# **NEG Coating Studies at DESY: Results and Challenges**

Rūta Širvinskaitė, Lutz Lilje, Ralph Böspflug, Sergey Antipov, Nils Plambeck, Marco Schröder, Anna Winiarska York, UK, /06/2024



HELMHOLTZ

### Agenda

#### 01 PETRA IV vacuum chambers

Chamber types

#### 02 Standard chambers

- Definition
- Cleaning
- Dense vs columnar coating

#### **03** Pumping properties

- Deposition setup/parameters
- Bakeout/activation processes
- Sticking probability/capacity measurements

#### 04 Resistivity measurements

- Test setup
- Surface impact on electrical properties

#### 05 Undulator chamber dummy (and tapers)

- Cleaning
- Deposition
- Assessing vacuum properties
- Challenges

#### 06 NEG ageing tests

- Procedure
- Preliminary results

#### 07 Next steps

- Further film optimization
- Next chambers

#### **08** Conclusions

• Summary of the results and challenges

### **Motivation**

#### **Requirements for PETRA IV**

- Non-evaporable getter (NEG) coating provides distributed pumping speed as well as desorption barrier, resulting in more uniform pressure profile, reduction of pumps and simpler machine design
- Modern particle accelerators, where most chambers have small diameter and low aspect ratio, rely on NEG increasingly more
- This is the case in PETRA IV, where more than 80 % of the vacuum system will be NEG coated
- PETRA IV aims for a state-of-the-art storage ring that will deliver electron beams of unmatched brightness and quality for photon science experiments



# **NEG studies at DESY**

Work towards NEG film vacuum properties optimisation and performance evaluation includes studying:

- Morphology: dense and columnar coating deposition
- Elemental composition: ternary TiZrV and single metal Zr coatings (no alloys targets used)
- Thickness along the chamber
- Sticking probability/capacity measurements
- Microwave signal attenuation measurements

→ Surface preparation as well as good understanding of deposition process/parameters are of high importance!

Some of the more challenging chambers include:

- 5 m long stainless steel undulator dummy chamber
- Copper tapers (sent for tests to MAX IV)
- $\rightarrow$  Various types of chambers needed in PETRA IV design
- Undulator, arc, extraction chambers most challenging!

DESY. | Optimising NEG Coating for PETRA IV: Resistivity and Sticking Probability Measurements | Ruta Sirvinskaite, 18/06/2024





## **PETRA IV vacuum system**

High aspect ratio chambers

#### **Undulator chambers**

- 4 different types
- Amount: 34
- Length: 4550-4291 mm
- Inner dimension: 20x7 mm ellipse (26x7 canting)
- Material: Aluminum EN AW-6060 (AlMgSi0.5)

#### Wiggler chambers

- Amount: 40
- Length: 4291 mm
- Inner dimension: 20x13 mm ellipse
- Material: Copper CuAg0.10(OF) (CW019A)
- Flange area: CuCr1Zr (CW106C)

# **PETRA IV vacuum system**

Photon extraction chambers (three standard types)

Photon extraction chamber 1, 2 and 3 standard

- Amount: 67 each
- Material: Copper CuAg0.10(OF) (CW019A)
- Flange area: CuCr1Zr (CW106C)
- Few more (less occurring) types will need NEG coating



**Standard 1** Length: 1497 mm Inner dimension: ø 20 + keyhole



Standard 3

Length: 1877 mm Entrance: Ø 20 + keyhole Exit 1: Ø 20 Exit 2: Ø 12

Standard 2 Length: 323 mm Inner dimension: ø 20 + keyhole

# **PETRA IV vacuum system**

#### **Bent chambers**

#### Arc chambers (6 main types; 4 bent)

- Amount: 72 each (68 type 4)
- Material: Copper CuAg0.10(OF) (CW019A)
- Flange area: CuCr1Zr (CW106C)
- Inner dimension: ø 20
- Shadowing bumps at the end



**Type 6** Length: 1498 mm Bent, 0.9 deg, radius 30 m

> **Type 5** Length: 2000 mm Bent, 0.6 deg, radius 96 m

**Type 3** Length: 2436 mm Bent, 1 deg, radius 96 m

# **Standard Samples**

| NEG Coating Studies at DESY: Results and Challenges | Rūta Širvinskaitė, /06/2024

### **Definition**

- Standard test samples:
  - Material OFS-Cu (previously OFHC-Cu)
  - Flanges 316 LN
  - Length 1 m
  - Dinner diameter 20 mm
- Sufficient complexity and similarity to PETRA IV chambers
- Welding, cleaning, etching done on site
- Significantly different procedures for both substrates
  - Different gases used for welding
  - Different etching procedures needed
- 50 cm 20 mm ID samples used for resistivity and (eventually) ESD measurements

### **Surface treatments at DESY**

#### **General procedure for OFHC-Cu**



Clean/coated samples stored in N<sub>2</sub> cabinet

# **Sample preparation**

#### **Degreasing and etching**

- Chamber material OFHC-Cu (CW022A)
- The following cleaning procedure was applied to the samples:
- ElmaClean (1.5%) in US bath for 15 min at 65 °C
- Demineralized water (DMW) rinsing (until the conductivity drops to <0.1 µS/m) (around 4 min)
- Isopropanol rinsing (pouring into the tube)
- $N_2$  drying (5 min)
- Air dryer (60 °C for 2 hours)
- DMW rinsing 2 min (or until the conductivity drops down below 0.4 µS/cm)
- Ammonium persulphate (NH<sub>4</sub>)<sub>2</sub>S<sub>2</sub>O<sub>8</sub> (250g/l) 45 min at room temperature
- DMW rinsing  $\rightarrow N_2$  drying  $\rightarrow$  DMW rinsing (each two min)
- Elma Clean 1.5% 5 min at 65 °C
- DMW rinsing  $\rightarrow N_2$  drying  $\rightarrow$  DMW rinsing (each two min)
- $N_2$  drying 5 mins
- Isopropanol rinsing 1 min
- N<sub>2</sub> drying 10 mins

