mu=\langle\pi(p') (\bar{s}\gamma_\mu P_L u) K(p)\rangle$

 \rightarrow Determine $\mathcal{L}_{SM(NP)}^{eff} \sim \Sigma_i C_i(\mu) \times O_i(\mu)$, where $\mu \sim \mathcal{O}(\text{few})$ GeV: C_i collects *short*-distance physics; O_i collects *long*-distance physics

 \rightarrow Lattice QCD: extractions of non-perturbative parameters; averages dominated by **systematic uncertainties**

Progress over the years

Δm,

Δm, & Δm,

1.0

1.5

2.0

 $\overline{0}$

	CKM	Process		Observables	Non-perturbative theoretical inputs				
	$ V_{ud} $	$0^+ \to 0^+ \ \beta$	$ V_{ud} _{nucl}$	=	$0.97373 \pm 0.00009 \pm 0.00053$	[14]	N	uclea	r matrix elements
		$K \to \pi \ell \nu_\ell$	$ V_{us} _{\mathrm{SL}}f^{K\to\pi}_+(0)$	=	0.21635 ± 0.00038	[38]	$f_+^{K \to \pi}(0)$	=	$0.9675 \pm 0.0011 \pm 0.0023$
Innute		$K \rightarrow e \nu_e$	$\mathcal{B}(K \rightarrow e\nu_e)$	=	$(1.582 \pm 0.007) \cdot 10^{-5}$	[39]			
IIIpulo	Vus	$K \rightarrow \mu \nu_{\mu}$	$\mathcal{B}(K \rightarrow \mu \nu_{\mu})$	=	0.6356 ± 0.0011	[39]	f_K	=	$155.57 \pm 0.17 \pm 0.57~{\rm MeV}$
•		$\tau \to K \nu_{\tau}$	$\mathcal{B}(\tau \rightarrow K\nu_{\tau})$	=	$(0.6986 \pm 0.0085) \cdot 10^{-2}$	[19]			
	V /V	$K \rightarrow \mu \nu_{\mu} / \pi \rightarrow \mu \nu_{\mu}$	$\frac{\mathcal{B}(K \rightarrow \mu \nu_{\mu})}{\mathcal{B}(\pi \rightarrow \mu \nu_{\mu})}$	=	1.3367 ± 0.0028	[39]	f_{rr}/f	_	$1.1973 \pm 0.0007 \pm 0.0014$
	Vus/Vud	$\tau \to K \nu_{\tau} / \tau \to \pi \nu_{\tau}$	$\frac{\mathcal{B}(\tau \rightarrow K \nu_{\tau})}{\mathcal{B}(\tau \rightarrow \pi \nu_{\tau})}$	=	$(6.437 \pm 0.092) \cdot 10^{-2}$	[19]	$JK/J\pi$	_	1.1373 ± 0.0007 ± 0.0014
		νN	$ V_{cd} _{not \ lattice}$	=	0.230 ± 0.011	[39]			
C K M		$D \rightarrow \tau \nu_{\tau}$	$\mathcal{B}(D \rightarrow \tau \nu_{\tau})$	=	$(1.20 \pm 0.27) \cdot 10^{-3}$	[19]	f_ /f_	_	$1.1799 \pm 0.0006 \pm 0.0022$
$O \cap W$	Vcd	$D \rightarrow \mu \nu_{\mu}$	$\mathcal{B}(D \rightarrow \mu \nu_{\mu})$	=	$(3.77 \pm 0.17) \cdot 10^{-4}$	[19]	JD_s/JD	_	$1.1762 \pm 0.0000 \pm 0.0033$
fitter		$D \to \pi \ell \nu_\ell$	$ V_{cd} _{\mathrm{SL}}f^{D\to\pi}_+(0)$	=	0.1426 ± 0.0018	[19]	$f^{D \to \pi}_+(0)$	=	$0.624 \pm 0.004 \pm 0.006$
111101		$W \rightarrow c \bar{s}$	$ V_{cs} _{not \ lattice}$	=	0.967 ± 0.011	[40]			
[CV/Mfittor]	$ V_{re} $	$D_s \to \tau \nu_{\tau}$	$\mathcal{B}(D_s \to \tau \nu_{\tau})$	=	$(5.32 \pm 0.10) \cdot 10^{-2}$	[18]	fp	_	$-240.23 \pm 0.27 \pm 0.65$ MeV
	^v cs	$D_s \to \mu \nu_\mu$	$\mathcal{B}(D_s \to \mu \nu_\mu)$	=	$(5.43 \pm 0.16) \cdot 10^{-3}$	[19]	JD_s	_	245.20 ± 0.21 ± 0.00 MeV
