# **Simulation R&D**

## **Fastsim Updates**

Piyush Raikwar, Peter McKeown

03.09.24

#### Datasets

- All the datasets are ready
  - Par04 SiW
  - Par04 SciPb
  - Par04 PbWO4
  - ODD
  - FCCee CLD (1GeV 100 GeV)
  - FCCee ALLEGRO (1GeV 100 GeV)
- Some events are discarded in FCCee detectors if they create secondary particles before reaching the

calorimeter (same conditions are being replicated when doing the validation in DDG4)

- 0.1% in ALLEGRO
- **10% in CLD**
- Datasets are unscaled
  - Initially sampling fraction was included while creating the dataset
  - During training on multiple geometries, either the model learns how various calorimeters differ or we somehow take this into account to bring the voxel energies to same scale across geometries



To be addressed for future studies

## Single geometry training using DDPM

### Paro<sub>4</sub> SiW



4

#### Paro4 SciPb



#### ODD



#### FCCeeCLD



### **FCCeeALLEGRO**



#### Paro4 PbWO4



## Architectural improvements

- Simpler preprocessing
  - Previously, logit(x)
  - $\circ$  log(x +  $\varepsilon$ )
  - ε value matters, 1e.-6 is working well
- Dynamic scaling
  - Usually, based on history
  - $\circ$   $\mu, \sigma$  are predicted based on the conditions
  - Added in the transformer blocks
  - Improves results a bit
  - Could be useful for different detector geometries
- Results on the previous slides only has simpler preprocessing

## Faster Sampling of Diffusion Models

#### Original DDPM - 400 steps (solves SDE)



#### DDIM - 100 steps (solves ODE using a NN, can skip some steps)



https://arxiv.org/abs/2010.02502

#### **DDIM - 20 steps** (too much skipping and it gets worse)



#### EDM - Heun 40 steps (improved Euler, solves ODE)



https://arxiv.org/abs/2206.00364

### EDM - LMS 40 steps (another classical method to solve ODE)



#### DPM-Solver++ 20 steps (ODE solver based on NN specifically for diffusion)



## Consistency distillation (1 step)



https://arxiv.org/abs/2303.01469

## Timings

Geant4 timings picked up from another paper

• 10GeV - 90GeV, uniformly

| Device            | Method           | NFE | Batch size | Time / Shower [ms]           | Speed-up |
|-------------------|------------------|-----|------------|------------------------------|----------|
|                   | Geant4           |     |            | 3914.8 ± 74.09 <sup>10</sup> | x1       |
| CPU (single core) | Heun             | 79  | 1          | 12358.573 ± 73.218           | x0.3     |
|                   | LMS              | 40  | 1          | 6284.26 ± 25.509             | x0.6     |
|                   | DPM-Solver++(2M) | 25  | 1          | 4085.132 ± 17.304            | x1       |
|                   | DPM-Solver++(3M) | 25  | 1          | 4092.242 ± 21.617            | x1       |
|                   | CD               | 2   | 1          | 316.209 ± 0.188              | x12      |
|                   | CD               | 1   | 1          | 158.747 ± 0.85               | x25      |
| CPU (multi-core)  | Heun             | 79  | 1          | 1882.3 ± 1.49                | x2       |
|                   | LMS              | 40  | 1          | 1022.525 ± 1.243             | x4       |
|                   | DPM-Solver++(2M) | 25  | 1          | 682.637 ± 10.97              | x6       |
|                   | DPM-Solver++(3M) | 25  | 1          | 652.725 ± 1.598              | x6       |
|                   | CD               | 2   | 1          | 51.743 ± 0.408               | x76      |
|                   | CD               | 1   | 1          | 25.409 ± 0.286               | x154     |
| GPU               | Heun             | 79  | 64         | 105.271 ± 0.288              | x37      |
|                   | LMS              | 40  | 64         | 52.91 ± 0.259                | x74      |
|                   | DPM-Solver++(2M) | 25  | 64         | 34.353 ± 0.193               | x114     |
|                   | DPM-Solver++(3M) | 25  | 64         | 34.389 ± 0.197               | x114     |
|                   | CD               | 2   | 64         | 2.612 ± 0.005                | x1499    |
|                   | CD               | 1   | 64         | 1.312 ± 0.008                | x2983    |

Mikołaj Piórczyński

## **Flow Matching**



Very preliminary results. Need further investigation but not urgent.

## Low energy showers

## **Summarized**

- Dataset
  - PbWO4 geometry
  - 100MeV to 1GeV, 500k events
  - Granularity same as other datasets
- Model
  - Explored VAE, vanilla and with stochastic decoder
  - + Normalizing flows to generate layer-wise energies
- Need further investigation into what exactly the requirements are





## Integration

## **Model conversion**

- Mixing tracing and scripting
  - Earlier Trace one forward pass, implement the for-loop, pre/post-processing in C++
  - Now Trace one forward pass, script the rest
  - A comparison between the two approaches is pending
- Explored two frameworks
  - ONNX
    - wrong CPU results
    - GPU results are good
  - TorchScript
    - faster than ONNX
    - same results as Python
    - both CPU & GPU works without issues



Xinyu Zhu

## DDFastShowerML (DDML) Integration

- As first step, focus on integrating CaloDiT for CLD
  - Make use of existing infrastructure for Calice-style sandwich calorimeters in this library
  - Use new cylindrical mesh placement
- Integrated 400 diffusion step CaloDiT model using TorchScript inference
  - CPU, batchsize 1
- Initial comparison with pythonic inference in cylindrical mesh to validate model- limited statistics so far (400 diffusion steps)
- Next steps:
  - Explore placement from cylindrical scoring mesh into detector readout using Geant4 showersadd functionality to DDML
  - Other detectors (Allegro etc.)
  - Integrate distilled diffusion model
  - Implement physics benchmarks (di-photon separations etc.)- how good do we need to be?



## Next steps

- Model conversion
  - ONNX CPU debugging
- PbWO4 issues.
- Start multi-geometry training and adaptation.
- Fixing some numerical overflows in the model.
- Faster sampling
  - Consistency training (simpler pipeline)
  - Easy consistency distillation (significantly faster distillation)
- Flow Matching (not urgent)
- Continue progress on integrating CaloDiT

### News

- Abstracts accepted for <u>ML4Jets workshop</u> (Nov 4-8, Paris)
  - 1. Faster diffusion and generalizable model
  - 2. DDML
- A new collaboration in consideration