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Phenomenological 
motivations



The relevant processes are 
leptonic and semileptonic 

K and π decays

The determination of  Vus and  Vud 
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Vus and  Vud: experimental results 

K/π

K π

Vus
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= 0.2760(4) Vus f+

K 0π− (0) = 0.21654(41)

PDG M. Moulson, arXiv:1704.04104
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Vus and  Vud: results from lattice QCD 

fK± / fπ± = 1.1934(19)    Nf=2+1+1

fK± / fπ± = 1.1917(37)    Nf=2+1

0.2%

f+(0) = 0.9698(17)    Nf=2+1+1

f+(0) = 0.9677(27)    Nf=2+1

0.2% 5

9f
K ±

fπ ±

= fK
fπ

1+δ SU 2( )



Given the present exper. and theor. (LQCD) accuracy,  an important source of 
uncertainty are long distance electromagnetic and SU(2)-breaking corrections

M.Knecht et al., 2000;   V.Cirigliano and H.Neufeld, 2011

δEM = −  0.0069  (17)

At leading order in ChPT both δEM and δSU(2) can be expressed in 
terms of physical quantities (e.m. pion mass splitting, fK/fπ, …)

25% of error due to higher orders       0.2% on ΓKl2/Γπl2 

For ΓKl2/Γπl2

J.Gasser and H.Leutwyler, 1985;   V.Cirigliano and H.Neufeld, 2011

25% of error due to higher orders           
       0.1% on ΓKl2/Γπl2 

Electromagnetic and isospin-breaking effects

K/π

K π
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ChPT is not applicable to D and B decays



The emission of a real hard photon removes the  helicity suppression (mℓ /MB)2

This is the simplest process that probes (for large ) the first inverse moment of the 
B-meson LCDA

Eγ

1
λB(μ)

= ∫
∞

0

dω
ω

ΦB+(ω, μ)

 is an important input in QCD-factorization predictions for non-leptonic B decays 
but is poorly known
λB

B� ! `�⌫̄�

• Adding a (hard) photon removes the (m`/mB)
2
helicity suppression.

• This is the simplest decay that (for large E�) probes the first inverse

moment of the B-meson light-cone distribution amplitude,

1/�B =

Z 1

0

�B+(!)
!

d!.

�B is an important input in QCD-factorization predictions for nonleptonic

B decays and is poorly known.

[See, for example, M. Beneke, V. Braun, Y. Ji, Y.-B. Wei, arXiv:1804.04962/JHEP2018;

M. Beneke, G. Buchalla, M. Neubert, C.T. Sachrajda, arXiv:hep-ph/9905312/PRL 1999]

• Belle: B(B
�
! `�⌫̄�, E� > 1 GeV) < 3.0⇥ 10

�6
SM: O(10

�6
)

[arXiv:1810.12976/PRD2018]

ν̄ℓ

M. Beneke, V. M. Braun, Y. Ji, Y.-B. Wei, 2018

Radiative corrections to leptonic B-meson decays

B− → ℓ−ν̄ℓγ

Belle 2018:                    ℬ(B− → ℓ−ν̄ℓγ, Eγ > 1 GeV) < 3.0 ⋅ 10−6 λB > 0.24 GeV
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FIG. 1: Feynman diagrams that contain the power-enhanced
electromagnetic correction. Symmetric diagrams with order
of vertices on the leptonic line interchanged are not displayed.

in the effective weak interaction Lagrangian

L∆B=1 =
4GF√

2

10
∑

i=1

CiQi + h.c. , (7)

with the effective operators Qi as defined in Ref. [13].
The effective short-distance coefficients [14, 15]

Ceff
7 = C7 −

C3

3
− 4C4

9
− 20C5

3
− 80C6

9
(8)

Ceff
9 (q2) = C9 + Y (q2) (9)

account for the quark-loop induced contributions. The
relevant Feynman diagrams are shown in Fig. 1.

An important observation on Eq. (5) is that the non-
perturbative strong-interaction physics is no longer con-
tained in the B-meson decay constant fBq

alone. Rather,
the exchange of an energetic photon between the lepton
pair and the spectator antiquark q̄ probes correlations
between the constituents in the B meson separated at
large but light-like distances. The corresponding strong-
interaction physics is parameterized by the inverse mo-
ment of the B-meson light-cone distribution amplitude
(LCDA) λB , introduced in Ref. [16],

1

λB(µ)
≡

∫
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0

dω

ω
φB+(ω, µ), (10)

σn(µ)

λB(µ)
≡

∫
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0

dω

ω
lnn

µ0

ω
φB+(ω, µ) (11)

and the first two inverse-logarithmic moments, which we
define as in Ref. [12] with fixed µ0 = 1 GeV. These pa-
rameters have frequently appeared in other exclusive B-
meson decays. In the numerical analysis below we shall
adopt [12] λB(1 GeV) = (275 ± 75) MeV, σ1(1 GeV) =
1.5 ± 1, and σ2(1 GeV) = 3 ± 2. The non-locality of
q̄b annihilation due to the photon interaction removes a
suppression factor of the local annihilation process. The

enhancement of the electromagnetic correction by a fac-
tor mB/ΛQCD in Eq. (5) arises from

mB

∫

∞

0

dω

ω
φB+(ω) ln

k ω ∼ mB

λB
× σk . (12)

There is a further single-logarithmic enhancement of or-
der lnmbΛQCD/m2

µ ∼ 5 for the Ceff
9 term, and even a

double-logarithmic enhancement of the Ceff
7 term.

We obtained Eq. (5) in two different ways. First,
from a standard computation of QED corrections to
the four-point amplitude with two external lepton lines,
one heavy-quark and one light-quark line, and second,
from a method-of-region computation [17] in the frame-
work of soft-collinear effective theory (SCET) [18, 19].
The second method is instructive as it reveals the ori-
gin of the enhancement from the hard-collinear virtuality
O(mbΛQCD) of the spectator-quark propagator. A fur-
ther single-logarithmic enhancement arises from the con-
tribution of both hard-collinear and collinear (virtuality
Λ2
QCD ∼ m2

!) photon and lepton virtuality. The dou-

ble logarithm in the Ceff
7 term is caused by an endpoint-

singularity as u → 0 in the hard-collinear and collinear
convolution integral for the box diagrams, whereby the
hard photon from the electromagnetic dipole operator
becomes hard-collinear. The singularity is cancelled by
a soft contribution, where the leptons in the final state
interact with each other through the exchange of a soft
lepton. The relevance of soft-fermion exchange is inter-
esting by itself since it is beyond the standard analysis of
logarithmically enhanced terms in QED. We shall there-
fore return to a full analysis within SCET in a detailed
separate paper.

We now proceed to the numerical evaluation of the
power-enhanced QED correction. Let us denote mB

times the curly bracket in Eq. (5) by ∆QED. Since the
scalar %̄% term in the amplitude A does not interfere with
the pseudoscalar tree-level amplitude, the QED correc-
tion can be included in the expression for the tree-level
Bs → %+%− branching fraction [26],

τBq
m3

Bq
f2
Bq

8π
|N |2 m2
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m2
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1− 4m2
!

m2
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|C10|2 , (13)

by the substitution

C10 → C10 +
αem

4π
Q!Qq∆QED . (14)

We calculate the Wilson coefficients Ci(µb) entering
∆QED at the scale µb = 5GeV at next-to-next-to-leading
logarithmic accuracy in the renormalization-group evolu-
tion from the electroweak scale, evaluate the convolution
integrals in Eq. (5) with mb = 4.8GeV, and express them
in terms of λB(1GeV), σ1(1GeV), σ2(1GeV) specified
above. We then find

∆QED = (33− 119) + i (9− 23) (% = µ) , (15)

where the large range is entirely due to the independent
variation of the poorly known parameters of the B-meson
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Bq → ℓ+ℓ−(γ)

Enhancement of the virtual corrections by a factor  and by large logarithmsMB /ΛQCD

The real photon emission process is a clean probe of NP: sensitiveness to C9, C10, C7

M. Beneke, C. Bobeth, R. Szafron, 2019

QCD sum rules in HQET:    λB(1 GeV) = 0.46 (11) GeV



Radiative corrections 
to leptonic decay rates

H → ℓνℓ(γ)



     The rate is:

In the absence of electromagnetism, the non-perturbative QCD effects are contained 
in a single number, the pseudoscalar decay constant

AP
0( ) ≡ 0 q2γ 4γ 5q1 P

0( ) = fP
0( )MP

0( )
K+

s

u

!+

ν!
K+

s

u

!+

ν!

Leptonic decays at tree level

Since the masses of the pion and kaon are much 
smaller than MW we use the effective Hamiltonian 

 This replacement is necessary in a lattice calculation, since  1/ a≪ MW
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2

In the presence of electromagnetism it is not even possible to give a physical 
definition of fP J. Gasser and G.R.S. Zarnauskas, PLB 693 (2010) 122



 Leptonic decays at O(α)
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including QED radiative corrections into a non-perturbative lattice calculation is a very challenging problem!

• QED is a long-range unconfined interaction that needs to be consistently defined on a finite volume: this is a very subtle
issue that I’ll not discuss in this talk (see backup slides);

• finite volume e↵ects are potentially very large, e.g. of O(1/L) in the case of the masses of stable hadrons

• in the case of decay rates the problem is much more involved because of the appearance of infrared divergences at
intermediate stages of the calculation: the infrared problem!