		$D \to K \ell \nu_{\ell}$	$ V_{cs} _{\mathrm{SL}}f^{D\to K}_+(0)$	=	0.7180 ± 0.0033	[19]	$f^{D \to K}_+(0)$	=	$0.742 \pm 0.002 \pm 0.004$
Df;+	$ V_{nb} $	semileptonic B	$ V_{ub} _{SL}$	=	$(3.86 \pm 0.07 \pm 0.12) \cdot 10^{-3}$	see text	forn	1 fact	ors, shape functions
$\mathcal{L} \stackrel{\text{\tiny NIII}}{=} \mathcal{L}_{\text{stat}} \times \mathcal{L}_{\text{theo}}$	* u0	$B \rightarrow \tau \nu_{\tau}$	$\mathcal{B}(B \to \tau \nu_{\tau})$	=	$(1.09 \pm 0.24) \cdot 10^{-4}$	[19]	f_{B_s}/f_B	=	$1.2118 \pm 0.0020 \pm 0.0058$
	$ V_{cb} $	semileptonic B	$ V_{cb} _{SL}$	=	$(41.22 \pm 0.24 \pm 0.37) \cdot 10^{-3}$	see text	form fa	ctors	, OPE matrix elements
$\chi^2 = -2 \ln \mathcal{L}$		semileptonic Λ_b	$\frac{\mathcal{B}(\Lambda_b \rightarrow p \mu \nu_{\mu})_{q^2 > 15}}{\mathcal{B}(\Lambda_b \rightarrow \Lambda_c \mu \nu_{\mu})_{q^2 > 7}}$	=	$(0.918\pm 0.083)\cdot 10^{-2}$	[27]	$\frac{\zeta (\Lambda_b \rightarrow p \mu \nu_{\mu})}{\zeta (\Lambda_b \rightarrow \Lambda_c \mu)}$	$\frac{(1)_{q^2 > 1}}{(\nu_{\mu})_{q^2 > 1}}$	$\frac{5}{7} = 1.471 \pm 0.096 \pm 0.290$
\mathcal{L}_{stat} : exp. data	$\left V_{ub}/V_{cb}\right $	semileptonic B_s	$\frac{\mathcal{B}(B_s \rightarrow K \mu \nu_{\mu})_{q^2 > 7}}{\mathcal{B}(B_s \rightarrow D_s \mu \nu_{\mu})}$	=	$(3.25\pm0.28)\cdot10^{-3}$	[41]	$\frac{\zeta(B_s \rightarrow K)}{\zeta(B_s \rightarrow K)}$	$\frac{\mu\nu_{\mu}}{D_s \mu\nu_t}$	$\frac{1}{2>7} = 0.363 \pm 0 \pm 0.065$
C had inpute		inclusive	$ V_{ub}/V_{cb} _{ m incl}$	=	$0.100\pm 0.006\pm 0.003$	[29]			
L _{theo} : nad. inputs	α	$B \to \pi \pi, \rho \pi, \rho \rho$	branch	ing r	atios, CP asymmetries	see text		isos	pin symmetry
	β	$B \rightarrow (c\bar{c})K$	$sin(2\beta)_{[c\bar{c}]}$	=	0.708 ± 0.011	[19]	suble	eading	g penguins neglected
	γ	$B \rightarrow D^{(*)}K^{(*)}$	γ	=	$(65.9^{+3.3}_{-3.5})^{\circ}$	[19]	GG	SZ, C	LW, ADS methods
	ϕ_s	$B_s \rightarrow J/\psi(KK, \pi\pi)$	$(\phi_s)_{b \to c\bar{c}s}$	=	-0.039 ± 0.016	[19]			
		Δm_d	Δm_d	=	$0.5065 \pm 0.0019 \text{ ps}^{-1}$	[19]	$\hat{B}_{B_s}/\hat{B}_{B_d}$	=	$1.007\pm 0.010\pm 0.014$
[LV3, 2405.08040]	$V_{tq}^*V_{tb}$	Δm_s	Δm_s	=	$17.765 \pm 0.006 \text{ ps}^{-1}$	[42]	\hat{B}_{B_s}	=	$1.313 \pm 0.012 \pm 0.030$
		$B_s \rightarrow \mu \mu$	$\mathcal{B}(B_s \to \mu \mu)$	=	$(3.45 \pm 0.29) \cdot 10^{-9} [\times (1 - 0.063)]$	[19]	f_{B_s}	=	$228.75 \pm 0.69 \pm 1.87~{\rm MeV}$
	$V_{td}^*V_{ts}$ and	ε_K	$ \varepsilon_K $	=	$(2.228 \pm 0.011) \cdot 10^{-3}$	[39]	\hat{B}_K	=	$0.7567 \pm 0.0020 \pm 0.0123$
	$V_{cd}^* V_{cs}$						κ_{ε}	=	$0.940 \pm 0.013 \pm 0.023$