#### Degreasing

**Etching** 





### **Surface treatments at DESY**

#### **General procedure for OFS-Cu**



Clean/coated samples stored in N<sub>2</sub> cabinet

# **Sample preparation**

#### **Degreasing and etching**

- Chamber material OFS-Cu CW019A (CuAg0.10(OF))
- The following cleaning procedure was applied to the samples: •
- ElmaClean (1.5%) in US bath for 15 min at 65 °C
- Demineralized water (DMW) rinsing (until the conductivity drops to  $<0.1 \ \mu$ S/m) (around 4 min) ٠
- Isopropanol rinsing (pouring into the tube)
- $N_2$  drying (5 min) .

- Air dryer (60 °C for 2 hours)
- DMW rinsing 2 min (or until the conductivity drops down below 0.4 µS/cm)
- Ammonium persulphate ( $NH_4$ )<sub>2</sub>S<sub>2</sub>O<sub>8</sub> (100g/l) + ammonium citrate  $NH_4CH_3CO_2$  (1g/l) 5 min at room ٠ temperature
- DMW rinsing  $\rightarrow N_2$  drying  $\rightarrow$  DMW rinsing (each two min) .
- Hydrogen peroxide H<sub>2</sub>O<sub>2</sub> (100g/l) 10 min at room temperature ٠
- DMW rinsing  $\rightarrow N_2$  drying  $\rightarrow$  DMW rinsing (each two min) ٠
- Ammonium acetate  $C_6H_{17}N_3O_7$  (50 g/l) 5 min at room temperature ٠
- DMW rinsing  $\rightarrow N_2$  drying  $\rightarrow$  DMW rinsing (each two min) ٠
- $N_2$  drying (5 min)  $\rightarrow$  Isopropanol rinsing (1 min)  $\rightarrow$   $N_2$  drying (10 mins)



3

DESY. | Optimising NEG Coating for PETRA IV: Resistivity and Sticking Probability Measurements | Ruta Sirvinskaite,

# **OFS-Cu coating**

#### **Dense samples**

• All dense test samples:

| Sample   | Target | Etching    | Deposition mode  | Coating | Thickness (µm) | Set parameter | t (h) | p (mbar) | I <sub>solenoid</sub> (A) |
|----------|--------|------------|------------------|---------|----------------|---------------|-------|----------|---------------------------|
| TK Ag 11 | TiZrV  | Ν          | Pulsed DC (AEPP) | Dense   | 1              | 40 W          | 5     | 7e-2     | 70                        |
| TK Ag 12 | TiZrV  | Ν          | Pulsed DC (AEPP) | Dense   | 2              | 50 W          | 10    | 7e-2     | 70                        |
| TK Ag 13 | TiZrV  | Y          | Pulsed DC (AEPP) | Dense   | 1              | 70 W          | 5     | 7e-2     | 70                        |
| TK Ag 15 | TiZrV  | Y          | Pulsed DC (AEPP) | Dense   | 2              | 50 W          | 10    | 7e-2     | 70                        |
| TK Ag 18 | Zr     | Y - defect | Pulsed DC (AEPP) | Dense   | 2              | 50 W          | 10    | 7e-2     | 70                        |
| TK Ag 20 | Zr     | Υ          | Pulsed DC (AEPP) | Dense   | 1              | 70 W          | 5     | 7e-2     | 70                        |

- Some samples will be used for pumping tests
- Only recently started doing pulsed DC deposition
- 350 kHz, 1.1 µs pulses
- Coating coverage and uniformity OK, process stable at higher power

# **OFS-Cu coating**

#### **Columnar samples**

• All columnar test samples:

| Sample   | Target | Etching | Deposition mode | Coating  | Thickness (µm) | Set parameter | t (h) | p (mbar) | I <sub>solenoid</sub> (A) |
|----------|--------|---------|-----------------|----------|----------------|---------------|-------|----------|---------------------------|
| TK Ag 06 | TiZrV  | Y       | DC              | Columnar | 1              | 200 mA        | 5.5   | 5e-1     | 70                        |
| TK Ag 05 | TiZrV  | Y       | DC              | Columnar | 1              | 200 mA        | 5.5   | 5e-1     | 72.3                      |
| TK Ag 07 | TiZrV  | Y       | DC              | Columnar | 2              | 250 mA        | 10    | 5e-1     | 70                        |
| TK Ag 08 | Zr     | Υ       | DC              | Columnar | 2              | 200 mA        | 10    | 5e-1     | 70                        |
| TK Ag 09 | TiZrV  | Y       | DC              | Columnar | 2              | 250 mA        | 10.5  | 2e-1     | 70                        |
| TK Ag 10 | TiZrV  | Υ       | DC (AEPP)       | Columnar | 1              | 200 mA        | 5     | 5e-1     | 70                        |
| TK Ag 14 | TiZrV  | Y       | DC (AEPP)       | Columnar | 1              | 70 W          | 5     | 5e-1     | 70                        |
| TK Ag 16 | TiZrV  | Y       | DC (AEPP)       | Columnar | 1              | 60 W          | 5     | 5e-1     | 70                        |
| TK Ag 17 | TiZrV  | Y       | DC (AEPP)       | Columnar | 2              | 200 mA        | 10    | 2e-1     | 70                        |
| TK Ag 19 | Zr     | Y       | DC (AEPP)       | Columnar | 2              | 250 mA        | 10    | 5e-1     | 70                        |
| TK Ag 21 | Zr     | Y       | DC (AEPP)       | Columnar | 1              | 50 W          | 5     | 5e-1     | 70                        |
| TK Ag 22 | Zr     | Y       | DC (AEPP)       | Columnar | 1              | 50 W          | 7     | 5e-1     | 70                        |
| TK Ag 23 | Zr     | Y       | DC (AEPP)       | Columnar | 1              | 55 W          | 5     | 5e-1     | 70                        |
| TK Ag 30 | TiZrV  | Y       | DC (AEPP)       | Columnar | 1              | 60 W          | 5     | 7e-2     | 70                        |
| TK Ag 31 | Zr     | Y       | DC (AEPP)       | Columnar | 1              | 60 W          | 5     | 7e-2     | 70                        |