Γ0

Γ1(E)

 with  is infrared finiteΓ(E) = Γ0 + Γ1(E) 0 ≤ Eγ ≤ E
F. Bloch and A. Nordsieck, 1937

Both  and  can be evaluated in a fully non-perturbative way 
in lattice simulations

Γ0 Γ1(E)

The first lattice calculations of  have been finalizedΓ[π, K → ℓν(γ)]
N. Carrasco et al.


arXiv:1502.00257

V. Lubicz et al.


arXiv:1611.08497

DG et al.


arXiv:1711.06537

M. Di Carlo et al.


arXiv:1904.08731

P. Boyle et al.


arXiv:2211.12865



 Real photon emission amplitude

11

2

outline

• phenomenological motivation

• infrared-safe measurable observables

• the RM123-SOTON strategy

• universality of IR logs and 1/L terms

• sums approaching integrals

• analytical result for ��pt
0 (L)

• conclusions & outlooks

P �
�

�̄�

P �
�

�̄�

P �
�

�̄�

P �
�

�̄�

�

P �
�

�̄�

P �
�

�̄�

�

��0(L) � ��0(�) = cIR log
�

L2m2
P

�
+

c1

LmP
+ O

�
1

L2

�

outline

• phenomenological motivation

• infrared-safe measurable observables

• the RM123-SOTON strategy

• universality of IR logs and 1/L terms

• sums approaching integrals

• analytical result for ��pt
0 (L)

• conclusions & outlooks

P �
�

�̄�

P �
�

�̄�

P �
�

�̄�

P �
�

�̄�

�

P �
�

�̄�

P �
�

�̄�

�

��0(L) � ��0(�) = cIR log
�

L2m2
P

�
+

c1

LmP
+ O

�
1

L2

�

FIG. 1: Feynman’s diagrams representing the amplitudes with the emission of a real photon from the meson (left panel) or from the

charged lepton in the final state (right panel).

that the SD corrections might instead be relevant for the decays of pions and kaons into electrons. Moreover, by using
the same single–pole dominance approximation originally used in ref. [15], the SD corrections have been estimated to
be phenomenologically relevant in the case of heavy flavoured mesons.

In this paper we provide the first non–perturbative lattice calculation of the radiative decay rates P ! `⌫̄� in the
case of pions, kaons, D and Ds mesons. The case of bottom mesons will be studied in future works on the subject.

The plan of the paper is as follows. In section . . .

II. THE RADIATIVE DECAY RATE

The non-perturbative contribution to the radiative leptonic decay rate for the processes P ! `⌫� is encoded in the
following hadronic matrix–element, see left panel in Fig. 1

H↵r
W (k, p) = ✏rµ(k) H↵µ

W (k, p) = ✏rµ(k)

Z
d4y eik·y Th0|j↵

W (0)jµ
em(y)|P (p)i , (1)

where ✏rµ(k) is the polarization vector of the outgoing real photon having four–momentum k, p is the momentum of
the ingoing pseudoscalar meson of mass mP (p2 = m2

P ). The operators

jµ
em(x) =

X

f

qf  ̄f (x)�µ f (x) , j↵
W (x) = j↵

V (x) � j↵
A(x) =  ̄1(x) (�↵ � �↵�5) 2(x) , (2)

are respectively the electromagnetic hadronic current and the hadronic weak current expressed in terms of the di↵erent
quark fields  f having electric charge qf in units of the charge of the positron. In order to calculate the full amplitude
one has to consider the contribution in which the photon is emitted from the final-state charged lepton, see right panel
in Fig. 1. The latter contribution can however, be computed in perturbation theory using the meson decay constant
fP . All the contributions are combined in the formulae for the decay rate given in appendix A.

The decomposition of H↵r
W (k, p) in terms of scalar form–factors has been discussed in ref. [9] (see also [10]). Here we

adopt the same basis used in that paper to write

H↵r
W (k, p) = ✏rµ(k)

(
H1

⇥
k2gµ↵ � kµk↵

⇤
+ H2

⇥
(p · k � k2)kµ � k2(p � k)µ

⇤
(p � k)↵

� i
FV

mP
"µ↵��k�p� +

FA

mP

⇥
(p · k � k2)gµ↵ � (p � k)µk↵

⇤

+ fP


gµ↵ +

(2p � k)µ(p � k)↵

2p · k � k2

�)
. (3)

Jem
μ

Jweak
ν

H H

Jem
μ = ∑

q

Qq q̄γμq Jweak
ν = q̄1γν(1 − γ5) q2

4

order in perturbation theory, resulting in

A(H�
! �`⌫̄) =

GFVq1q2
p

2

h
e(✏⇤)µ ¯̀�⌫(1 � �5)⌫ · Tµ⌫(pH , p�) � ieQ`fH · ¯̀/✏⇤(1 � �5)⌫

i
, (2)

where e is the elementary electric charge, ✏µ is the photon polarization vector, Q` is the charge of the lepton in units
of e, and fH is the H meson decay constant. The remaining hadronic piece is contained in the hadronic tensor

Tµ⌫(pH , p�) = �i

Z
dtem

Z
d3x eip� ·x h0|T

�
Jem
µ

(tem, ~x)Jweak
⌫

(0)
�
|H(~pH)i , (3)

where the electromagnetic current (EM) is given by Jem
µ

=
P

q
Qq q̄�µq, and the weak current is given by Jweak

⌫
=

q̄1�⌫(1 � �5)q2. The hadronic tensor can be written as the sum Tµ⌫ = T<

µ⌫
+ T>

µ⌫
of the contributions from the two

di↵erent time orderings of the currents, corresponding to the integrals over tem from �1 to 0 and from 0 to +1,
respectively. The form factor decomposition for real photons, i.e. p2

�
= 0, is given by [20]

Tµ⌫ = ✏µ⌫⌧⇢p
⌧

�
v⇢FV + i

⇥
� gµ⌫(v · p�) + vµ(p�)⌫

⇤
FA + iQ`

vµv⌫
(v · p�)

mHfH

+ (p�)µ(p�)⌫F1 + (p�)µv⌫F2,
(4)

where pµ
H

= mHvµ. To calculate the decay rate, Tµ⌫ is contracted with the photon polarization vector ✏µ. Because
✏µ · pµ

�
= 0, the form factors F1 and F2 do not contribute to the decay rate. For a given meson H, the axial form

factor FA and vector form factor FV are functions of v · p� , which is the photon energy seen in the rest frame of the

pseudoscalar meson, denoted by E(0)
� . We define a convenient dimensionless variable x� ⌘ 2E(0)

� /mH , which takes

values 0  x�  1 � m2
`
/m2

H
for physically allowed values of E(0)

� .
Unlike the vector form factor, the axial form factor is composed of two pieces, namely a structure-dependent

contribution and a point-like contribution. The point-like contribution describes the part of the decay amplitude

when the photon does not probe the internal structure of H and is given by (�Q`fH/E(0)
� ). Note that this piece is

divergent as E(0)
� goes to zero. The structure-dependent part of the axial form factor is finite and can be calculated

by subtracting the point-like contribution, FA,SD = FA � (�Q`fH/E(0)
� ). Note that in Ref [61], FA,SD is denoted as

FA. Additionally, the sign convention in Ref [61] for FA,SD is flipped relative to the convention used in this work.
In Sec. II B, we demonstrate how to relate the hadronic tensor to a Euclidean three-point function. This is done

by comparing the spectral decompositions of T<

µ⌫
and T>

µ⌫
to the spectral decompositions of the corresponding time

orderings of the Euclidean three-point function. Here, we first consider the spectral decomposition of the hadronic
tensor in Minkowski spacetime. By inserting a complete set of energy-momentum eigenstates and performing the
integrals over time, we find

T<

µ⌫
= �i

Z 0

�1(1�i✏)
dtem

Z
d3x e�ip� ·x h0| Jweak

⌫
(0)Jem

µ
(tem, ~x) |H(~pH)i

= �

X

n

h0| Jweak
⌫

(0) |n(~pH � ~p�)i hn(~pH � ~p�)| Jem
µ

(0) |H(~pH)i

2En,~pH�~p�
(E� + En,~pH�~p�

� EH,~pH
� i✏)

(5)

and

T>

µ⌫
= �i

Z 1(1�i✏)

0
dtem

Z
d3x e�ip� ·x h0| Jem

µ
(tem, ~x)Jweak

⌫
(0) |H(~pH)i

= �

X

m

h0| Jem
µ

(0) |m(~p�)i hm(~p�)| Jweak
⌫

(0) |H(~pH)i

2Em,~p�
(E� � Em,~p�

� i✏)
.

(6)

Here we use notation appropriate for the case of a finite spatial volume in which the spectrum is discrete. In infinite
volume, the sums

P
n

and
P

m
would also contain integrals over the continuous spectrum of multi-particle states.

B. Correlation functions in Euclidean spacetime

In this section, we show how to extract Tµ⌫ from the Euclidean-time three-point correlation function

C3,µ⌫(tem, tH) =

Z
d3x

Z
d3y e�i~p� ·~xei~pH ·~y

hJem
µ

(tem, ~x)Jweak
⌫

(0)�†
H

(tH , ~y)i, (7)
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The hadronic tensor can be written as the sum  of the contributions 
from the two time orderings of the currents

Tμν = T<
μν + T>

μν
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For large photon energies the form factors can be written as [9]

FV (E�) =
eufBmB

2E��B(µ)
R(E� , µ) + ⇠(E�) +�⇠(E�) ,

FA(E�) =
eufBmB

2E��B(µ)
R(E� , µ) + ⇠(E�)��⇠(E�) . (2.7)

The first term is equal in both expressions and represents the leading-power contribution

in the heavy-quark expansion (HQE). It originates only from photon emission from the

light spectator quark in B meson (Fig. 1). In the above, fB is the decay constant of B

meson, and the quantity �B is the first inverse moment of the B-meson LCDA,

1

�B(µ)
=

Z 1

0

d!

!
�+(!, µ) . (2.8)

The factor R(E� , µ) in (2.7) takes into account radiative corrections (see [9] for details)

and equals one at the tree level.

The remaining terms in (2.7) are the power-suppressed, 1/mb and 1/(2E�), corrections.