.

Current status of flavour

- A single phase must be responsible for CP violation across distinct flavour sectors
- Observables of very different natures

 $A = 0.8215^{+0.0047}_{-0.0082}$ (0.8% unc.) $\lambda = 0.22498^{+0.00023}_{-0.00021}$ (0.1% unc.) $\bar{\rho} = 0.1562^{+0.0112}_{-0.0040}$ (4.9% unc.) $\bar{\eta} = 0.3551^{+0.0051}_{-0.0057}$ (1.5% unc.) 68% C.L. intervals

Rephasing invariant:

Consistency among observables

- If NP in loop: extraction of ρ,η degraded
- Overall agreement w/ the SM, but some existing tensions

New era of flavour ahead

- LHCb Upgrades [1812.07638]; Belle II [1808.10567]
- Phase I: LHCb-upgrade I 50/fb, & Belle II 50/ab
- Other later phases (more uncertain) left in back up

- Sizes of 1σ relative uncertainties [HL-LHC 1812.07638; Belle II 1808.10567]
- Important role played by LHC in extracting quantities above
- $|V_{ub}/V_{cb}|$: lattice determination of Λ_b form factors [Detmold, Lehner, Meinel '15]; extraction from B_s carries currently similar uncertainty (but larger)
- β and ϕ_s : penguin pollution, various estimates (QCDF, SU(3), etc.) w/ small central values and uncs. in the range $|\Delta\beta| \sim <1^{\circ}$ [Boos, Mannel, Reuter '04; Ciuchini et al. '05; De Bruyn, Fleischer '14; Frings, Nierste, Wiebusch '15; ...]

Other experimental inputs

Quantity	Current (Rfit)	Unc. Phase I
$ V_{ub} _{\rm SL}$	0.19	0.042
$ V_{cb} _{\rm SL}$	0.61	0.60
α	3.7°	0.6°
$\mathcal{B}(B \to \tau \nu)$	22~%	5 %

- Sizes of 1σ relative uncertainties [Belle II 1808.10567]
- $|V_{ub}|$ and $|V_{cb}|$ exclusive: assumptions about lattice improvements; only exclusive extractions considered for projections ("Current" includes inclusive)
- α: limitation from neutral modes, main experimental improvement expected from Belle II; need to account for isospin breaking corrections [Charles, Deschamps, Descotes-G., Niess '17]
- Strangeness: presently small role in extracting ρ and η

Other experimental inputs

- $|V_{ud}|$, $|V_{us}|$: no expected exp. change from (semi-)leptonic decays, only from lattice inputs
- $|V_{cd}|$, $|V_{cs}|$: would need substantial exp (and theo) improvement from the charm sector

Lattice inputs

Quantity	Current (Rfit)	Unc. Phase I
f_K	$0.5 \ \%$	0.3 %
$f_+^{K \to \pi}(0)$	0.4~%	0.1~%
f_{B_s}	1.1~%	$0.5 \ \%$
B_{B_s}	3.2~%	0.8~%
f_{B_s}/f_{B_d}	0.6~%	0.4~%
B_{B_s}/B_{B_d}	2.4~%	$0.5 \ \%$

- Sizes of 1σ relative uncertainties [1812.07638]
- Ratios: better control of chiral extrapolations to light quark masses
- Isospin and QED corrections for leptonic and semileptonic decays: known and around 1% effect for K; will be needed for B (and D)

Impact of LHCb + lattice

[1808.08865]

Illustrative purpose: only including LHCb

CKM metrology [Preliminary!]