#### • Some samples will be used for pumping tests

DESY. | NEG Coating Studies at DESY: Results and Challenges | Rūta Širvinskaitė, /06/2024

# **OFS-Cu coating**

#### Challenges when producing columnar coating

#### 1. Non-uniform thickness

• Thickness at least twice as large at the center of the tube when compared to the ends

#### 2. Uncoated ends

- Not uncommon issue with higher aspect ratio tubes
- Likely due to plasma instability which is affected by the magnetic field/higher pressure
- Extensive B measurements done, more fans installed to try and increase B (currently up to 500 Gauss in the middle)
- Temporary fix moving the magnet down

#### 3. Unstable process

- Difficult to maintain deposition for 5 hours with 70 W at 4.8×10<sup>-1</sup> mbar
- More sample sets have been produced:
  - Samples for pumping property/resistivity measurements
  - Samples for NEG ageing tests

# Assessing pumping properties

| NEG Coating Studies at DESY: Results and Challenges | Rūta Širvinskaitė, /06/2024

## **Deposition**

#### **PVD system and deposition parameters**

- 1 m long solenoid magnet (4 × 100 turns) standard samples are of the same length; however, to enable the sample installation on the microwave test stand for attenuation measurements, 50 cm long tubes (ID 20 mm) were coated
- 3×1 mm wires twisted on site (single metal Ti, Zr and V and single metal Zr)
- Comparing:
  - Substrate (OFHC-Cu vs OFS-Cu)
  - Material: TiZrV vs Zr
  - Thickness: 5 µm vs1 µm
  - Structure: dense vs columnar (not for OFHC-Cu)
  - 12 reference samples (two sets) in total prepared



DESY. | Optimising NEG Coating for PETRA IV: Resistivity and Sticking Probability Measurements | Ruta Sirvinskaite,



# **Deposition**

#### **PVD system and deposition parameters**

• OFHC-Cu samples:

| Sample   | Mode | Expected thickness | Р <sub>кг</sub><br>(mbar) | I <sub>solenoid</sub><br>(A) | l<br>(mA) | Duration<br>(h) | Cathode       | Estimated thickness |
|----------|------|--------------------|---------------------------|------------------------------|-----------|-----------------|---------------|---------------------|
| TK 50-09 | DC   | 5                  | 7.2×10 <sup>-2</sup>      | 70                           | 200       | 25              | TiZrV twisted | 6.8                 |
| TK 50-10 | DC   | 1                  | 7.2×10 <sup>-2</sup>      | 70                           | 200       | 5.5             | TiZrV twisted | 1.3                 |
| TK 50-11 | DC   | 5                  | 7.2×10 <sup>-2</sup>      | 70                           | 200       | 25              | Zr twisted    | 5.9                 |
| TK 50-12 | DC   | 1                  | 7.2×10 <sup>-2</sup>      | 70                           | 200       | 5               | Zr twisted    | 1.4                 |

• OFS-Cu samples:

| Sample      | Mode      | Expected thickness | P <sub>Kr</sub><br>(mbar) | I <sub>solenoid</sub><br>(A) | P (W) | Duration<br>(h) | Cathode       | Estimated thickness |
|-------------|-----------|--------------------|---------------------------|------------------------------|-------|-----------------|---------------|---------------------|
| TK Ag 50-09 | Pulsed DC | 1                  | 7.2×10 <sup>-2</sup>      | 70                           | 70    | 5               | Zr twisted    | 1 µm                |
| TK Ag 50-11 | DC        | 1                  | 4.8×10 <sup>-1</sup>      | 70                           | 50    | 5               | Zr twisted    | 1 µm                |
| TK Ag 50-10 | Pulsed DC | 1                  | 7.2×10 <sup>-2</sup>      | 70                           | 70    | 5               | TiZrV twisted | 1 µm                |
| TK Ag 50-14 | DC        | 1                  | 4.8×10 <sup>-1</sup>      | 70                           | 50    | 5               | TiZrV twisted | 1 µm                |
| TK Ag 50-16 | Pulsed DC | 5                  | 7.2×10 <sup>-2</sup>      | 70                           | 70    | 25              | Zr twisted    | 5 µm                |
| TK Ag 50-17 | DC        | 5                  | 4.8×10 <sup>-1</sup>      | 70                           | 50    | 11              | Zr twisted    | 5 µm                |
| TK Ag 50-18 | Pulsed DC | 5                  | 7.2×10 <sup>-2</sup>      | 70                           | 70    | 25              | TiZrV twisted | 5 µm                |
| TK Ag 50-19 | DC        | 5                  | 4.8×10 <sup>-1</sup>      | 70                           | 50    | 18              | TiZrV twisted | 5 µm                |