They are written as a sum of the “symmetry-preserving” part, i.e. the same for the both

form factors FV and FA, and the “symmetry-breaking” part which has opposite sign. The

leading contributions to the symmetry-breaking part are [9]

�⇠(E�) =
ebfBmB

2E�mb

+
eufBmB

(2E�)2
. (2.9)

The equality of the two form factors at leading power in the heavy-quark and large

photon energy (E� ⇠ mb) expansion is a consequence of the left-handedness of the weak

interaction current and helicity-conservation of the quark-gluon interaction in the high-

energy limit. In terms of the helicity form factors F⌥ ⌘ (FV ± FA)/2, the above implies

that F+ = �⇠ vanishes at leading power, while ⇠ represents the power correction to the

non-vanishing helicity form factor F�. Our aim is to provide improved estimates of ⇠(E�)

and �⇠(E�), for which currently factorization formulae are not available. We split the

calculation into “higher-twist corrections” of order ⇤/E� and ⇤/mb from the region where

the currents in (2.2) are separated by a small light-cone distance x2 ⇠ 1/(mb⇤), and the

– 4 –

FV(Eγ) =
euMB fB

2EγλB(μ)
R(Eγ, μ) + ξ(Eγ) + Δξ(Eγ)

FA(Eγ) =
euMB fB

2EγλB(μ)
R(Eγ, μ) + ξ(Eγ) − Δξ(Eγ)

M. Beneke and J. Rohrwild, 2011

ϵr
μ(pγ) Tμν(pγ, pH) = ϵr

μ(pγ){εμντρ(pγ)τvρFV + i [−gμν(pγ ⋅ v) + vμpν
γ ] FA − i

vμvν

pγ ⋅ v
mH fH}
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 Form factors: results

FP
A,V(xγ) = CP

A,V + DP
A,V xγ

22

continuum limit and to physical quark masses. The discretisation artefacts, which include ones of

O(m2
c a

2), while approximately of the expected size, appear to be relatively large because the form

factors are small. In fact the form factors at the three lattice spacings we have at our disposal are

fully consistent, within our uncertainties, with a linear behaviour in a2, as illustrated in Fig. 12

where the form factors at x� = 0.2 are presented as a function of the lattice spacing. The points

in the figure are obtained after extrapolation to physical quark masses either using a polynomial

of pole ansatz corresponding to Eqs. (35) or (36) at fixed lattice spacing. In this first study, with

only three lattice spacings at our disposal, we are unable to include corrections of higher order in

a2 beyond those present in Eqs. (35) and (36). In AppendixD we have estimated their e↵ects in

the uncertainties of our final results for the form factors.

We also study our physical results (i.e those obtained after the continuum and chiral extrapo-

lations) as a function of x� by fitting them to the following linear expressions:

FP

A,V (x�) = CP

A,V +DP

A,V x� , (37)

where P represents each of the pseudoscalar mesons, ⇡, K, D and Ds.

For the axial form factors we find:

C⇡

A = 0.010± 0.003 ; D⇡

A = 0.0004± 0.0006 ; ⇢C⇡
A,D

⇡
A
= �0.419 ;

CK

A = 0.037± 0.009 ; DK

A = �0.001± 0.007 ; ⇢
C

K
A ,D

K
A
= �0.673 ;

CD

A = 0.109± 0.009 ; DD

A = �0.10± 0.03 ; ⇢
C

D
A ,D

D
A
= �0.557 ;

CDs
A

= 0.092± 0.006 ; DDs
A

= �0.07± 0.01 ; ⇢
C

Ds
A ,D

Ds
A

= �0.745 . (38)

and for the vector form factors we obtain

C⇡

V = 0.023± 0.002 ; D⇡

V = �0.0003± 0.0003 ; ⇢C⇡
V ,D

⇡
V
= �0.570 ;

CK

V = 0.12± 0.01 ; DK

V = �0.02± 0.01 ; ⇢
C

K
V ,D

K
V
= �0.714 ;

CD

V = �0.15± 0.02 ; DD

V = 0.12± 0.04 ; ⇢
C

D
V ,D

D
V
= �0.580 ;

CDs
V

= �0.12± 0.02 ; DDs
V

= 0.16± 0.03 ; ⇢
C

Ds
V ,D

Ds
V

= �0.900 . (39)

In Eqs. (38) and (39), for each of the C’s and D’s, ⇢C,D is the correlation between them, defined

by

⇢C,D =

P
i
(Ci � µC)(Di � µD)pP

i
(Ci � µC)2

pP
i
(Di � µD)2

, µC =
1

N

X

i

Ci , µD =
1

N

X

i

Di , (40)

where Ci and Di are the jackknife samples and the sum runs over all the jackknifes following the

procedure in Appendix A of Ref. [29].
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We present a nonperturbative lattice calculation of the form factors which contribute to the amplitudes
for the radiative decays P → lν̄lγ, where P is a pseudoscalar meson and l is a charged lepton. Together
with the nonperturbative determination of the corrections to the processes P → lν̄l due to the exchange of
a virtual photon, this allows accurate predictions at OðαemÞ to be made for leptonic decay rates for
pseudoscalar mesons ranging from the pion to the Ds meson. We are able to separate unambiguously and
nonpertubatively the pointlike contribution, from the structure-dependent, infrared-safe, terms in the
amplitude. The fully nonperturbative OðaÞ improved calculation of the inclusive leptonic decay rates will
lead to the determination of the corresponding Cabibbo-Kobayashi-Maskawa matrix elements also at
OðαemÞ. Prospects for a precise evaluation of leptonic decay rates with emission of a hard photon are also
very interesting, especially for the decays of heavy D and B mesons for which currently only model-
dependent predictions are available to compare with existing experimental data.

DOI: 10.1103/PhysRevD.103.014502

I. INTRODUCTION

The unitarity of the Cabibbo-Kobayashi-Maskawa
(CKM) matrix is one of the most precise tests of the
Standard Model. Indeed, CKM unitarity may rule out many
theoretically well-motivated models for new physics and
put severe constraints on the energy scale where new
phenomena might occur, well beyond the range accessible
to direct experimental searches. In this respect, leptonic
decay rates of light and heavy pseudoscalar mesons are
essential ingredients for the extraction of the CKM matrix
elements. A first-principles calculation of these quantities
requires nonperturbative accuracy and hence numerical
lattice simulations. Moreover, in order to fully exploit
the presently available experimental information and to

perform the next generation of flavor-physics tests, OðαemÞ
electromagnetic corrections must be included. In this
endeavor, the radiative leptonic decays P → lν̄lðγÞ (where
P is a negatively charged pseudoscalar meson, l a lepton,
ν̄l the corresponding antineutrino, and γ a photon) are
particularly important; see [1].
Knowledge of the radiative leptonic decay rate in the

region of small (soft) photon energies is required in order to
properly define the infrared-safe measurable decay rate for
the process P → lν̄lðγÞ. Indeed, according to the well-
known Bloch-Nordsieck mechanism [2], the integral of the
radiative decay rate in the phase space region correspond-
ing to soft photons must be added to the decay rate with no
real photons in the final states (the so-called virtual rate) in
order to cancel infrared divergent contributions appearing
in unphysical quantities at intermediate stages of the
calculations.
On the one hand, in the limit of ultrasoft photon energy,

the radiative decay rate can be reliably calculated in an
effective theory in which the meson is treated as a pointlike
particle. This is a manifestation of the well-known
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Structure dependent electromagnetic
corrections

In this note we provide the expression for the di↵erential decay rate

d�1

dx�
=

d

dx�
�
⇣
P+ ! `+⌫`�

⌘
(1)

where, in rest frame of the initial meson, x� = 2E�/mP .
The starting point is the expression for the double di↵erential decay rate

d2�1/dx�dx`, which was obtained in Ref.[1] and it also reported in Eqs. (B12)
and (B13) of our paper [2]1. By expressing the rate as �1 = �pt

1 + �SD
1 +

�INT
1 , where the three terms correspond to the pointlike, structure-dependent

and interference contributions respectively, after integrating over the lepton
energy x` we find

4⇡

↵�tree
0

d�SD
1

dx�
=

m2
P

6f 2
P r2` (1� r2` )

2 [FV (x�)2 + FA(x�)2] fSD(x�)

4⇡

↵�tree
0

d�INT
1

dx�
= � 2mP

fP (1� r2` )
2

h
FV (x�) f INT

V (x�) + FA(x�) f INT
A (x�)

i
(2)

where FV,A(x�) are the vector and axial form factors, r` = m`/mP and the
functions fSD(x�) and f INT

V,A (x�) in Eq. (2) are given by

fSD(x�) = x3
�

"
(2� 2x� + r2` ) (1� x� � r2` )

2

(1� x�)2

#

f INT
V (x�) = x2

�

"
1� x� � r2`

1� x�
� log

 
1� x�

r2`

!#

f INT
A (x�) = x�

"
1� 3x� + 2x2

� + r2`x� � r4`
1� x�

+ (x� � 2r2` ) log

 
1� x�

r2`

!#

.

(3)
Note that a term proportional to FV (x�) · FA(x�), which appears in the
double di↵erential decay rate d2�SD

1 /dx�dx`, gives a vanishing contribution
to the integral over x` and does not enter in d�SD

1 /dx� of Eq. (2). The total

1I have checked the correctness of these results.

1
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+
rE(4� 4r2` � rE)

(1� r2` )
2

log(r2` )� 4
1 + r

2
`

1� r2`

Li2(rE) +
rE

2

22� 28r2` � 3rE
(1� r2` )

2

o
, (39)

where rE ⌘ 2�E�/mP and Li2(x) = �
R x
0 du log(1� u)/u.

