New Pathways towards Quantum-Encoded Data Analysis in Neutrino Physics Jeff Lazar CERN QC Seminar 03 Oct., 2024 Geneva, SwitzerlandUCLouvain fnis

Terabytes and Trouble

- Even after cuts, HEP experiments produce huge amounts of data !
- CERN produces > 300 TB of data per day
	- \sim 250 TB from LHC
	- \sim 70 TB from other experiments
- IceCube produces ~1 TB per day
- Sometimes multiple copies of this data must be stored

Data retrieval at Fermilab's Feynman Computing Center. A robotic arm retrieves and reads CMS data stored on hard drives at Fermilab *Photo: Reidar Hahn*

- Larger and more luminous experiments are on the horizon
- A growing problem

Terabytes and Trouble

Outline

- **• Encoding Information in Quantum Random Access Codes**
- Example application to neutrino telescope data
- Concluding remarks

New Pathways in Neutrino Physics via Quantum-Encoded Data Analysis

Jeffrey Lazar, 1, 2, * Santiago Giner Olavarrieta, 2, † Giancarlo Gatti, $3, 4, 5, \frac{1}{7}$ Carlos A. Argüelles, $2, \frac{8}{9}$ and Mikel Sanz^{3, 4, 6, 7, ¶}

Jeff Lazar – CERN QC Seminar 5

- Representing numerical data in qubits is non-trivial
- Angle encoding is used in much of the literature

Representing Data in Qubits

Angle Encoding: An Analog Encoding

- Embed data into angles by taking arctangent
- Only polar angle impacts expectation value
- Errors can dramatically affect encoded values
- Amount of data linear with number of qubits

 ϕ , θ = arctan(*d*₁), arctan(*d*₂)

Towards a Digital Encoding

- Qubits are two-level systems and so they are naturally suited to binary representations
- Naively idea would be to encode binary numbers
- Introduce binary operator b_z with eigenvalues 0 and 1

- In an *n*-qubit system, you could encode *n* bits of data
- Not great, but maybe there's something here…

$$
\hat{b}_z | q_0 \rangle = 0 | q_0 \rangle \qquad \hat{b}_z | q_1 \rangle = 1 | q_1 \rangle \qquad \hat{b}
$$

$$
\hat{b}_z | q_2 \rangle = 1 | q_2 \rangle \qquad \hat{b}_z | q_3 \rangle = 0 | q_3 \rangle
$$

Towards a Digital Encoding

Thinking about State Parity

- Since the spin of any individual qubit is a binary outcome, the product over spins will also be a binary outcome
- We can now define a binary parity operator $(PO), \hat{b}^p_{B_2B_3B_2B_3}$, in a similar vein, with ̂ *β*0*β*1*β*2*β*³ $\beta_i \in [z, x, y]$
- We map each classical bit to one of the 3*n* POs, we have a lot of space

̂ $\hat{b}^p_{z^p}$ *zzzz* = 1 2 [(2 $\overline{\hbar}$) 4 $\hat{z}_0 \hat{z}_1 \hat{z}_2 \hat{z}_3 + 1$ ̂ **゙゙** ̂ ̂

Parity and Quantum Random Access Codes

- \bullet Each *n*-qubit system will allow us to read a fraction of the total information
- Which portion of the information is determined by commutation relations
- But wait…
- There is no guarantee that a particular bit string will not conflict with allowed states

- POs via XOR
-

Complete Sets of Commuting Observables

= 0 $= 1$ *I β* = 0 *HZS β* = 1 $= 2$

$$
S^{\star}(\theta_{s}) = \begin{cases} I & \theta_{s} = 0 \\ S & \theta_{s} = 1 \end{cases} Z^{\star}(\theta_{z}) = \begin{cases} I & \theta_{s} = 0 \\ Z & \theta_{s} = 0 \end{cases}
$$

$$
X^{\star}(\alpha_{x}) = \begin{cases} I & \theta_{s} = 0 \\ X & \theta_{s} = 1 \end{cases} \qquad \Gamma(\beta) = \begin{cases} I & \rho = 0 \\ HZS & \beta = 0 \\ SH & \beta = 0 \end{cases}
$$

$$
\langle \rangle + (-1)^{\theta_z} |1111\rangle \Big] \rightarrow \frac{1}{\sqrt{2}} \Big[|0000\rangle + (i)^{\theta_s + 2\theta_z} |1111\rangle \Big]
$$

Fig.
$$
\frac{1}{\sqrt{2}} \Big[|LR1+\rangle + (i)^{\theta_s + 2\theta_z} |RL0-\rangle \Big]
$$

Turning the Knobs on CSCO Eigenstates

CSCO Eigenstates by the Numbers

- There are 2×3^n CSCOs and each has 2^n allowed eigenstates
- Since each state has information on 2^{n-1} + 1 observables, we have $\sim 12^n$ eigenvalues to sift through…
- Symmetries between different *β* values allow us to bring this to 4^n

Painting by Number

- Randomly select a number of states and take the average over all relevant CSCOs
- And then optimize those states
- Details of optimization are highly technical and somewhat varied

$$
b_i = \text{round}\left[\text{bit}\left(\frac{1}{|\{|\phi\rangle\}|}\sum_j \langle \phi_j | \mathcal{O}(i) | \phi_j \rangle\right)\right]
$$

Optimization Scheme

- 1. While convergence criteria not met
	- Score states based on whether they move the corresponding pair in the right direction
	- Preferentially select low-scoring state(s) to pick a new, better set of θ_z and α_i
- 2. Replace state(s) with new states that cover unbiased states, go to step 1

A Slightly Less Abstract Example

two-state systems to represent

classical bits.

