Update on PSD and pumping property measurements at DLS

C. Burrows, M.P. Cox and Z. Mei 24th September 2024

Pumping property measurements - uncoated

Initial testing completed on simple, <u>non-NEG coated</u>, 0.5 m DN40 vessel

- $\alpha < 0.001$ for N₂

Pumping speed measurement system (0.5 m DN40)

I.FAST WP 10.5 - 24th September 20

Monte Carlo pressure ratio vs sticking probability curve

Pumping property measurements – NEG coated

- Non-coated stainless-steel vessel (DN40, 500 mm) no pumping
- NEG-coated stainless-steel vessel from PSD beamline (DN40, 1000 mm) no pumping?

- <u>No pumping</u> seen for H_2 or CO ($\alpha < 0.001$) in first activation
- Previous attempts to activate on PSD beamline saw no PSD yield changes
- Pumping behaviour seen at UKRI (E Marshall) after 160 °C activation:
 α_{H2} = 6E-4
 α_{CO} = 0.013

Bakeout method issues? Currently attempting 4th activation trial at 180 °C

L: System with mounted PSD vessel, R: PSD vessel

Pumping property measurements – NEG coated

PSD status & update

Previous: Data collected from DN40 stainless-steel vessel and presented at EVC/NEG workshop

Current status:

- March 2024 installed <u>new Ø20mm Cu-vessel</u> (I.FAST-type) coated at UKRI
- August 2024 installed upgraded central-port conditioning assembly
 full end-station bake to 180 °C with NEG vessel at 80 °C
- September 2024 initial beam exposure on non-activated (but baked) vessel

March 2024 – installed vessel, no conditioning assembly

August 2024 – conditioning assembly installation

PSD beamline – conditioning assembly I

- Updated conditioning assembly for new central port geometry
- V4 conditioned offline until no effect from bombardment

Above: First revision (V3) - intended to fit directly into racetrack profile

Narrow profile results in line-of-sight into RGA port

PSD beamline – conditioning assembly II

- Two designs of plate: with and without chamfered edges
 - Chamfered disc installed for improved conductance
- Net effect is small change in area that <u>is not easily conditioned</u> by electron bombardment

- Chamfer reduces plate surface area by ~10 mm² and increases exposed vessel surface by ~18 mm²
- Total illuminated vessel area is 53410 mm², unconditioned area is 0.26% total vessel area

PSD – stainless-steel vessel

Two 304L stainless-steel (Ø34.9 mm, 1 m long) vessels exposed to dipole light

- A. <u>Uncoated</u> stainless-steel vessel
- B. <u>NEG-coated</u> stainless-steel vessel [coated at UKRI by R. Valizadeh: TiZrV coating, nominal 1.0 μm thickness]

DN40 PSD test vessel #1: stainless steel, uncoated & NEG-coated

Four cases considered:

- 1. Uncoated vessel (stainless-steel)
- 2. NEG-coated (not activated)
- 3. NEG-coated (bake-out)
- 4. NEG-coated, saturated with high-purity N₂ unbaked

- **baked** at 180 °C for 110 hours

- <u>unbaked</u>
- **baked** at 190 °C for 24 hrs

Partial pressures & PSD yields

- Three-gauge method data, preliminary PSD yields for H_{2,} CH₄, CO, CO₂ in the <u>non-pumping case</u>
- Also shown is dynamic pressure data from mid-vessel RGA during illumination

- 1. Compare **<u>baked</u>** stainless-steel vessel with <u>**unbaked NEG-coated**</u> vessel
 - 2. Compare **<u>baked</u>** NEG-coated vessel and subsequent <u>N₂ vent</u>

Hydrogen (H₂)

- Dynamic pressures similar between uncoated and NEG-coated cases
- PSD yields are similar between NEG-coated and uncoated vessels
- H₂ has small effect on stored electron beam properties

Uncoated vesselbaked[180 °C, 110 hrs]NEG-coatedunbaked

Methane (CH_4)

- Dynamic pressure and PSD yields derived from CH₃ signal
- Dynamic pressure is higher for unbaked NEG-coated vessel in dose range investigated
- PSD yield is 2–5x reduced for the non-coated vessel, yields comparable at high doses

Uncoated vessel

NEG-coated

baked [180 °C, 110 hrs]

unbaked

Carbon monoxide (CO)

- Dynamic pressure differs by 2-10x over photon dose range investigated
- PSD yield is 2-10x higher for the NEG-coated vessel
- Yields become similar towards higher doses (>5x10²³ photons/m, ~400 A.h)

Carbon dioxide (CO₂)