Using the vector and axial form factors given in Eqs. (13) - (17) we have calculated the (totally

inclusive) contributions �R
SD
1 (�E

max
� ) and �R

INT
1 (�E

max
� ) for the processes K(⇡) ! µ(e)⌫�,

where �E
max
� = mP (1� r

2
` )/2. Our non-perturbative results are shown in Table III together with

the corresponding contribution �Rpt(�E
max
� ) from Eq. (39). For the ratio (mP /fP ) appearing in

Eqs. (37) - (38) we take the values (139.6 MeV/130.4 MeV) and (493.7 MeV/156.1 MeV) for P = ⇡

and K, respectively 2.

⇡e2[�] ⇡µ2[�] Ke2[�] Kµ2[�]

�R0
(⇤) 0.0411 (19) (⇤) 0.0341 (10)

�Rpt(�E
max
� ) �0.0651 �0.0258 �0.0695 �0.0317

�R
SD
1 (�E

max
� ) 5.4 (1.0)⇥ 10�4 2.6 (5)⇥ 10�10 1.19 (14) 2.2 (3)⇥ 10�5

�R
INT
1 (�E

max
� ) �4.1 (1.0)⇥ 10�5

�1.3 (1.5)⇥ 10�8
�9.2 (1.3)⇥ 10�4

�6.1 (1.1)⇥ 10�5

�E
max
� (MeV) 69.8 29.8 246.8 235.5

(⇤) Not yet evaluated by numerical lattice QCD+QED simulations.

TABLE III. Values of the contributions �R0, �Rpt(�E
max
� ), �RSD

1 (�E
max
� ) and �R

INT
1 (�E

max
� ), defined in

Eqs. (35)-(38), evaluated using the lattice results of Refs. [7, 8] for the decays K(⇡) ! µ(e)⌫[�]. In the last

row the values of the maximum photon energy, �E
max
� , are also shown for each decay process.

In the same Table we also show the values of the SD virtual contributions �R0(⇡µ2) and

�R0(Kµ2), which can be derived from the results of Ref. [7]. There, the combination �R0 +

�Rpt(�E
max
� ) was evaluated for K(⇡) ! µ⌫[�] decays, obtaining

�R0(⇡µ2) + �Rpt(⇡µ2[�];�E
max
� ) = 0.0153 (19) , (40)

�R0(Kµ2) + �Rpt(Kµ2[�];�E
max
� ) = 0.0024 (10) . (41)

For decays into a final-state electron, the lattice determinations of the SD virtual contributions

�R0(⇡e2) and �R0(Ke2), which are currently missing in Table III, are in progress.

From Table III it can be seen that for radiative decays into muons the SD and INT contributions

are negligible compared to the pt one, and, therefore, the results (40) and (41) represent respectively

2
For the kaon the value fK = 156.1 MeV is taken from Ref. [7] and is based on the latest FLAG average [21] for

fK+ corrected for strong SU(2) breaking e↵ects.

Leptonic decays at O(α):  RESULTS

Γ(ΔE) = Γ(tree) [1 + δR0 + δRpt(ΔE)+δRSD
1 (ΔE) + δRINT

1 (ΔE)]

Large SD effects
Γ(tree) ∝ (mℓ /mP)2

δRSD
1 ∝ (mP /mℓ)2

helicity suppression

remove the suppression
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We present a study of lattice-QCD methods to determine the relevant hadronic form factors for radiative-
leptonic decays of pseudoscalar mesons. We provide numerical results for Dþ

s → lþνγ. Our calculation is
performed using a domain-wall action for all quark flavors and on a single RBC/UKQCD lattice gauge-
field ensemble. The first part of the study is how to best control two sources of systematic error inherent in
the calculation, specifically the unwanted excited states created by the meson interpolating field and
unwanted exponentials in the sum over intermediate states. Using a 3D sequential propagator allows for
better control over unwanted exponentials from intermediate states, while using a 4D sequential propagator
allows for better control over excited states. We perform individual analyses of the 3D and 4D methods, as
well as a combined analysis using both methods, and find that the 3D sequential propagator offers good
control over both sources of systematic uncertainties for the smallest number of propagator solves. From
there, we further improve the use of a 3D sequential propagator by employing an infinite-volume
approximation method, which allows us to calculate the relevant form factors over the entire allowed range
of photon energies. We then study improvements gained by performing the calculation using a different
three-point function, using ratios of three-point functions, averaging over positive and negative photon
momentum, and using an improved method for extracting the structure-dependent part of the axial form
factor. The optimal combination of methods yields results for the Dþ

s → lþνγ structure-dependent vector
and axial form factors in the entire kinematic range with statistical plus fitting uncertainties of order 5%,
using 25 gauge configurations with 64 samples per configuration.

DOI: 10.1103/PhysRevD.107.074507

I. INTRODUCTION

In this paper, we develop and test lattice-QCD methods
for computing the hadronic matrix elements describing
radiative-leptonic decays of pseudoscalar mesons, i.e.,
H → l−ν̄γ or H → lþl−γ. Such transitions are of interest
both for soft photons and for hard photons, as discussed in
the following.
Knowledge of the radiative-leptonic decay rate in

the region of small (soft) photon energies is required
to include OðαemÞ electromagnetic corrections to purely
leptonic decays, needed for subpercent precision deter-
minations of Cabibbo-Kobayashi-Maskawa (CKM)
matrix elements. According to the well-known Bloch-
Nordsieck mechanism [1], the integral of the radiative
decay rate in the phase space region corresponding to

soft photons must be added to the decay rate with
no real photons in the final states (the so-called virtual
electromagnetic contribution to the decay rate, which
has recently been computed on the lattice [2,3]) in order
to cancel infrared divergent contributions appearing
in unphysical quantities at intermediate stages of the
calculations. While for π−→μ−ν̄μðγÞ and K−→μ−ν̄μðγÞ,
at the current level of precision it is sufficient to evaluate
the real soft-photon contributions in an effective theory in
which the meson is treated as a pointlike particle,
structure-dependent contributions to the real photon
emission are significant for π− → e−ν̄eðγÞ and K− →
e−ν̄eðγÞ [4].
In the region of hard (experimentally detectable) photon

energies, radiative-leptonic decays represent important
probes of the internal structure of the mesons and also
provide sensitive probes of physics beyond the Standard
Model inducing nonstandard currents and/or nonuniversal
corrections to the lepton couplings. For example, the
rare decays B0

s → lþl−γ and B0 → lþl−γ are sensitive
to all operators in the b → slþl− and b → dlþl−

effective Hamiltonians, respectively, unlike their purely
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FIG. 1: Feynman’s diagrams representing the amplitudes with the emission of a real photon from the meson (left panel) or from the

charged lepton in the final state (right panel).

that the SD corrections might instead be relevant for the decays of pions and kaons into electrons. Moreover, by using
the same single–pole dominance approximation originally used in ref. [15], the SD corrections have been estimated to
be phenomenologically relevant in the case of heavy flavoured mesons.

In this paper we provide the first non–perturbative lattice calculation of the radiative decay rates P ! `⌫̄� in the
case of pions, kaons, D and Ds mesons. The case of bottom mesons will be studied in future works on the subject.

The plan of the paper is as follows. In section . . .

II. THE RADIATIVE DECAY RATE

The non-perturbative contribution to the radiative leptonic decay rate for the processes P ! `⌫� is encoded in the
following hadronic matrix–element, see left panel in Fig. 1

H↵r
W (k, p) = ✏rµ(k) H↵µ

W (k, p) = ✏rµ(k)

Z
d4y eik·y Th0|j↵

W (0)jµ
em(y)|P (p)i , (1)

where ✏rµ(k) is the polarization vector of the outgoing real photon having four–momentum k, p is the momentum of
the ingoing pseudoscalar meson of mass mP (p2 = m2

P ). The operators

jµ
em(x) =

X

f

qf  ̄f (x)�µ f (x) , j↵
W (x) = j↵

V (x) � j↵
A(x) =  ̄1(x) (�↵ � �↵�5) 2(x) , (2)

are respectively the electromagnetic hadronic current and the hadronic weak current expressed in terms of the di↵erent
quark fields  f having electric charge qf in units of the charge of the positron. In order to calculate the full amplitude
one has to consider the contribution in which the photon is emitted from the final-state charged lepton, see right panel
in Fig. 1. The latter contribution can however, be computed in perturbation theory using the meson decay constant
fP . All the contributions are combined in the formulae for the decay rate given in appendix A.

The decomposition of H↵r
W (k, p) in terms of scalar form–factors has been discussed in ref. [9] (see also [10]). Here we

adopt the same basis used in that paper to write

H↵r
W (k, p) = ✏rµ(k)

(
H1

⇥
k2gµ↵ � kµk↵

⇤
+ H2

⇥
(p · k � k2)kµ � k2(p � k)µ

⇤
(p � k)↵

� i
FV

mP
"µ↵��k�p� +

FA

mP

⇥
(p · k � k2)gµ↵ � (p � k)µk↵

⇤

+ fP


gµ↵ +

(2p � k)µ(p � k)↵

2p · k � k2

�)
. (3)

H H

= εμντρpτ
γ vρFV+i [−gμν(pγ ⋅ v) + vμ(pγ)ν] FA−i

vμvν

pγ ⋅ v
mH fH

Tμν = − i∫ d4x eipγ⋅x ⟨0 |T (Jem
μ (x) Jweak

ν (0)) |H( ⃗pH)⟩

+ (pγ)μ − terms

(pH = mHv)

E(0)
γ = pγ ⋅ vFA = FA,SD+(−Qℓ fH /E(0)

γ ),
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6

FIG. 1. Schematic visualization of the di↵erent time orderings for the Euclidean-time three-point function in Eq. (7). The tem

coordinate describes the location of the electromagnetic current. The coordinate tem increases in the clockwise direction, and
forms a circle due to periodic boundary conditions. The weak current is at time tem = 0 and the interpolating field is at time
tem = tH . The orange and blue segments of the circle correspond to the time orderings tem < 0 and tem > 0, respectively.
The green segment corresponds to the unphysical situation where the electromagnetic current is at an earlier time than the
interpolating field. The purple segment is also unphysical. For the tem < 0 time ordering, one must use values of the integration
range such that T < |tH |. For the tem > 0 time ordering on the other hand, one must use values of the integration range such
that T < aNT /2� |tH |, where NT is the number of lattice sites in the Euclidean time direction.

