New Pathways towards Quantum-Encoded Data **Analysis in Neutrino Physics** Jeff Lazar **CERN QC Seminar** 03 Oct., 2024 Geneva, Switzerland UCLouvain fns

Terabytes and Trouble

- Even after cuts, HEP experiments produce huge amounts of data !
- CERN produces > 300 TB of data per day
 - ~250 TB from LHC
 - ~70 TB from other experiments
- IceCube produces ~1 TB per day
- Sometimes multiple copies of this data must be stored

Data retrieval at Fermilab's Feynman Computing Center. A robotic arm retrieves and reads CMS data stored on hard drives at Fermilab Photo: Reidar Hahn

Terabytes and Trouble

- Larger and more luminous experiments are on the horizon
- A growing problem

Outline

- Encoding Information in Quantum Random Access Codes
- Example application to neutrino telescope data
- Concluding remarks

New Pathways in Neutrino Physics via Quantum-Encoded Data Analysis

Jeffrey Lazar,^{1,2,*} Santiago Giner Olavarrieta,^{2,†} Giancarlo Gatti,^{3, 4, 5, ‡} Carlos A. Argüelles,^{2, §} and Mikel Sanz^{3, 4, 6, 7, ¶}

Representing Data in Qubits

- Representing numerical data in qubits is non-trivial
- Angle encoding is used in much of the literature

Angle Encoding: An Analog Encoding

- Embed data into angles by taking arctangent
- Only polar angle impacts expectation value
- Errors can dramatically affect encoded values
- Amount of data linear with number of qubits

 $\phi, \theta = \arctan(d_1), \arctan(d_2)$

Towards a Digital Encoding

- Qubits are two-level systems and so they are naturally suited to binary representations
- Naively idea would be to encode binary numbers
- Introduce binary operator \hat{b}_{7} with eigenvalues 0 and 1

Towards a Digital Encoding

- In an *n*-qubit system, you could encode *n* bits of data
- Not great, but maybe there's something here...

$$\hat{b}_z |q_0\rangle = 0 |q_0\rangle$$
 $\hat{b}_z |q_1\rangle = 1 |q_1\rangle$

$$\hat{b}_{z} |q_{2}\rangle = 1 |q_{2}\rangle$$
 $\hat{b}_{z} |q_{3}\rangle = 0 |q_{3}\rangle$

Thinking about State Parity

- Since the spin of any individual qubit is a binary outcome, the product over spins will also be a binary outcome
- We can now define a binary parity operator (PO), $\hat{b}^{p}_{\beta_{0}\beta_{1}\beta_{2}\beta_{3}}$, in a similar vein, with $\beta_i \in [z, x, y]$
- We map each classical bit to one of the 3^n POs, we have a lot of space

$\hat{b}_{zzzz}^{p} = \frac{1}{2} \left[\left(\frac{2}{\hbar} \right)^{4} \hat{z}_{0} \hat{z}_{1} \hat{z}_{2} \hat{z}_{3} + 1 \right]$

Jeff Lazar – CERN QC Seminar

10

Parity and Quantum Random Access Codes

- Each *n*-qubit system will allow us to read a fraction of the total information
- Which portion of the information is determined by commutation relations
- But wait...
- There is no guarantee that a particular bit string will not conflict with allowed states

- POs via XOR

Complete Sets of Commuting Observables

$$S^{\star}(\theta_{s}) = \begin{cases} I & \theta_{s} = 0 \\ S & \theta_{s} = 1 \end{cases} \qquad Z^{\star}(\theta_{z}) = \begin{cases} I & \theta_{s} = 0 \\ Z & \theta_{s} = 1 \end{cases}$$
$$X^{\star}(\alpha_{x}) = \begin{cases} I & \theta_{s} = 0 \\ X & \theta_{s} = 1 \end{cases} \qquad \Gamma(\beta) = \begin{cases} I & \beta = 0 \\ HZS & \beta = 0 \\ SH & \beta = 1 \end{cases}$$

$$\frac{1}{\sqrt{2}} \left[\left| 1111 \right\rangle \right] \rightarrow \frac{1}{\sqrt{2}} \left[\left| 0000 \right\rangle + (i)^{\theta_s + 2\theta_z} \right| 1111 \right\rangle \right]$$

$$\frac{1}{\sqrt{2}} \left[\left| LR1 + \right\rangle + (i)^{\theta_s + 2\theta_z} \right| RL0 - \left\langle \right\rangle \right]$$

Jeff Lazar – CERN QC Seminar

0 0 $\beta = 2$

13

Turning the Knobs on CSCO Eigenstates

Jeff Lazar – CERN QC Seminar

14

CSCO Eigenstates by the Numbers

- There are 2×3^n CSCOs and each has 2^n allowed eigenstates
- Since each state has information on $2^{n-1} + 1$ observables, we have ~ 12^n eigenvalues to sift through...
- Symmetries between different β values allow us to bring this to 4^n