Quantity	Current (Rfit)	Full agree	Unc. Phase I
A	1.8~%	1.9~%	1.4~%
λ	0.2~%	0.3~%	0.3.%
$ar{ ho}$	10~%	9.3~%	3.9~%
$ar\eta$	3.7~%	3.6~%	1.4~%

- Sizes of 2σ relative uncertainties
 - "Current" uncertainties follow Rfit scheme
 - "Full agree": central values adjusted to have perfect agreement among the constraints, and total theo. unc. treated as Gaussian
 - Future uncertainties treated as Gaussian
- A and λ extractions driven by $|V_{ud}|,\,|V_{us}|,\,|V_{cb}|$ inputs
- Improvement of ρ,η by factor of 2-3

Reach to New Physics (NP

- Low-energy observables: probe energies much beyond the reach of direct searches
- The bounds on non-SM contributions shape NP candidates
- If deviation seen, possible NP manifestation!

NP in B meson mixing

- NP in $|\Delta B|=2$: h_d and h_s set sizes
- Assumptions:
 - No NP in $|\Delta F|=1$:

tree level in SM (γ , $|V_{ub}|$, $|V_{cb}|$, ...) free of NP

- NP is short-distance
- Unitarity of the CKM 3x3 matrix
- Unrelated NP in B_d and B_s systems [See: PRD 89, 033016 (2014), arxiv:1309.2293]

[CKM fits w/ NP: UTfit; Descotes-G., Falkowski, Fedele, Gonzalez-A., Virto '19; Biswas, Mukherjee, Nandi, Patra '23]

CKM (in presence of NP), bag parameters, ↓ decay constants

$$M_{12} = M_{12}^{\text{SM}} \times (1 + \frac{h}{h} e^{2i\sigma})$$

$$\uparrow \nearrow$$
NP parameters

[B-mesogenesis: Miró, Escudero, Nebot '24] q

Status of NP in B meson mixing

- Status as of Summer '19: outdated, but conclusions should be similar
- Agreement with the SM $(h_d=h_s=0)$ at ~1 σ
- Allowed size for NP at the level of O(20%)!
- Extractions of ρ and η (Wolfenstein parm.)
 degrade by factor ~3

[Charles, Descotes-G., Ligeti, Monteil, Papucci, Trabelsi, LVS '20]

Black dot: best fit point; σ_d and σ_s are unconstrained

[See also: De Bruyn, Fleischer, Malami, van Vliet '23]

Future improvements

- SM reference: shift the central values
- Compared to Current, improvement by factor >3

Conclusions

- Global fit of a rich variety of processes sensitive to CP Violation and SM predictions in agreement
- We are then able to extract accurate values for the fundamental parameters describing the CKM matrix
- The mechanism of CP Violation in the SM (still) gives an accurate picture of nature: no clear indication of NP
- One example of the impact of NP: **B meson mixing**
- Exciting future prospects for Belle II, LHC, NA62,...

CKMfitter Collaboration

lome

Publications

MORE DETAILS @ CKMfitter

Jérôme Charles, Theory Olivier Deschamps, LHCb Sébastien Descotes-Genon, Theory Stéphane Monteil, LHCb Jean Orloff, Theory Wenbin Qian, LHCb/BESIII Vincent Tisserand, LHCb/BABAR Karim Trabelsi, Belle/Belle II Philip Urquijo, Belle/Belle II Luiz Vale Silva, Theory

THANKS!