DESY. | Optimising NEG Coating for PETRA IV: Resistivity and Sticking Probability Measurements | Ruta Sirvinskaite,

### **Vacuum tests**

#### Setup and procedure

- System allows for pressure ratio measurements (ESD tests are planned in the future)
- Main components can be split into three categories: pumping line, injection line and test domes
- During bakeout, samples were kept at 80 °C with the rest of the system at 200 °C
- System kept at 150 °C for two hours at the start of sample activation (filaments degassed before increasing the sample temperature)
- First activation to 140 °C; subsequent activations to 150, 160, 180, 200, 220 and 250 °C (all 24 hours long)
- Short  $H_2$  injection (5 min) to obtain pressure ratio  $P_{bot}/P_{top}$  after each activation
- Followed by a longer CO injection (until pressure ratio drops to < 10) to saturate the film



DESY. | Optimising NEG Coating for PETRA IV: Resistivity and Sticking Probability Measurements | Ruta Sirvinskaite, 18/06/2024

### **Bakeout/activation procedure**

### **Injection procedure**

### **Vacuum tests**

#### Sticking probability and pumping capacity

- Only 1 µm samples were used for measurements
- With the use of Molflow,  $P_{bot}/P_{top}$  can be converted to sticking probability
- The amount of injected CO before P<sub>bot</sub>/P<sub>top</sub> decreases below 10 represents CO pumping capacity



# Vacuum tests – OFHC-Cu

#### Sticking probability and pumping capacity

- H<sub>2</sub> and CO sticking probabilities as well as CO pumping capacity (for T > 180 °C) were determined during the tests
- TiZrV demonstrated better sticking probability and pumping capacity

|                       | TiZ                                   | .rV                  | Zr                                    |                      |  |
|-----------------------|---------------------------------------|----------------------|---------------------------------------|----------------------|--|
| T <sub>act</sub> (°C) | C <sub>co</sub> (CO/cm <sup>2</sup> ) | C <sub>co</sub> (ML) | C <sub>CO</sub> (CO/cm <sup>2</sup> ) | C <sub>co</sub> (ML) |  |
| 200                   | 7.87×10 <sup>14</sup>                 | 1.57                 | 2.16×10 <sup>14</sup>                 | 0.43                 |  |
| 220                   | 9.73×10 <sup>14</sup>                 | 1.95                 | 2.30×10 <sup>14</sup>                 | 0.46                 |  |
| 250                   | 1.20×10 <sup>15</sup>                 | 2.40                 | 5.07×10 <sup>14</sup>                 | 1.01                 |  |



# Vacuum tests – 0

#### Sticking probability and put

CO sticking probability as well as ٠ capacity (for T > 180 °C) were det tests

0.04

CO Sticking probability

0.01 -

150

|                                    |                       |                          | Tiz                  | ZrV                      |                      |                          | Z                    | Zr                          |                      |
|------------------------------------|-----------------------|--------------------------|----------------------|--------------------------|----------------------|--------------------------|----------------------|-----------------------------|----------------------|
| ests – OFS-Cu                      |                       | Der                      | ise                  | Colun                    | nnar                 | Der                      | ise                  | Colur                       | nnar                 |
| ility and numping capacity         | T <sub>act</sub> (°C) | C <sub>co</sub> (CO/cm²) | C <sub>co</sub> (ML) | C <sub>co</sub> (CO/cm²) | C <sub>co</sub> (ML) | C <sub>co</sub> (CO/cm²) | C <sub>co</sub> (ML) | C <sub>CO</sub> (CO/cm²)    | C <sub>co</sub> (ML) |
|                                    | 180                   | 5.34×10 <sup>14</sup>    | 1.07                 | 7.74×10 <sup>14</sup>    | 1.55                 | 4.29×10 <sup>14</sup>    | 0.86                 | 5.28×10 <sup>14</sup>       | 1.06                 |
| ability as well as CO pumping      | 200                   | 6.72×10 <sup>14</sup>    | 1.34                 | 6.98×10 <sup>14</sup>    | 1.4                  | 4.38×10 <sup>14</sup>    | 0.88                 | 7.87×10 <sup>14</sup>       | 1.57                 |
| (80 °C) were determined during the | 220                   | 8.75×10 <sup>14</sup>    | 1.75                 | 8.32×10 <sup>14</sup>    | 1.66                 | 6.56×10 <sup>14</sup>    | 1.31                 | 7.92×10 <sup>14</sup>       | 1.58                 |
|                                    | 250                   | 1.10×10 <sup>15</sup>    | 2.20                 | 1.80×10 <sup>15</sup>    | 3.6                  | 8.61×10 <sup>14</sup>    | 1.72                 | 1.20×10 <sup>15</sup>       | 2.4                  |
| Colu<br>Dens                       | ımnar Zr<br>se Zr     | CO Sticking probability  | 0.10                 |                          |                      | Ţ<br>Ţ                   |                      | olumnar TiZrV<br>ense TiZrV |                      |
| 200 250                            |                       |                          | •                    | 150                      | 200                  | 0                        | 250                  | ·                           |                      |
| Activation temperature (C)         |                       |                          |                      | Acti                     | vation tem           | perature (°C)            | )                    |                             |                      |

| NEG Coating Studies at DESY: Results and Challenges | Rūta Širvinskaitė, /06/2024