Painting by Number

- Randomly select a number of states and take the average over all relevant CSCOs
- And then optimize those states
- Details of optimization are highly technical and somewhat varied

$$b_{i} = \text{round} \left[\text{bit} \left(\frac{1}{|\{|\phi\rangle\}|} \sum_{j} \langle \phi_{j} | \mathcal{O}(i) | \phi_{j} \rangle \right) \right]$$

Optimization Scheme

- 1. While convergence criteria not met
 - Score states based on whether they move the corresponding pair in the right direction
 - Preferentially select low-scoring state(s) to pick a new, better set of θ_z and α_i
- 2. Replace state(s) with new states that cover unbiased states, go to step 1

				_

A Slightly Less Abstract Example

Can it compress ? Maybe.

In this model, with redundancy *r* we need

$$r \times n \times \frac{3^n - 1}{2 \times (2^{n-1} + 1)} \sim r \times n \left(\frac{3}{2}\right)^n$$

two-state systems to represent

$$\frac{3^{n-1}-1}{2}$$

classical bits.

If *r* is polynomial, we will achieve compression

Outline

- Encoding Information in Quantum Random Access Codes
- Example application to neutrino telescope data
- Concluding remarks

Jeff Lazar – CERN QC Seminar

20

IceCube Neutrino Observatory

Physics from Light and Time

Great energy resolution, but angular reconstruction is challenging

Great directional resolution, but deposited energy not proportional to E_{ν}

Signature of ν_{τ} CC events

Prometheus Open-Source Simulation Framework

- Prometheus provides support for full simulation chain
- Ice- and water-based detectors
- Photon-level information enabling detailed ML and theoretical studies

In-Ice Event Displays

Cascades								

I fn^rs

Binaryification

- For each event create a coordinate system centered at the charge-weighted center of gravity
- For each OM compute \overline{t} , q_{tot} , and (r, θ, ϕ) and convert to binary via, e.g. Float32
- Concatenate these values !
- With our dataset, we were able to encode each event into 8-qubit systems

Jeff Lazar – CERN QC Seminar

Differentiating Tracks and Cascades

- We wanted to see whether this can be used to analyze physics data
- Compare CDF of polar angle for tracks and cascades
- Expect a more uniform distribution for cascades and peaked for tracks

Jeff Lazar – CERN QC Seminar

Simulated Dataset

- Restricted ourselves to events that could be encoded in 8 qubits
- Simulated events with energies between 100 GeV and 50,000 GeV
- At least 20 photons recorded and at most 20 OMs triggered

Data Going In

Embedded Data

- We encoded our data into 680^{+18}_{-25} 8 qubit states
- The fidelity of the embedding had a fidelity $84.32 \%^{+0.69\%}_{-1.08\%}$ with respect to the classical data
- Systematic shift upward for both tracks and cascades

IBM Q Cairo Backend

- After running our encoding procedure we embedded the events on the IBMQ Cairo backend
- Modified circuit to maximize parallelization of 2-qubit gates

fn^rs

Reading Out the Data

- Finally we read out the data via the decoding circuit
- Again, we optimized the circuit to maximize parallel processing
- We then measure the state of each qubit to reconstruct the initial state

Data Coming Out

fn^rs

Data Coming Out

- Encoded data recovered with $100 \%^{+0.0\%}_{-1.04\%}$ fidelity
- Discrepancy between true and encoded data made classification fail

Summary Remarks on This Study

- The high fidelity between encoded and retrieved data shows the embedding protocol is robust to current, noisy quantum computers
- The embedding procedure is not sufficiently faithful to desired data
- No proof whether lack of fidelity is inherent or result of imperfect optimization

Outline

- Encoding Information in Quantum Random Access Codes
- Example application to neutrino telescope data
- Concluding remarks

Looking Forward on QRACs in Physics

- Understanding whether data can be compressed is imperative for understanding whether QRACs will have physics potential
- Moving data analysis into the quantum circuit, e.g. via quantum VAEs and NNs, should also be explored

Jeff Lazar – CERN QC Seminar

36

Final Comments about QRACs

- QRACs have interest beyond encoding / compressing data
- We've recently realized potential to use this protocol for private and restricted communication
 - Since information is destroyed as it is read, one can enforce a limit on how much information is known without knowing what information will be read

Jeff Lazar – CERN QC Seminar

Target problems

- A bank auditor requires data about a client. However, the client must remain anonymous to the bank, and the bank must not share the data of all clients in the process.
- Two countries want to exchange M activemine locations, and they require to mutually verify their data before actually sharing it.

Conclusions

- Near-term, noisy quantum computers have the potential to aid in high-energy physics • QRAC protocol can potentially lead to data compression with relatively few qubits, but
- more studies needed
- Current encoding on 8 qubits does not offer high-enough fidelity to be straightforwardly applied to physics data
- Applications of QRACs exist beyond compression and storage, motivating further study of algorithm's expressive properties

Thank you:-)