III. SEQUENTIAL PROPAGATORS

In this section, we describe two di↵erent methods of calculating the time-integrated correlation function Iµ⌫(tH , T )
on the lattice, which are illustrated in Fig. 2. One method, which we refer to as the 3d method, uses a three-dimensional
(timeslice source) sequential propagator through the interpolating field �†

H
. In this way, for a fixed value of the source-

sink separation tH , one calculates the three-point function in Eq. (7) for all values of tem. The second method, which
we refer to as the 4d method, uses a four-dimensional sequential propagator through the electromagnetic current.
The four-dimensional sequential source is non-zero on the range �T  tem  T , where T is the desired integration
range, and must be multiplied by the factor eE�tem (the details of the four-dimensional sequential source depend on
the specific method used to calculate the time integrals I>

µ⌫
(tH , T ) and I<

µ⌫
(tH , T )). Using the 4d method, for a fixed

value of the integration range T , one calculates the time-integrated correlation function Iµ⌫(tH , T ), directly on the
lattice, for all values of the source-sink separation tH . From this, we see that the 3d method is better suited to control
unwanted exponentials from finite integration range T , while the 4d method is better suited to control unwanted
exponentials from excited states created by the interpolating field �†

H
. The results in Ref. [61] were calculated using

the 4d method, integrating over the full time extent of the lattice, i.e. T = NT /2.
One limitation of the 4d method is that, because the integral over tem is performed directly on the lattice, the two

di↵erent time orderings of Iµ⌫(tH , T ) cannot be resolved. Because the intermediate states of the two time orderings
are not the same in general, at finite T , one must use a fit form with multiple exponentials to remove the unwanted
exponentials that come with the intermediate states. It is possible, however, to modify the 4d method such that one
calculates the two time orderings separately. To do so, one performs two sequential solves through the electromagnetic
current, but limits the extent of the sources in the time direction to only be non-zero for the desired time ordering.
We will refer to this method as the 4d>,< method.

In this work, in order to control systematic errors from the unwanted exponentials, we perform the calculation for
multiple values of tH when using the 3d method, and multiple values of T when using the 4d or 4d>,< methods. To
properly compare the methods, it is important to consider the number of propagator solves required for each. Table I
shows the number of propagator solves required in terms of the number of meson momenta NpH

, photon momenta
Np�

, source-sink separations NtH
(for the 3d method), and integration ranges NT (for the 4d and 4d>,< methods).

Note that these numbers are for a single source on a single configuration. The factor of 2 in front of every entry
accounts for the two components of the electromagnetic current. Using point sources allows one to get all values of p�
for free if using the 3d method, and all values of pH for free if one uses the 4d or 4d>,< methods. In the 4d method,
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Euclidean spectral decomposition of I>µ⌫

Time ordering: tem > 0
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>
µ⌫(tH ,T ) =
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dtem e
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X

m

e
EmtH
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2Em,~pH
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2En,~p� (E� � En,~p� )


1� e

(E��En,~p� )T

�
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tH ! �1 to achieve
ground state saturation

T ! 1 to remove unwanted exponentials
that come with intermediate states

Analytic continuation from Minkowski to 
Euclidean spacetime

Three-point function in Euclidean space: time integrals

For large negative tB ,

I
>
µ⌫(tB ,T ) =

Z T

0

dt e
E� t

Cµ⌫(t, tB)

= �hB(pB)|�
†
B(0)|0i

1

2EB
e
EB tB

⇥

X

n

1

2Em,p�

1

E� � Em,p�

⇥h0|Jµ(0)|m(p�)ihm(p�)|J
weak

⌫ (0)|B(pB)i

⇥

⇣
1� e

(E��Em,p� )T
⌘

The unwanted exponential e
(E��Em,p� )T

goes to zero for large T if Em,p� > E� .

Because the states |m(p�)i have a nonzero mass, this is always satisfied. 19

e (Eγ − En, ⃗pγ) T En, ⃗pγ
> Eγ .

|n( ⃗pγ)⟩



Calculating Iµ⌫(T , tH)

Tµ⌫ = lim
T!1

lim
tH!�1

�2EHe
�EHtH

hH(~pH)|�†
H
|0i

Z
T

�T

dtem e
E�temC3,µ⌫(tem, tH)

| {z }
Iµ⌫(T ,tH)

Two methods to calculate Iµ⌫(T , tH):

1: 3d (timeslice) sequential propagator
through �†

H
! calculate C3,µ⌫(tem, tH)

on lattice, fixed tH get all tem for free

2: 4d sequential propagator through J
em
µ

! calculate Iµ⌫(T , tH) on lattice, fixed
T get all tH for free
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Set T = NT / 2 and fit to constant in tH where data has plateaued
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 random wall sources & randomly placed point sourcesℤ2

Simulation details

25 gauge configurations

Local electromagnetic current + mostly non-perturbative RCs

Two datasets:  or Jweak(0) Jem(0)

For point sources use translational invariance to fix em/weak operator at  0

use an “infinite-volume approximation” to generate data for arbitrary photon 
momenta (only exp. small FVEs are introduced)

 DWF, 3 RBC/UKQCD ensembles  MeV,  
 fm, charm valence quarks: Möbius DW with “stout” smear.

Nf = 2 + 1 Mπ ≃ 139 ÷ 340
a ≃ 0.08 ÷ 0.11

Disconnected diagrams are neglected

5

y

0 t

Ai

V i

P

�k

�p � �k

�p

T
2

y

TtT
2

Ai

V i

P

�k

�p � �k

�p

FIG. 2: Feynman’s diagrams representing the correlator C↵r
W (t, T/2;p,k) used in the numerical simulations to extract the form–factors,

see appendix B. The incoming meson is interpolated at fixed spatial momentum p by the pseudoscalar operator P placed at time 0,

the weak current is local and is placed at the generic time t while the photon propagator is interpolated by a wall-source at T/2 with

momentum k and there is a four–dimensional integral at y, 0  y0  T . The right-panel represents the time-reversed process and, by

periodicity, is equivalent to the left-panel. On a finite time lattice it icorresponds to the leading exponential behaviour of the correlator

when t > T/2.

2⇡✓0
L

2⇡✓t
L

2⇡✓s
L

FIG. 3: The diagram on the left represents the contributions to the correlators and, consequently, to the form–factors associated with

the possibility that the photon is emitted by sea–quarks. In our numerical simulations we have been working within the so–called

electroquenched approximation in which the sea–quarks are electrically neutral. In practice this means that in our numerical results we

have neglected the quark–disconnected contributions represented in the the left panel. The diagram on the right explains our choice of

the spatial boundary conditions. By treating the two propagators attached to the electromagnetic current (blue and red lines) as two

di↵erente flavours, having the same mass and electric charge but di↵erent boundary conditions, we managed to choose arbitrary values

for the meson and photon spatial momenta.

correlator originating from the possibility that the external real photon is emitted from sea–quarks. In this work we
have been using the so–called electroquenched approximation in which sea–quarks are electrically neutral. In practice
this means that we have neglected the contributions represented in the left–panel of Figure 3.

The quark–connected diagram in the right–panel of Figure 3 has been shown to explain the strategy used to set the
values of the spatial momenta. We exploited the fact that, by working within the electroquenched approximation,
i.e. in absence of the contributions illustrated in the left–panel of the figure, it is possible to choose arbitrary values
of the spatial momenta by using di↵erent spatial boundary conditions [16] for the quark fields. More precisely, we
set the boundary conditions for the “spectactor” quark, corresponding to the black line in the diagram, such that
 (x+ k̂L) = exp(2⇡ik̂ ·✓s/L) (x). Then we treated the two propagators that are connected with the electromagnetic

C3,μν = ∫ d3x d3y e−i ⃗pγ⋅ ⃗x⟨Jem
μ (tem, ⃗x)Jweak

ν (0)ϕ†
H(tH, ⃗y)⟩ , several ⃗pH = 0 ⃗pγ
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three values of the integration range T/a 2 {6, 9, 12}. Further details of the calculations performed in these sections
are shown in Table II.

Method Source Meson Momentum Photon Momentum

3d Z2-wall ~pDs
= (0, 0, 0) |~p� |

2
2 (2⇡/L)2 {1, 2, 3, 4}

3d point pDs,z 2 2⇡/L {0, 1, 2} all

4d Z2-wall pDs,z 2 2⇡/L {�1, 0, 1, 2} p�,z = 2⇡/L

4d>,< Z2-wall pDs,z 2 2⇡/L {�1, 0, 1, 2} p�,z = 2⇡/L

TABLE II. The methods, sources, and momenta for which we performed calculations in Secs. V, VI, and VII. When only the
z-component of the momentum is listed, the other momentum components are zero. For 3d point sources, “all” indicates these
momenta can be calculated for free for a given value of ~pDs

. We did not perform calculations using point sources for the 4d or
4d>,< methods.