BACK UP

Benchmarks for the future

- Phase I: LHCb-upgrade I 50/fb, & Belle II 50/ab
- Phase II: LHCb-upgrade II 300/fb, & Belle II upgrade 250/ab
- Phase III: Phase II + FCC-ee

FCC-ee: initial phase of FCC; operates at <u>different EW thresholds</u>: **5x10¹² Z bosons**, **10⁸ WW pairs**, >10⁶ Higgses, >10⁶ tt pairs

Attribute	$\Upsilon(4S)$	pp	Z^0	Particle species	B^0	B^+	B^0_s	Λ_b	B_c^+	$c\overline{c}$	$\tau^-\tau^+$
All hadron species		\checkmark	1	Viold $(\times 10^9)$	310	310	75	65	15	600	170
High boost		\checkmark	1		510	510	10	00	1.0	000	170
Enormous production cross-section		1									.1
Negligible trigger losses	1		1	IFCC Physics Opp	ortunii	lies, Co	oncep	tual D	esign	Repor	נן
Low backgrounds	1		1	[Flavour ca	ses: E	PJPlus	136, 8	37 <mark>arX</mark>	(iv:2106	6.01259	1
Initial energy constraint	1		(\checkmark)	and EPJPlus 136, 912 arXiv:2106.12168]							

Experimental inputs: Phases II & III

Quantity	Current (Rfit)	Unc. Phase I	Unc. Phase II	Unc. Phase III
$\sin(2\beta)_{[c\bar{c}]}$	0.011	0.005	0.002	0.0008
γ	3.4°	1°	0.25°	0.20°
$\left V_{ub} ight /\left V_{cb} ight $	9~%	3~%	1 %	id
$(\phi_s)_{[b \to c\bar{c}s]}$	$21 \mathrm{\ mrad}$	$14 \mathrm{\ mrad}$	$4 \mathrm{mrad}$	2 mrad
$ V_{ub} _{\mathrm{SL}}$	0.19	0.042	0.032	id
$ V_{cb} $	0.61	0.60	0.44	0.17
lpha	1.8°	0.6°	id	id
$\mathcal{B}(B \to \tau \nu)$	22~%	5~%	2~%	1 %

Lattice inputs: Phases II & III

Quantity	Current (Rfit)	Unc. Phase I	Unc. Phases II & III
f_K	0.5~%	0.3~%	id
$f_+^{K \to \pi}(0)$	0.4~%	0.1~%	id
f_{B_s}	$1.1 \ \%$	0.5 %	id
B_{B_s}	3.2~%	0.8~%	0.6~%
f_{B_s}/f_{B_d}	0.6~%	0.4~%	id
B_{B_s}/B_{B_d}	2.4~%	0.5 %	0.3~%

CKM metrology [Preliminary!]

Quantity	Current (Rfit)	Full agree	Unc. Phase I	Unc. Phase II	Unc. Phase III
A	0.8~%	0.9~%	0.7~%	$0.7 \ \%$	0.5%
λ	0.1~%	0.2~%	0.1~%	0.1~%	0.1~%
$ar{ ho}$	$4.9 \ \%$	4.6~%	1.9~%	0.9~%	0.7~%
$ar\eta$	$1.5 \ \%$	1.7~%	0.7~%	0.3~%	0.2~%
1σ					
2σ					
Quantity	C_{unmont} (Dft)	The ll a service of	TT DI T	II DI II	
	Current (Knt)	Full agree	Unc. Phase I	Unc. Phase II	Unc. Phase III
A	1.8%	Full agree 1.9 %	Unc. Phase I 1.4 %	Unc. Phase II $1.2~\%$	Unc. Phase III 0.9 %
$A \\ \lambda$	$\begin{array}{c} \text{Urrent (Knt)} \\ 1.8 \% \\ 0.2 \% \end{array}$	Full agree 1.9 % 0.3 %	Unc. Phase I 1.4 % 0.3 %	Unc. Phase II 1.2 % 0.3 %	Unc. Phase III 0.9 % 0.3 %
$egin{array}{c} A \ \lambda \ ar{ ho} \end{array}$	0.2 % 10 %	Full agree 1.9 % 0.3 % 9.3 %	Unc. Phase 1 1.4 % 0.3 % 3.9 %	Unc. Phase II 1.2 % 0.3 % 1.8 %	Unc. Phase III 0.9 % 0.3 % 1.5 %