#### **Conductivity of NEG coating**

- Large number of chambers in PETRA IV system will produced out of OFS-Cu, which has a conductivity of around 60 MS/m
- However, NEG coating with its relatively poor conductivity (up to 0.8 MS/m for dense coating and down to 0.014 MS/M for columnar coating) might affect beam coupling impedance of coated vacuum chambers and wakefields, which may in turn induce collective instabilities
- Therefore, it is important to study how the NEG coating may influence the finite resistivity and potentially contribute to beam-induced wakes
- NEG conductivity depends on structure, chemical composition, preparation process, method used for magnetron sputtering etc.
- The coating has to be sufficiently thin in order to have a low impact on the resistive wall impedance
- Coatings with thickness of 1 µm are standard and expected in PETRA IV
- To estimate the conductivity of the NEG coating, thicker samples are needed
- Same conductivity is then assumed for thinner samples







#### System and measurement principle

- Microwave transmission method allows evaluating signal attenuation produced by the coating
- Measurement setup consists of:
  - Rohde & Schwarz vector network analyzer with two 75-110 GHz extension units: one for emitting and one for receiving the microwave signal
  - Two horn antennas
  - Set of holders for mounting the sample
- Attenuation of a microwave that is propagating in a circular waveguide can be

expressed by 
$$\alpha_{mn}^{TE}(f) = \frac{R_s}{Z_0 r \sqrt{1 - \left(\frac{f_c}{f}\right)^2}} \times \left[\left(\frac{f_c}{f}\right)^2 + \frac{m^2}{\left(\chi'_{mn}\right)^2 + m^2}\right] Np/m$$

- Material resistivity  $\rho$  can then be calculated using  $R_s = \sqrt{\pi f \rho \mu_0}$
- For ρ to be accurate the skin depth has to be smaller than the coating thickness (coating can be considered as bulk)





# **Resistivity measurements – OFHC-Cu**

Samples 1 & 2: TiZrV coating

Estimated resistivity 5.4  $\mu\Omega m,$  thin sample indistinguishable from bulk Cu



## **Resistivity measurements – OFHC-Cu**

Samples 3 & 4: Zr coating

Estimated resistivity 8.5  $\mu\Omega$ m, thin sample visible in the measurement





# **Resistivity measurements – OFS-Cu**

#### **Fitted data**

- Thin samples indistinguishable from the bulk copper
- The oscillations in frequency likely happen due to signal reflections at entrance and exit of the chamber
- The beating could be removed by tapered transitions from the waveguide ports to the pipe
- 10 measurements per sample done to reduce the impact of oscillations
- Data fitted to account for increasing attenuation with frequency



## **Resistivity measurements – OFS-Cu**

#### Summary of the results for 5 µm samples

- Dense films show higher resistivity, dense TiZrV sample could be showing higher resistivity due to a surface defect
- The measured resistivity of 1 µm NEG films would not impact the PIV impedance significantly in a frequency range relevant to the 40 ps beam – anything less than 1 µΩm is accepted



#### Comparison with results obtained from OFHC-Cu

- More samples tested prior to assess how surface preparation and air exposure affect electrical properties
- Surface treatment before deposition affects the NEG resistivity
- Surface defects increase the resistivity (as seen on 1 µm and 5 µm dense TiZrV samples)
- Air exposure does not have an influence on electrical properties (neither NEG nor bulk Cu)
- All samples prior to the very last set were likely dense (all around 5 µm)



### **Surface characterisation**

#### **Thickness measurements**

- 3 samples cut out of each tube; 3 locations tested on each sample
- Thickness varies depending on the location:
  - 5.2-7.5  $\mu m$  and 1.3-2.3  $\mu m$  for TiZrV
  - 4.5-5.8  $\mu m$  and 1.3-2.2  $\mu m$  for Zr
- Zr coating shows a more columnar structure
- Change from the expected thickness value is small enough to not influence the resistivity results (relevant for 1 µm coating)



DESY. | NEG Coating for PETRA IV: Resistivity and Sticking Probability Measurements | Ruta Sirvinskaite, 07/11/2023

# **Surface characterisation**

#### **Thickness measurements**

- 3 samples cut out of each tube; 3 locations tested on each sample
- Thickness varies depending on the location:
  - 0.6-1.1  $\mu m$  and 2.1-4.1  $\mu m$  for dense TiZrV
  - 1.6-4.3  $\mu m$  and 6.7-12  $\mu m$  for columnar TiZrV
  - 0.5-1.2  $\mu m$  and 2.3-4.5  $\mu m$  for dense Zr
  - 2.1-4  $\mu m$  and 18.4-27.8  $\mu m$  for columnar Zr
- Change from the expected thickness value is small enough to not influence the resistivity results (relevant for 1 µm coating)
- Dense samples should be coated for longer the thickness is close to the skin depth







# **Undulator chamber dummy**

| NEG Coating Studies at DESY: Results and Challenges | Rūta Širvinskaitė, /06/2024

# **Motivation**

**PETRA IV Undulator Cell** 

#### Current version of the standard undulator chamber in the PETRA IV 3D model – the prototype used for tests did not have cooling channels on each side

#### **Chamber geometry**

- The cross section of the standard chamber will be an ellipse with 7x20 mm
- The available undulator gap will be around 9.5 mm (not less); the chamber will probably have a minimum wall thickness of 1 mm
- The current design length is around 4400 mm
- The undulator section is still in discussion and longer undulators are considered
- The material of the chamber will probably be an aluminum alloy (e.g. Al-6060)

ID: 7×20 mm Prototype dimensions: Length = 5 m $OD = 16.3 \times 7.5 \text{ mm}$ Wall thickness = 0.25 mm Ellipse width = 7 mmMaterial – 1.4404 (316L) Steel