- PSD yield is up to a factor 25 lower for uncoated vessel compared to non-coated vessel
- As for other gases, at high doses PSD yields become comparable
- Of PSD yields determined, CO₂ has strongest effect on beam

Uncoated vesselbaked[180 °C, 110 hrs]NEG-coatedunbaked

PSD yield - summary

- PSD yield for H₂ is <u>similar</u> between vessels, yields for CH₄, CO and CO₂ are <u>higher</u> for the NEG-coated vessel
- At higher doses, PSD yields are <u>comparable</u> between uncoated and NEG-coated vessels
 - High photon dose equivalent to ~400 A.h at Diamond

	Uncoated vessel		NEG-coated vessel	
	PSD yield (mol./photon)		PSD yield (mol./photon)	
	Low dose (1x10 ¹⁸ γ/m)	High dose (5x10 ²³ γ/m)	Low dose (1x10 ¹⁸ γ/m)	High dose (5x10 ²³ γ/m)
H ₂	1.2E-02	1.8E-05	2.2E-02	2.0E-05
CH ₄	6.1E-04	6.4E-08	2.4E-03	7.2E-08
СО	7.7E-04	1.1E-06	7.0E-03	1.5E-06
CO ₂	4.2E-04	2.2E-07	8.4E-03	6.6E-08

NEG coating bake-out & saturation

Uncoated vessel	<mark>baked</mark> [180 °C, 110 hrs]
NEG-coated	<u>unbaked</u>
NEG-coated	<mark>baked</mark> [190 °C, 24 hrs]
NEG-coated	vented [N ₂ , 1 atm., 30 mins]

- After 5x10²³ photons/m dose, NEG-coated vessel <u>baked</u> to 190 °C for 24 hours
- Observe a reduction in dynamic pressures

- Following this, NEG-coated vessel <u>vented</u> to 1 atm. high-purity N₂ for 30 minutes
- Dynamic pressure behaviour recovered after further ~300 A.h dose

PSD behaviour – stainless-steel vessels

- PSD yields within 1 decade of previously reported values for:
 - Stainless-steel (J. Vac. Sci. Technol. A 17(2), 1999, p635; Vacuum 33(7), 1983, p397)
 - Non-activated NEG coating (<u>IPAC'15, 2015, pp.3123-3126</u>)
 - Preliminary data omits gas-specific RGA corrections
- Yields are consistent between <u>baked</u> stainless-steel and <u>unbaked</u> NEG-coating after a dose of 5x10²³ photons/m (~400 A.h at Diamond)
 - Non-baked start-up of NEG-coated accelerators may be viable, depending on required dose
- Dynamic pressures from NEG-coated vessel reduced after baking following N₂ vent, vessel pressures recovered within 7 weeks of user operation

PSD measurements at Diamond – copper vessel

- One OFS-Cu (Ø20 mm, 1 m long) vessel exposed to dipole light
- A. **<u>NEG-coated</u>** vessel [coated at UKRI: dense TiZrV coating, nominal 1.0 μm thickness]

DN20 PSD test vessel #2: OFS-Cu, NEG coated Diamond-II compatible

- NEG-coated vessel <u>baked</u> at 80 °C for 88 hours
- Stainless-steel components <u>baked</u> at 180 °C for ~72 hours (total bake for 88 hours)
- Vessel tested by E Marshall at UKRI, shown to pump (right)

	α (180 °C)	
H ₂	0.001	
СО	0.009	
CO2	0.02 (RGAs noisy)	
Ratio=10 Capacity for CO $\approx 4.8 \times 10^{18} \text{ CO/m}^2$		

PSD – OFS-Cu port conditioning

- Example conditioning of central port plate and DN16 central port
- Plate previously run offline for >48 hours)

PSD – OFS-Cu Hydrogen & methane

- PSD yields for H₂ and CH₄ reduced for baked NEG-coated vessel compared to unbaked
- Yields also lower than for baked stainless-steel (no copper data to compare with from FE10B)

20

PSD – OFS-Cu Carbon monoxide & carbon dioxide

- PSD yields for CO and CO2 are similar to baked uncoated vessel
- Yields also lower than for unbaked NEG-coated vessel (no copper data to compare with)

PSD – OFS-Cu summary

- PSD yields are reduced compared to non-baked NEG-coated vessel (as might be expected)
- Values are lower or similar to baked non-coated vessel (bakeout conditions similar)

Next Steps:

Activation of NEG coating is main goal
 Next DLS shutdown: 11th October – 3rd November (testing/Diamond-II upgrades will limit access)
 Following shutdown is 18th December – 10th January (small opportunity here in New Year)