Other projections are found in the CKMfitter webpage; see also CERN courier

Experimental and theoretical inputs

		Central		Uncerta	inties		Reference	
"Current": 2019.		values	Current [28]	Phase I	Phase II	Phase III	Phases I-III	
used only for ND	$ V_{ud} $	0.97437	± 0.00021	id	id	id	[28]	
used only for the	$ V_{us} f_+^{K\to\pi}(0)$	0.2177	± 0.0004	id	id	id	[28]	
in $ AP = 2$	$ V_{cd} $	0.2248	± 0.0043	± 0.003	id	id	[40,41]	
πι μασι-Ζ	V _{cs}	0.9735	± 0.0094	id	id	id	[28,40,41]	
,	$\Delta m_d [\mathrm{ps}^{-1}]$	0.5065	± 0.0019	id	id	id	[17]	
а Л	$\Delta m_s \ [\mathrm{ps}^{-1}]$	17.757	± 0.021	id	id	id	[17]	
	$ V_{cb} _{SL} \times 10^3$	42.26	± 0.58	± 0.60	± 0.44	id	[29]	
	$ V_{cb} _{W \rightarrow cb} \times 10^3$	42.20				± 0.17	[34–36]	
θ	$ V_{ub} _{\rm SL} \times 10^3$	3.56	± 0.22	± 0.042	± 0.032	id	[29]	
⊢ ∠ ∠	$ V_{ub}/V_{cb} $ (from Λ_b)	0.0842	± 0.0050	± 0.0025	± 0.0008	id	[30]	
	$\mathcal{B}(B \rightarrow \tau \nu) \times 10^4$	0.83	± 0.24	± 0.04	± 0.02	± 0.009	[29,34]	
e	$\mathcal{B}(B \to \mu \nu) \times 10^6$	0.37		± 0.03	± 0.02	id	[29]	
Ŭ,	$\sin 2\beta$	0.680	± 0.017	± 0.005	± 0.002	± 0.0008	[29,30,34]	
a di	α[°] (mod 180°)	91.9	± 4.4	± 0.6	id	id	[29]	
•	γ[°] (mod 180°)	66.7	± 5.6	± 1	± 0.25	± 0.20	[29,30,34]	
	β_s [rad] x(-2)	-0.035	± 0.021	± 0.014	± 0.004	± 0.002	[30,34]	
	$A_{\rm SL}^d \times 10^4$	-6	± 19	± 5	± 2	± 0.25	[14,17,34,37]	
,	$A_{\rm SL}^s imes 10^5$	3	± 300	± 70	± 30	± 2.5	[14,17,34,37]	
	\bar{m}_t [GeV]	165.30	± 0.32	id	id	± 0.020	[28,34]	
	$\alpha_s(m_Z)$	0.1185	± 0.0011	id	id	± 0.00003	[28,34]	
	$f_{+}^{K \to \pi}(0)$	0.9681	± 0.0026	± 0.0012	id	id	[30]	
	f_K [GeV]	0.1552	± 0.0006	± 0.0005	id	id	[30]	
~	f_{B_s} [GeV]	0.2315	± 0.0020	± 0.0011	id	id	[30]	
ā J	B_{B_s}	1.219	± 0.034	± 0.010	± 0.007	id	[30]	
ā 🔨	f_{B_s}/f_{B_d}	1.204	± 0.007	± 0.005	id	id	[30]	
Ž	B_{B_s}/B_{B_d}	1.054	± 0.019	± 0.005	± 0.003	id	[30]	
t t	$\tilde{B}_{B_s}/\tilde{B}_{B_d}$	1.02	± 0.05	± 0.013	id	id	[30,42,43]	
	\tilde{B}_{B_c}	0.98	± 0.12	± 0.035	id	id	[30,42,43]	
•	η_B	0.5522	± 0.0022	id	id	id	[44]	

arXiv:2006.04824 arXiv:2106.01259 arXiv:2106.12168 056023 (2020) נו שואט באלארא און איי שואט באלא און און איי and EPJPlus 136, 912 <mark>arX</mark>ii **PRD 102** [See for refs.:

- **CKMfitter**: Frequentist statistics based on a χ^2 analysis
- χ^2_{min} : goodness-of-fit under SM (or NP), estimators for V_{CKM}
- $\Delta \chi^2$ (χ^2 -distributed): **Confidence Level** (CL) intervals
- Range fit scheme (Rfit) incorporates theoretical uncertainties
- Theo. inputs: published Lattice papers, with error budgets, different sources of syst. uncertainty are combined linearly, using FLAG reports as a guide to sort results

2019 status plots

Different representation

Future improvements

Sensitivities	Summer 2019	Phase I	Phase II	Phase III
h _d	0.26	0.073	0.049	0.038
h_s	0.12	0.065	0.044	0.031