# **Chamber preparation**

#### Cleaning

#### Done after forming and welding the chamber

- Demineralised water rinsing (3 min, 0.3 µS/cm)
- D Protech 9 (30 min, 65 °C, 4 ml/l)
  - First 15 minutes in US bath (filled with Elma Clean at 65 °C)
- Demineralised water rinsing (2 min)
- $\square$  N<sub>2</sub> flushing (1 min)
- Demineralised water rinsing (2 min)
- □ Neodisher N (5 min)
- Demineralised water rinsing (2 min)
- $\square N_2$ flushing (1 min)
- Demineralised water rinsing (2 min)
- □ Isopropanol rinsing (1 min)
- $\square \quad N_2 \text{ drying}$



# **Chamber preparation**

#### **Conditioning before bakeout**

#### **Cathode twisting**

- 3x0.5 mm Ti, Zr, V wires twisted on site
  - Cleaning in a US bath beforehand

#### Installation

- Cathode inserted after chamber installation only
- Pumping carts connected to both sides of the chamber
- Frame for vertical support and centering with fixations every 25-30 cm
- Ceramic centering pieces and a weight (~270 g) attached to the cathode

#### **Bakeout procedure**

• System (along with the chamber) baked for 2.5 days at 200 °C





## **Deposition**

#### **Setup and parameters**

- Length of the solenoid 1 m
- Coating done in 6 steps (from top to bottom)
  - Overlap between steps 18 cm
  - Overlap at chamber ends 5 cm

#### Coating parameters

| mΔ        |
|-----------|
|           |
| -23 W     |
| 7-320 V   |
| )2 mbar   |
| A         |
| 292 min   |
| 2-335 min |
|           |





# **Deposition**

#### Attempts

- Middle sections (3 and 4) most problematic
  - Many alignments and adjustments required
  - Alignment precision of ±0.2 mm along the entire chamber
- Countless attempts to start and maintain discharge
- Solution: starting the process at the nearest position possible, then moving the magnet to the desired point
- Coating for around 300 min at each step in total (multiple starts)
  - Set in order to get coating thickness of approximately 1 µm



### **Vacuum tests**

#### **Preparations**

#### Pumping Speed Measurement (PSM) setup

 No extractor gauge on the left side of the sample – quadrupole mass spectrometers used instead



#### **Bakeout/Activation**

- Pumping both ends of the chamber
- Standard STFC ASTeC bakeout/activation procedure applied
  - Chamber kept at 80 °C with the rest of the system at 200 °C
  - System kept at 150 °C for two hours at the start of sample activation
- Two activations: 180 °C (right after the bakeout), 250 °C (after injections that followed the first activation)

# **Sticking probability tests**

#### H<sub>2</sub> injections

#### Description

ratio graph

- Turbo pump open •
- Short injections (5 min after observing increased pressure at the ٠ end of the sample; over 10 min in total)





# **Sticking probability tests**

#### **CO** injections

#### Description

- Turbo pump kept open to have a better background pressure
- Short initial injection (5 min after observing increased pressure at the end of the sample), leak rate reduced before closing TMP





### **Further tests**

#### **Capacity measurements**

#### Molflow+ model

• Sticking probabilities from 10<sup>-6</sup> to 5x10<sup>-2</sup> applied to the entire chamber inner surface area



#### **Capacity tests**

- Should be a more accurate method to evaluate the pumping
- Turbo pump closed right after initial CO injection, gauges switched off later
- Injections continued overnight to saturate the sample (20-24 hours)
- Final P<sub>front</sub>/P<sub>end</sub> < 10

| T <sub>Act</sub> | α <sub>H2</sub>    | α <sub>co</sub>    | C (ML) | C (CO/cm <sup>2</sup> ) |
|------------------|--------------------|--------------------|--------|-------------------------|
| 180 °C           | 1x10 <sup>-4</sup> | 1x10 <sup>-4</sup> | 2.79   | 1.4x10 <sup>15</sup>    |
| 250 °C           | 2x10 <sup>-4</sup> | 9x10 <sup>-3</sup> | 4.00   | 2.0x10 <sup>15</sup>    |

## **Surface characterisation**

#### **Thickness measurements**

#### Laser scanning microscope analysis

- 15 locations analysed
  - 3 section overlaps (doubled coating time)
  - 2 middle sections
- Samples embedded at 80 °C (no pressing force applied)
- As expected, thicker coating seen where the sections overlap
- Coating fractured in Section 4 (multiple attempts at coating)
- Stable coating process resulted in a more uniform film



### **Challenges**

In various stages of tests

#### Deposition

- Cumbersome cathode/chamber installation
- Centering is extremely important for such narrow chambers; fixing a weight to the cathode is essential
- Precise vertical alignment needed chamber should be as straight as possible after production
- Thermal expansion of the cathode and chamber has to be taken into consideration when installing centering pieces and baking, respectively

#### **Pumping tests**

- Some complications due to low transmission both with tests and simulations
  - Difficult to see pressure increase at the end of the chamber
  - Takes a long time to saturate (device protection has to be reviewed)
- Molflow+ model should include transverse facets along the tube to allow for a case of chamber saturation at the front
  - Will be done when the geometry is (close to) final

### **Considerations for future samples**

- Chamber geometry will be changed to resemble the actual case more
  - Shorter with same ellipse eccentricity
- Alternative coating could be tried (e.g. pure Zr)
  - Allows for a single metal wire cathode easier to prepare and handle, especially if 1 mm Zr wire is used instead of 0.5 mm Ti, Zr and V wires
- Cathode conditioning in a separate chamber prior to the deposition
  - Short sputtering before the first use