The calculations in Secs. VIII, IX, and X were performed using only the 3d method for two values of source-
sink separation �tH/a 2 {9, 12}. We use a combination of point sources and Z2 random-wall sources and per-
form calculations on Ncfg = 25 configurations with four and two exact samples per configuration, respectively.
Sixty-four sloppy samples per configuration were used for both noise and point sources. As will be described in
Sec. VIII A, using point sources, for a given value of ~pH , we are able to extract all values of ~p� , even non-integer
multiples of 2⇡/L. We performed calculations in the meson rest frame for photon momenta in the ẑ direction
p�,z 2 2⇡/L{0.1, 0.2, 0.4, 0.6, 0.8, 1.0, 1.4, 1.8, 2.2, 2.4}. Using Z2 random-wall sources we performed calculations in the
rest frame of the meson for two values of photon momenta p�,z 2 2⇡/L{0, 1}. As explained in Sec. IX A, the Z2

random-wall source data is used to reduce statistical noise of the point source data.
Another set of questions are the particular details of how the time integrals I>

µ⌫
(tH , T ) and I<

µ⌫
(tH , T ) are calculated.

In particular, how the tem = 0 contribution is distributed between the two time orderings, and how the time integrals
are approximated. For the 3d method, these details can be decided during the analysis stage. For the 4d>,< method
however, these details must be decided while calculating the propagators. Note that, because the 4d method does
not resolve the two time orderings, the question of how to distribute the tem = 0 contribution is irrelevant. The
results shown in Secs. V, VI, and VII assign the entire tem = 0 contribution to I>

µ⌫
(tH , T ), approximate I>

µ⌫
(tH , T )

by summing from tem = 0 to tem = T with equal weights, and approximate I<
µ⌫

(tH , T ) by summing from tem = �a
to tem = �T with equal weights. On the other hand, the results shown in Secs. VIII, IX, and X assign half of the
tem = 0 contribution to each time ordering, and approximate I>

µ⌫
(tH , T ) and I<

µ⌫
(tH , T ) using the trapezoid rule.

These di↵erences lead to discrepancies between some of the results shown in the di↵erent sections. In particular,
discrepancies could appear for intermediate form factor data as a function of T , and as well as form factor results
for individual time orderings. We found that changing how the time integral is approximated had no statistically
significant e↵ect on the final values of the form factors.

V. COMPARING STATISTICAL PRECISION OF NOISE AND POINT SOURCES

In this section, we compare the statistical precision of the vector form factor calculated using both noise and point
sources1. For both noise and point sources, calculations were done on the same Ncfg = 25 configurations, both using
one exact and 16 sloppy solves per configuration. Before proceeding, we point out that for Ncfg = 25, the error on
the error is ⇠ 15%. Additionally, while we did not perform calculations using point sources for the 4d and 4d>,<

methods, we expect that data to exhibit the same general behavior as we observe for the 3d method.
Figure 3 compares the statistical uncertainty of F<

V
(T, tH) and F>

V
(T, tH) calculated using the 3d method for both

point and noise sources. Specifically, Fig. 3 shows the ratio of the statistical uncertainty from using point sources
to using noise sources, as a function of summation range T . For the tem < 0 time ordering, the ratio approaches a
constant value of ⇠ 2.5 as T approaches �tH . The ratio for the tem > 0 time ordering decreases as the summation
range is increased. The data shown in Fig. 3 was calculated in the rest frame of the meson with ~p� = 2⇡/L(0, 1, 1);
we observed that these general trends also hold for other values of ~p� given in Table II.

The di↵erences in behavior of the two time orderings can be understood by considering the maximum Euclidean
time separation between any of the three operators in the correlation function. The maximum time separation between
any two operators in the tem < 0 time ordering is equal to a constant given by the source-sink separation tH . For the

1 Note that we did not perform the necessary calculations to extract FA,SD using the improved method presented in Sec. IXC and
therefore do not consider it here.
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FIG. 4. F<

V
data calculated using the 3d method. The left plot shows F<

V
resulting from a fit for di↵erent fit ranges (Tmin, Tmax+

tDs
)/a. The red square is the chosen stable fit range and is the result of the global fit to all 3d method data. Fit ranges where

�tDs
/a = 6 has no data points indicates that data set was left out of the fit. The right plot shows F<

V
(tDs

, T ) calculated using
the 3d method as a function of T . The three di↵erently colored, shaped sets of data points correspond to di↵erent values of
tDs

. The red horizontal band is the one sigma extrapolated value of F<

V
, and corresponds to the red band in the left plot. The

blue, orange, and green bands are the one sigma global fit results for �tDs
/a = 6, 9, 12, respectively. The error bands are only

shown for data included in the fit. The data was calculated with ~pDs
= 0 and ~p� = 2⇡/L(1, 1, 1).

FIG. 5. F
>

V
data calculated using the 4d>,< method. The left plot shows F

>

V
resulting from a fit for di↵erent fit ranges

(�tDs,min, tDs,max)/a for a fixed choice of �tDs,min/a = 11. The red square is the chosen stable fit range and is the result of
the global fit to all 4d>,< method data. The right plot shows F

>

V
(tDs

, T ) calculated using the 4d>,< method as a function of
tDs

. The three di↵erent colored, shaped data points correspond to di↵erent values of T . The red horizontal band is the one
sigma extrapolated value of F>

V
, and corresponds to the red band in the left plot. The blue, orange, and green bands are the

one sigma global fit results for T/a = 6, 9, 12, respectively. The vertical black dashed lines indicate the data included in the fit.
The data was calculated with ~pDs

= 2⇡/L(0, 0, 1) and ~p� = 2⇡/L(0, 0, 1).

is that all 4d>,< method data was calculated using the same value of ~p� . The fit forms for the di↵erent momentum
combinations of F>

V
(tDs

, T ) included in the global fit therefore all have the fit parameter E> in common. This can
be seen by looking at the spectral decomposition in Eq. (10), which indicates that the value of the energy E> for a
given component of the weak current depends only on ~p� .
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: 3d vs 4d analysis resultsDs → ℓνℓγ
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FIG. 6. Comparison of the 3d, 4d, and 4d>,< methods for FV , plotted as a function of x� (note that these are not our final
results for the form factor; see Fig. 14 for the final results with all improvements). Left: The red diamonds(blue squares) were
calculated using the 4d(4d>,<) method. Right: The blue squares(orange circles) show results using only 4d>,<(3d) method
data. The green triangles show results of simultaneous fits to both the 4d>,< and 3d data (since all fits include data at
multiple x� values, we can obtain results from the combination of methods even at x� where we do not have both 3d and 4d>,<

correlation functions). Points at the same x� are shifted slightly for clarity.

VIII. IMPROVED THREE-POINT FUNCTION CALCULATION

In the following, we describe our improved methods of calculating lattice correlators that will be used to extract
the form factors using the 3d method. We begin by discussing the infinite-volume approximation, which allows us
to calculate the three-point functions at arbitrary photon momentum (i.e., not subject to the usual restriction from
the periodic boundary conditions) with errors exponentially small in the lattice volume. Then, in Sec. VIII B we
introduce an alternate three-point function that can be used to extract the form factors. We demonstrate how it
can be extracted for free by reusing propagators required to calculate the original three-point correlation function in
Eq. (7).

A. Infinite-volume approximation

In this section we describe our approach to estimate momentum-projected correlation functions at arbitrary mo-
menta (i.e., not restricted to integer multiples of 2⇡/L) with exponentially small errors in the finite volume. We
simplify the discussion without loss of generality and consider the case of one spatial dimension with even integer
extent L (here we use lattice units). Let CL(x) be a finite-volume correlator and C1(x) the corresponding correlator
in the L ! 1 limit. We assume there exist c, d, ⇤, ⇤0

2 R+ and L0 2 N for which

|C1(x) � CL(x)|  ce�⇤L (17)

for all x with �L/2  x  L/2 and L � L0 and

|C1(x)|  de�⇤0|x| (18)

for all x with |x| > L/2. We now define

C̃L(q) ⌘

L/2�1X

x=�L/2

CL(x)eiqx (19)

and

C̃1(q) ⌘

1X

x=�1
C1(x)eiqx . (20)

4d method cannot resolve the sum of the unwanted exponentials of 
the separate time orderings

3d method offers good control over the unwanted exponentials for a 
significantly cheaper computational cost
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17

2. Ratio using p⇤
z

= 0,

3. Ratio using p⇤
z

= 1,

4. Ratio using the two values of p⇤
z

linearly interpolated to the value of ~p� .

Because the expectation value of the weak vector component of the three-point correlation function is zero when
both the meson and photon momentum are zero, we only consider methods 1 and 3 in this case. Additionally, when
calculating FA,SD by subtracting the correlation function at zero photon momentum as described in Sec. IX C, we
take ratios after subtracting.

To test the improvements gained using this ratio method, we compare the form factors as a function of x� both
using the improved correlation function in Eq. (30), and using the original correlation function without multiplying
by the ratio. The analysis of a specific component of a given form factor was performed using the same fit forms and
fit ranges for both the original and improved data. The fit forms and fit ranges were chosen by performing a stability
analysis to the improved data. The results for both FA,SD and FV are shown in Fig. 8.

Looking first at FA,SD, we observe a ⇠ 4 times reduction in the statistical error for small x� , with the improvements
generally decreasing as x� increases. More specifically, the time orderings tem < 0 and tW > 0 see the greatest
improvement in precision. The time orderings tem > 0 and tW < 0 for the charm-quark component of the EM current
sees a factor ⇠ 2 improvement, while the strange-quark component of the EM current sees little to no improvement.
We observe only modest reductions in statistical noise for the vector form factor FV .
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FIG. 8. Left(right) compares FA,SD(FV ) as a function of x� using the ratio method and without using the ratio method. The
ratio method results in a more significant improvement for FA,SD. Points at the same x� have been shifted slightly for clarity.

B. Averaging over ±~p�

One advantage of our improved method is the ability to average over the positive and negative photon momenta
for free. In this section, we compare the precision of the form factors calculated by performing this average to form
factors calculated using only positive photon momentum. As in Sec. IX A, the analysis of a specific component of a
given form factor was performed using the same fit forms and fit ranges for the analysis of both data. The fit forms
and fit ranges were chosen by performing a stability analysis to the data averaged over photon momentum.