If *r* is polynomial, we will achieve compression

Can it compress ? Maybe.

In this model, with redundancy r we need

$$
r \times n \times \frac{3^n - 1}{2 \times (2^{n-1} + 1)} \sim r \times n \left(\frac{3}{2}\right)^n
$$

$$
\frac{3^{n-1}-1}{2}
$$

Outline

- Encoding Information in Quantum Random Access Codes
- **• Example application to neutrino telescope data**
- Concluding remarks

IceCube Neutrino Observatory

-
-

Physics from Light and Time

Great energy resolution, but angular reconstruction is challenging

Great directional resolution, but deposited energy not proportional to *Eν*

Signature of $ν_{\tau}$ CC events

Prometheus Open-Source Simulation Framework

- Prometheus provides support for full simulation chain
- Ice- and water-based detectors
- Photon-level information enabling detailed ML and theoretical studies

In-Ice Event Displays

L fnis

Binaryification

- For each event create a coordinate system centered at the charge-weighted center of gravity
- For each OM compute \bar{t} , q_{tot} , and (r, θ, ϕ) and convert to binary via, e.g. Float32
- Concatenate these values !
- With our dataset, we were able to encode each event into 8-qubit systems

- We wanted to see whether this can be used to analyze physics data
- Compare CDF of polar angle for tracks and cascades
- Expect a more uniform distribution for cascades and peaked for tracks

Differentiating Tracks and Cascades

Simulated Dataset

- Restricted ourselves to events that could be encoded in 8 qubits
- Simulated events with energies between 100 GeV and 50,000 GeV
- At least 20 photons recorded and at most 20 OMs triggered

Data Going In A D

Embedded Data 7 7 †

- We encoded our data into 680^{+18}_{-25} 8 qubit states -25 W_2 anogaled our deta: e el **b** We encoded our data \overline{C}
	- The fidelity of the embedding had a fidelity 84.32 % $+0.69\%$ with respect to the classical data -1.08% $\begin{array}{c} 10 & 1 \\ 1 & 2 \end{array}$ \int 3.3 Δm
	- Systematic shift upward for both tracks and 0.6 cascades $rac{1}{256}$

IBM Q Cairo Backend

- After running our encoding procedure we embedded the events on the IBMQ Cairo backend *We* embedded the events on
Cairo hackend amhaddad the events on the IRM $\mathbf{0}$ $\mathbf{$
	- Modified circuit to maximize parallelization of 2-qubit gates *Xα2 Xα3* ^{*L*} 5^{α} α and α and α $1 / 5$ 7 - (THE STEERS)

LI fnis

Reading Out the Data

- Finally we read out the data via the decoding circuit
- Again, we optimized the circuit to maximize parallel processing
- We then measure the state of each qubit to reconstruct the initial state

Jeff Lazar – CERN QC Seminar $\overline{10}$ LU Seminar π

Data Coming Out

Data Coming Out \overline{a} **7 †**

- Encoded data recovered with $100\,\% ^{+0.0\%}_{-1.04\%}$ fidelity -1.04% Broaded dete recepted nco **B** Encoded data recove 1.0
	- Discrepancy between true and encoded data made classification fail $\overline{\mathbf{a}}$ $\overline{\mathbf{0}}$ Dis

Summary Remarks on This Study

- The high fidelity between encoded and retrieved data shows the embedding protocol is robust to current, noisy quantum computers
- The embedding procedure is not sufficiently faithful to desired data
- No proof whether lack of fidelity is inherent or result of imperfect optimization

Outline

- Encoding Information in Quantum Random Access Codes
- Example application to neutrino telescope data
- **• Concluding remarks**

Looking Forward on QRACs in Physics

- Understanding whether data can be compressed is imperative for understanding whether QRACs will have physics potential
- Moving data analysis into the quantum circuit, e.g. via quantum VAEs and NNs, should also be explored

Target problems

- A bank auditor requires data about a client. However, the client must remain anonymous to the bank, and the bank must not share the data of all clients in the process.
- . Two countries want to exchange M activemine locations, and they require to mutually verify their data before actually sharing it.
	- **Private & Restricted communication** not possible without trusted third party

Final Comments about QRACs

- QRACs have interest beyond encoding / compressing data
- We've recently realized potential to use this protocol for private and restricted communication
	- Since information is destroyed as it is read, one can enforce a limit on how much information is known without knowing what information will be read

Conclusions

- Near-term, noisy quantum computers have the potential to aid in high-energy physics • QRAC protocol can potentially lead to data compression with relatively few qubits, but
- more studies needed
- Current encoding on 8 qubits does not offer high-enough fidelity to be straightforwardly applied to physics data
- Applications of QRACs exist beyond compression and storage, motivating further study of algorithm's expressive properties

Thank you:-)