# **Coating tapers**

- Material: Taper 1 CW022A (99.98% Cu), Taper 2 -CW021A (99.95% Cu)
- Taper 2 was sent for production at an external company, wire eroded after brazing
- Both tapers brazed at 850 °C
- Taper 1 wire eroded before brazing
- Challenges with deposition:
  - Thickness would not be uniform due to the irregular chamber geometry
  - Fenders might not get coated as they are shadowed (Shielding?)
  - Fender tips will be coated most (closest to the cathode); delamination possible
- Sputtering time increased to 8 hours



### **Coating tapers**

- Tapers fully coated, as well as fenders
- Thickness not known yet
- As long as the cathode is centered, there should not be a problem with fender coating



# **NEG ageing tests**

| NEG Coating Studies at DESY: Results and Challenges | Rūta Širvinskaitė, /06/2024

### **Test description**

• 4 samples (1 m long, 20 mm ID) coated for testing

| Sample   | Target | Etching | Deposition mode  | Coating  | Thickness (µm) | Set parameter | t (h) | p (mbar) | I <sub>solenoid</sub> (A) |
|----------|--------|---------|------------------|----------|----------------|---------------|-------|----------|---------------------------|
| TK Ag 24 | TiZrV  | Y       | DC (AEPP)        | Columnar | 1              | 55 W          | 5     | 4.8e-1   | 70                        |
| TK Ag 25 | TiZrV  | Y       | Pulsed DC (AEPP) | Dense    | 1              | 70 W          | 5     | 7.2e-2   | 70                        |
| TK Ag 27 | Zr     | Y       | Pulsed DC (AEPP) | Dense    | 1              | 70 W          | 5     | 7.2e-2   | 70                        |
| TK Ag 29 | Zr     | Y       | DC (AEPP)        | Columnar | 1              | 55 W          | 6     | 4.8e-1   | 70                        |

- Zr samples (dense and columnar) tested first
- Starting temperature 180 °C; increase to 200 °C once the pumping properties see stable degradation
- Three-day activation to be done at the end to check if sticking probability recovers

# CO pumping – activations to 180 °C

- 15 activations at 180 °C degrees (the eighth activation is not taken into account)
- For columnar coating, after the 9th activation, there was no visible increase in pressure ratio
- For dense coating, until the last activation, slight increases in pressure ratio was visible



# CO pumping – activations to 180 °C

#### CO sticking probability and pumping capacity

- Increasing sticking probability for the dense coating
- Slow reduction in capacity



| , |                       |                          | Z                    | 2r                                    |                      |  |  |
|---|-----------------------|--------------------------|----------------------|---------------------------------------|----------------------|--|--|
|   |                       | Dei                      | nse                  | Colu                                  | mnar                 |  |  |
|   | T <sub>act</sub> (°C) | C <sub>co</sub> (CO/cm²) | C <sub>co</sub> (ML) | C <sub>CO</sub> (CO/cm <sup>2</sup> ) | C <sub>co</sub> (ML) |  |  |
| ĺ | 180_1                 | 8.70×10 <sup>14</sup>    | 1.74                 | 6.44×10 <sup>14</sup>                 | 1.29                 |  |  |
|   | 180_2                 | 8.29×10 <sup>14</sup>    | 1.66                 | 6.16×10 <sup>14</sup>                 | 1.23                 |  |  |
|   | 180_3                 | 7.55×10 <sup>14</sup>    | 1.51                 | 5.93×10 <sup>14</sup>                 | 1.19                 |  |  |
|   | 180_4                 | 7.06×10 <sup>14</sup>    | 1.41                 | 5.65×10 <sup>14</sup>                 | 1.13                 |  |  |
|   | 180_5                 | 6.63×10 <sup>14</sup>    | 1.33                 | 5.72×10 <sup>14</sup>                 | 1.15                 |  |  |
|   | 180_6                 | 6.13×10 <sup>14</sup>    | 1.23                 | 5.47×10 <sup>14</sup>                 | 1.10                 |  |  |
|   | 180_7                 | 6.11×10 <sup>14</sup>    | 1.22                 | 5.44×10 <sup>14</sup>                 | 1.09                 |  |  |
|   | 180_9                 | 6.21×10 <sup>14</sup>    | 1.24                 | 5.98×10 <sup>14</sup>                 | 1.20                 |  |  |
|   | 180_10                | 6.04×10 <sup>14</sup>    | 1.21                 | $5.98 \times 10^{14}$                 | 1.20                 |  |  |
|   | 180_11                | 5.63×10 <sup>14</sup>    | 1.13                 | 4.63×10 <sup>14</sup>                 | 0.93                 |  |  |
|   | 180_12                | 5.83×10 <sup>14</sup>    | 1.17                 | 5.72×10 <sup>14</sup>                 | 1.14                 |  |  |
|   | 180_13                | 5.65×10 <sup>14</sup>    | 1.13                 | 6.10×10 <sup>14</sup>                 | 1.22                 |  |  |
|   | 180_14                | 5.93×10 <sup>14</sup>    | 1.19                 | 5.75×10 <sup>14</sup>                 | 1.15                 |  |  |
|   | 180_15                | 6.46×10 <sup>14</sup>    | 1.29                 | 5.24×10 <sup>14</sup>                 | 1.05                 |  |  |
|   | 180_16                | 5.65×10 <sup>14</sup>    | 1.13                 | 5.91×10 <sup>14</sup>                 | 1.18                 |  |  |