Looking at Fig. 9, we see that at small x� , averaging over ±~p� results in anywhere from a factor 3 to factor

9 improvement in precision for F (c)
V

, F (s)
V

and FV . The dramatic improvement in precision at small x� can be
understood by first noting that the form factor decomposition of Tµ⌫ in Eq. (4) implies the weak vector component
of the three-point correlation function is purely real. This information can be used to show that FV receives a pure
noise contribution, which is exactly canceled out by averaging over positive and negative photon momentum, leading
to the dramatic improvement. On the other hand, the weak axial-vector component of the three-point correlation
function is purely imaginary and does not receive a pure noise contribution. For this reason, averaging over ±~p� has
only a modest improvement in precision for FA,SD.

Another observation from Fig. 9 is that there is a strong cancellation between the strange and charm quark
contributions of FV (similar cancellations were also observed in the DsD⇤

s
� couplings [73, 74], which correspond to

pole residues in the Ds ! `⌫̄� form factors). Additionally, although results for F (c)
V

and F (s)
V

agree between averaging
and not averaging, there is a slight tension for FV at small x� . Recall that our updated analysis method involves
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2. Ratio using p⇤
z

= 0,

3. Ratio using p⇤
z

= 1,

4. Ratio using the two values of p⇤
z

linearly interpolated to the value of ~p� .

Because the expectation value of the weak vector component of the three-point correlation function is zero when
both the meson and photon momentum are zero, we only consider methods 1 and 3 in this case. Additionally, when
calculating FA,SD by subtracting the correlation function at zero photon momentum as described in Sec. IX C, we
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FIG. 8. Left(right) compares FA,SD(FV ) as a function of x� using the ratio method and without using the ratio method. The
ratio method results in a more significant improvement for FA,SD. Points at the same x� have been shifted slightly for clarity.
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first fitting the F (c)
V

(tH , T ) and F (s)
V

(tH , T ) data and then taking linear combinations of the fit results to extract

FV . To ensure that fitting F (c)
V

(tH , T ) and F (s)
V

(tH , T ) first and then taking linear combinations does not introduce
systematic uncertainties in the results for FV , we also did the analysis performing fits to FV (tH , T ) directly. We found
that the results for FV between the two analysis methods were consistent within errors, and from this conclude that

the tension in Fig. 9 is the result of a statistical fluctuation. Furthermore, we also found that fitting F (c)
V

(tH , T ) and

F (s)
V

(tH , T ) first resulted in slightly smaller statistical uncertainties than fitting FV (tH , T ) directly.
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FIG. 9. Left(right) column compares FA,SD(FV ) calculated using only positive (p�)z to FA,SD(FV ) calculated averaging
over positive and negative (p�)z. The di↵erent rows show the full form factors, as well as the individual charm and strange

quark current components. For FV , F
(c)
V

, and F
(s)
V

, dramatic improvements in precision are observed for small x� , with the

improvement generally decreasing with x� . Only modest improvements are observed for all FA,SD, F
(c)
A,SD

, and F
(c)
A,SD

data.
Points at the same x� have been shifted slightly for clarity.
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FIG. 7. I
<

µ⌫(T, tH) and I
EM,>

µ⌫ (T, tH) as a function of T for �tH/a = 9. Notice that I
<

µ⌫(T, tH) can only be evaluated up to
T = �tH , while I

EM,>

µ⌫ (T, tH) can be evaluated for larger values of T . Both were calculated in the rest frame of the meson with
~p� = 2⇡/L(0, 0, 0.6). The indices shown are µ = ⌫ = 0.

where �El = El,~pH
�EH,~pH

is the excited-state energy gap for the lth excited state created by the interpolating field.
Using similar arguments as in Sec. II B, we find that, for ~p� 6= 0, the hadronic tensor can be extracted by

T<

µ⌫
= � lim

T!1
lim

tH!�1

2EH,~pH
e�EH,~pH

tH

hH(~pH)| �†
H

(0) |0i
IEM,>

µ⌫
(tH , T ), (28)

T>

µ⌫
= � lim

T!1
lim

tH!�1

2EH,~pH
e�EH,~pH

tH

hH(~pH)| �†
H

(0) |0i
IEM,<

µ⌫
(tH , T ). (29)

The largest possible integration ranges for the tW < 0 and tW > 0 time orderings are �tH and aNT + tH , respectively,
where NT is the number of temporal lattice sites. As before, as one integrates closer to the interpolating field for
tW < 0, excited state e↵ects become larger.

Notice that the spectral decompositions of the tW > 0 time ordering of IEM
µ⌫

and the tem < 0 time ordering of Iµ⌫
are equal up to excited state e↵ects; the same is true for the tW < 0 and tem > 0 time orderings of IEM

µ⌫
and Iµ⌫ . This

implies that one can perform simultaneous fits to the IEM,>

µ⌫
and I<

µ⌫
data using common fit parameters, and similarly

for the IEM,<

µ⌫
and I>

µ⌫
data. As an example of the di↵erent behavior of the two data sets with T , Fig. 7 shows the

weak axial-vector component of both I<00(tH , T ) and IEM,>

00 (T, tH), calculated in the rest frame of the meson with
~p� = 2⇡/L(0, 0, 0.6) using �tH/a = 9. Looking at the blue triangles, for T < |tH |, the I<

µ⌫
(tH , T ) data begins to

plateau as T is increased up until the maximum value of T = �tH . For the IEM,<

µ⌫
(tH , T ) data on the other hand, it

is possible to integrate past T = �tH because one is integrating away from the interpolating field in this case.
This example leads to a clear scenario where having both sets of data would be crucial for the analysis. In particular,

consider the possibility where the results of the fits to the I<
µ⌫

(tH , T ) data were not stable for all allowed values of
T < |tH |. To get around this problem, one option would be to extend the allowed values of T by increasing the
source-sink separation tH . However, because increasing tH generally results in noisier data, it might not be practical
to extend tH large enough to observe stability in the fit range for T . Another option would be to add additional
exponential terms in the fit form, but because fits with multiple exponentials are generally unstable, this might not be
possible without introducing priors on the energies of the intermediate state, which could bias the results. A better
solution to the problem would be to perform the calculation for IEM,>

µ⌫
(tH , T ), which would allow one to extend the

fit range in T while keeping tH constant. A similar situation can occur for tW < 0 and tem > 0 data, except that now
IEM,<

µ⌫
(tH , T ) has a limited range of T < |tH |, and I>

µ⌫
(tH , T ) can be evaluated for larger values of T .

Considering instead the opposite scenario where one observes stability for both time orderings of both IEM
µ⌫

(tH , T )
and Iµ⌫(tH , T ), having both sets of data provides improvements to the extracted form factors beyond simply extra
statistics. This can be understood by considering the maximum Euclidean time separation of the three operators
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Under the above assumptions, it then follows that there is a c̃ 2 R+ for which

|C̃1(q) � C̃L(q)|  c̃e�⇤0L (21)

for all q 2 [�⇡, ⇡] and all L � L0, with ⇤0 ⌘ min(⇤, ⇤0/2). In other words, C̃L(q) is exponentially close to the
infinite-volume version C̃1(q). In practice, the coordinate x is often the relative distance between vertices y and z,
i.e., we are interested in

C̃(q) ⌘

X

y,z

C(y, z)eiq(y�z) . (22)

The constraint of Eq. (18) can be satisfied if C(y, z) eventually decreases exponentially as coordinates y and z are
separated. The implementation of Eq. (19), however, requires the truncation of the double sum over y and z to
�L/2  y � z < L/2. We are able to do this with point sources for either y or z but not if sequential solves and wall
sources are used for both y and z. We therefore develop a method in Sec. IXA that combines the statistical benefits
of a sequential solve with the improved momentum resolution o↵ered by a point-source-based setup.

In practice, ⇤ = m⇡ but ⇤0 can be substantially larger such that ⇤0 = m⇡ often holds.
Finally, we would like to point out that the method is similar in spirit to the QED1 method [71]. In Ref. [72] an

extension of this method was presented that allows for the calculation of QED self energies with only exponentially
small finite-volume errors.

B. Three-point function with electromagnetic current at origin

The three-point function in Eq. (7) used to extract the hadronic tensor has the weak current fixed to the origin. In
this section, we show how Tµ⌫ can be extracted from a similar correlation function, except with the electromagnetic
current fixed to the origin, given by

CEM
3,µ⌫(tW , tH) = eEHtW

Z
d3x

Z
d3y ei(~p��~pH)·~xei~pH ·~y

hJem
µ

(0)Jweak
⌫

(tW , ~x)�†
H

(tH , ~y)i. (23)

The superscript EM is used throughout this work to di↵erentiate between the correlation function with the weak
current at the origin in Eq. (7). The additional factors eEHtW and e�i~pH ·~x are required to shift the interpolating field
in Euclidean time and space, respectively, relative to the other operators. Note that the phase to project to definite
photon momentum is flipped relative to the three-point function in Eq. (7). When using point sources, this correlation
function can be calculated for free by reusing propagators used to calculate the three-point function in Eq. (7). In
particular, two sets of propagator solves must be performed, one for each component of the electromagnetic current
Jem
µ

. For example, when H = Ds, the sequential propagator calculated for the strange(charm) quark contribution of
Jem
µ

when the weak current is at the origin is the same sequential propagator needed for the charm(strange) quark
contribution of Jem

µ
when the electromagnetic current is at the origin.