\_

# CO pumping – activations to 200 °C

- 11 activations at 200 °C degrees
- For columnar coating, until the last activation, slight increases in pressure ratio was visible
- For dense coating, until the last activation, slight increases in pressure ratio was visible



DESY. | NEG Coating Studies at DESY: Results and Challenges | Rūta Širvinskaitė, /06/2024

# CO pumping – activations to 200 °C

**CO sticking probability and pumping capacity** 

- Slow increase in capacity
- Two three-day activations done at the end



|                       | Zr                                    |                      |                          |                      |  |  |
|-----------------------|---------------------------------------|----------------------|--------------------------|----------------------|--|--|
|                       | Dei                                   | nse                  | Columnar                 |                      |  |  |
| T <sub>act</sub> (°C) | C <sub>CO</sub> (CO/cm <sup>2</sup> ) | C <sub>CO</sub> (ML) | C <sub>CO</sub> (CO/cm²) | C <sub>CO</sub> (ML) |  |  |
| 200_1                 | 8.97×10 <sup>14</sup>                 | 1.79                 | 8.73×10 <sup>14</sup>    | 1.75                 |  |  |
| 200_2                 | 9.87×10 <sup>14</sup>                 | 1.97                 | 9.64×10 <sup>14</sup>    | 1.93                 |  |  |
| 200_3                 | 1.04×10 <sup>15</sup>                 | 2.07                 | 1.04×10 <sup>15</sup>    | 2.08                 |  |  |
| 200_4                 | 1.08×10 <sup>15</sup>                 | 2.15                 | 1.04×10 <sup>15</sup>    | 2.09                 |  |  |
| 200_5                 | 1.06×10 <sup>15</sup>                 | 2.12                 | 1.06×10 <sup>15</sup>    | 2.13                 |  |  |
| 200_6                 | 1.10×10 <sup>15</sup>                 | 2.20                 | 1.09×10 <sup>15</sup>    | 2.19                 |  |  |
| 200_7                 | 1.13×10 <sup>15</sup>                 | 2.25                 | 1.10×10 <sup>15</sup>    | 2.20                 |  |  |
| 200_8                 | 1.13×10 <sup>15</sup>                 | 2.25                 | 1.13×10 <sup>15</sup>    | 2.26                 |  |  |
| 200_9                 | 1.14×10 <sup>15</sup>                 | 2.28                 | 1.12×10 <sup>15</sup>    | 2.24                 |  |  |
| 200_10                | 1.10×10 <sup>15</sup>                 | 2.19                 | 1.13×10 <sup>15</sup>    | 2.26                 |  |  |
| 200_11                | 1.15×10 <sup>15</sup>                 | 2.30                 | 1.14×10 <sup>15</sup>    | 2.28                 |  |  |

# Conclusions

| NEG Coating Studies at DESY: Results and Challenges | Rūta Širvinskaitė, /06/2024

### **Future developments**

#### **Sample preparation**

- Continued dense vs columnar coating tests (both TiZrV and Zr)
  - Columnar is difficult to achieve it on narrow tubes, thickness is less uniform on columnar samples
  - Tests with more dense structures coated at lower pressures to continue
- Continued surface analysis to evaluate NEG thickness profile along the sample
  - Upgrade of the deposition system to improve the magnetic field generation
- Different OFS-Cu profile will be used in PETRA IV; tests should be repeated and conductivity of the bulk should be measured again
  - Extrusion process could impact the resistivity of the bulk copper
  - Cleaning procedure for silver-bearing copper is significantly different
- Roughness measurements of as-received, etched and coated samples (OFS-Cu profile with a cooling channel)
  - So far within limits but more tests are needed to check the roughness along the cross section



Bent chamber with a cooling channel for PETRA IV girder prototype

DESY. | Optimising NEG Coating for PETRA IV: Resistivity and Sticking Probability Measurements | Ruta Sirvinskaite, 18/06/2024

### **Future developments**

#### Sample asessment

- Sticking probability/capacity measurements
  - More tests with dense and columnar TiZrV and Zr to continue
- NEG ageing tests
  - TiZrV (dense and columnar) samples to be installed on the setup next
- ESD measurements
  - Thermal outgassing tests with iridium and yttriated iridium wires prior
- Resistivity measurements
  - Test stand will potentially be improved to allowed for tapered connections
- Next samples to coat:
  - Bent arc chambers (bent before coating; spacers will have to be used for the deposition)
  - Undulator chamber prototypes
  - IFAST samples for PSD

### **Summary**

- DESY has standard cleaning, deposition and test procedures to assess the various properties of NEG coating
- 5 m long undulator chamber prototype successfully coated and tested
- Resistivity measurements, while could be improved, allow for testing tubular samples with various structures/thicknesses
- Further surface analysis (SEM, EDX) and resistivity measurements are needed to collect more data and confirm the recent results
- Gained experience will be crucial for improving the future experiments in attempt of reproducible NEG coating on various sample geometries

# Thank you

Acknowledgments:

DESY: Jakob Hauser, Victor Fonseca de Sousa, Luisa Wiechert, Dirk Vermeulen, Ingo Franke, Yonas Ghirmay, Andreas Kock, Alexey Ermakov Sven Lederer, Antonios Foskolos

STFC UKRI: Oleg Malyshev, Reza Valizadeh, Eleni Marshall, Andrew Vick, James Conlon

#### Contact

Deutsches Elektronen-<br/>Synchrotron DESYRūta ŠirvinskaitėMVS<br/>ruta.sirvinskaite@desy.dewww.desy.de+49 408998 4335