We define the time integrals of this correlation function for the di↵erent time orderings as

IEM,>

µ⌫
(tH , T ) =

Z
T

0
dtW e�E�tW CEM

3,µ⌫(tW , tH), (24)

IEM,<

µ⌫
(tH , T ) =

Z 0

�T

dtW e�E�tW CEM
3,µ⌫(tW , tH). (25)

By inserting two complete sets of states and performing the integrals over time, we find the spectral decompositions

IEM,>

µ⌫
(tH , T ) =

X

n,l

h0| Jweak
⌫

(0) |n(~pH � ~p�)i hn(~pH � ~p�)| Jem
µ

(0) |l(~pH)i hl(~pH)| �†
H

|0i

2En,~pH�~p�
2El,~pH

(E� + En,~p��~pH
� EH)

⇥ eEl,~pH
tH

h
1 � e�(E�+En,~p��~pH

�EH)T
i

(26)

and

IEM,<

µ⌫
(tH , T ) =

X

m,l

h0| Jem
µ

(0) |m(~p�)i hm(~p�)| Jweak
⌫

(0) |l(~pH)i hl(~pH)| �†
H

|0i

2Em,~p�
2El,~pH

(E� � Em,~p�
+ �El,~pH

)

⇥ eEl,~pH
tH

h
e(E��En,~p�

+�El,~pH
)T

� 1
i
, (27)

The spectral decomposition of the  time ordering of  and the 
 time ordering of  are equal up to excited state effects

tW > 0 IEM
μν

tem < 0 Iμν



31

: 3d methodDs → ℓνℓγ

0.0 0.2 0.4 0.6 0.8 1.0 1.2
x∞

°0.100

°0.075

°0.050

°0.025

0.000

0.025

0.050

0.075

0.100

F
A

,S
D

weak
em
combined

0.0 0.2 0.4 0.6 0.8 1.0 1.2
x∞

°0.100

°0.075

°0.050

°0.025

0.000

0.025

0.050

0.075

0.100

F
A

,S
D

weak
em
combined

0.0 0.2 0.4 0.6 0.8 1.0 1.2
x∞

°0.100

°0.075

°0.050

°0.025

0.000

0.025

0.050

0.075

0.100

F
A

,S
D

weak
em
combined

xγ =
2pH ⋅ pγ

m2
H

0 ≤ xγ ≤ 1 −
m2

ℓ

m2
H

⃗pH = 0
xγ =

2E(0)
γ

mH



NP subtraction of IR-divergent discretization effects
21

0.0 0.2 0.4 0.6 0.8 1.0 1.2
x�

�0.05

0.00

0.05

0.10

F
A

,S
D

method I

method II

method III

FIG. 10. FA,SD as a function of x� calculated using methods I, II, and III. Method III is significantly more precise at small
x� . Methods I and II disagree with method III at smaller x� , due to O(an

/x�) discretization e↵ects.

D. Comparing the di↵erent three-point function analyses

In this section, we compare form factor results calculated using the three-point functions in Eq. (7) and Eq. (23).
For the comparison, we perform fits to the individual data sets, as well as simultaneous fits to both sets of data. Note
that, for the strange-quark electromagnetic-current contribution to the tW < 0 time ordering of FA,SD, we found that
the fit results were not stable for any allowed values of integration range T . For that particular data set we therefore
only used tem > 0 data. We begin this section by providing theoretical arguments for which method will be more
precise at extreme values of x� , and conclude by discussing the form-factor results.

Starting with the tem < 0 data, as the integration range T is increased, the maximum distance between any of the
three operators is fixed by the source-sink separation tH . For the tW > 0 data however, the maximum distance is
given by T + |tH |, which increases with T . This implies that the signal for the tW > 0 data will decrease with T ,
while the signal for the tem < 0 data will be relatively constant with T . Because the unwanted exponentials for the
tem < 0 and tW > 0 data decay more quickly as ~p� is increased, one must fit larger values of T for small ~p� . Taken
together, these facts imply that the tem < 0 data will be more precise than the tW > 0 data, with a larger relative
improvement for small p� . Similar arguments can be made for the tem > 0 and tW < 0 data, except that as ~p� is
increased, the unwanted exponentials decay more slowly with T , and the roles of the tem > 0 and tW < 0 are flipped
with regards to the minimum distance between the operators. Therefore, the improvement in precision of the tW < 0
data over the tem > 0 data will be more significant at large x� .

Figure 11 shows the di↵erent time orderings of FA,SD and FV as a function of x� determined using each method
separately, as well as from a combined analysis. As expected, at small x� , results using tem < 0 data are more precise
than using tW > 0 data for both FV and FA,SD. Looking at the vector form factor, for larger x� , we observe that the
tW < 0 result is more precise than the tem > 0 result. While we cannot perform the same comparison for FA,SD, we
observed a similar trend for the charm-quark-current contribution to the tW < 0 and tem > 0 time ordering of FA,SD.

To summarize, data calculated using either of the three-point functions in Eq. (7) or Eq. (23) has inherent limitations
to the precision that can be achieved at the extreme values of x� . However, we found that performing combined fits to
both sets of data allows us to achieve a high precision for both small and large x� . Additionally, for intermediate x�

values, we see an overall improvement compared to a single method. Lastly, because we had to discard the tW < 0 data
for the strange-quark-current contribution for FA,SD, it was crucial to the analysis that we performed the calculation
using both methods.
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We use

to subtract the pt-like contribution
∫ d3xd3y(e−i ⃗pγ⋅ ⃗x−1)⟨Jem

i (x)JA
i (0)ϕ†
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Blue data: improved subtraction of pt-like contribution
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FIG. 8: The form factors FA (top figure) and FV (bottom figure), obtained after the extrapolation to the continuum
limit, shown as a function of the dimensionless variable x� . In each of the two figures, the red band is the result of a
smooth cubic spline interpolation to our data. The gray data points correspond to the results from Ref. [11] which
have been slightly shifted horizontally to facilitate comparison.

where �2
i is the total �2 obtained in the i-th fit, and N (i)

pars and N (i)
meas are the corresponding number of fit parameters

and measurements9.

In Fig. 8 we show our final determination of the axial and vector form factors as a function of x� . The error bars
include all the systematic uncertainties discussed above. The results for FA and FV are compared with those of
Ref. [11], in which only the phase space region up to x� ' 0.4 had been explored. As the figures show, our results
are in good agreement with those of Ref. [11] for both FA and FV , while the statistical uncertainty of the results is
significantly improved, particularly for FV . In TableV we collect our final results for the continuum values of FA and
FV , while in AppendixB we present the full correlation matrix between the form factors evaluated at di↵erent values
of x� , which may be useful for phenomenological analyses.

We have also determined separately the contributions to the form factors FA,V from the emission of the photon
from the strange quark or the charm quark. In practice, the strange-quark (charm-quark) contribution to RA,V (t,k),

indicated in the following by R(s)
A,V (t,k) (R

(c)
A,V (t,k)), is obtained by setting the electric charge qc = 0 (qs = 0) in the

9
We have checked that the use of uniform weights, wA = wB = 1/2, leads to very similar results.
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have been slightly shifted horizontally to facilitate comparison.
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i is the total �2 obtained in the i-th fit, and N (i)
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meas are the corresponding number of fit parameters

and measurements9.

In Fig. 8 we show our final determination of the axial and vector form factors as a function of x� . The error bars
include all the systematic uncertainties discussed above. The results for FA and FV are compared with those of
Ref. [11], in which only the phase space region up to x� ' 0.4 had been explored. As the figures show, our results
are in good agreement with those of Ref. [11] for both FA and FV , while the statistical uncertainty of the results is
significantly improved, particularly for FV . In TableV we collect our final results for the continuum values of FA and
FV , while in AppendixB we present the full correlation matrix between the form factors evaluated at di↵erent values
of x� , which may be useful for phenomenological analyses.

We have also determined separately the contributions to the form factors FA,V from the emission of the photon
from the strange quark or the charm quark. In practice, the strange-quark (charm-quark) contribution to RA,V (t,k),

indicated in the following by R(s)
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include all the systematic uncertainties discussed above. The results for FA and FV are compared with those of
Ref. [11], in which only the phase space region up to x� ' 0.4 had been explored. As the figures show, our results
are in good agreement with those of Ref. [11] for both FA and FV , while the statistical uncertainty of the results is
significantly improved, particularly for FV . In TableV we collect our final results for the continuum values of FA and
FV , while in AppendixB we present the full correlation matrix between the form factors evaluated at di↵erent values
of x� , which may be useful for phenomenological analyses.

We have also determined separately the contributions to the form factors FA,V from the emission of the photon
from the strange quark or the charm quark. In practice, the strange-quark (charm-quark) contribution to RA,V (t,k),

indicated in the following by R(s)
A,V (t,k) (R

(c)
A,V (t,k)), is obtained by setting the electric charge qc = 0 (qs = 0) in the

9
We have checked that the use of uniform weights, wA = wB = 1/2, leads to very similar results.
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FIG. 8: The form factors FA (top figure) and FV (bottom figure), obtained after the extrapolation to the continuum
limit, shown as a function of the dimensionless variable x� . In each of the two figures, the red band is the result of a
smooth cubic spline interpolation to our data. The gray data points correspond to the results from Ref. [11] which
have been slightly shifted horizontally to facilitate comparison.

where �2
i is the total �2 obtained in the i-th fit, and N (i)

pars and N (i)
meas are the corresponding number of fit parameters

and measurements9.

In Fig. 8 we show our final determination of the axial and vector form factors as a function of x� . The error bars
include all the systematic uncertainties discussed above. The results for FA and FV are compared with those of
Ref. [11], in which only the phase space region up to x� ' 0.4 had been explored. As the figures show, our results
are in good agreement with those of Ref. [11] for both FA and FV , while the statistical uncertainty of the results is
significantly improved, particularly for FV . In TableV we collect our final results for the continuum values of FA and
FV , while in AppendixB we present the full correlation matrix between the form factors evaluated at di↵erent values
of x� , which may be useful for phenomenological analyses.

We have also determined separately the contributions to the form factors FA,V from the emission of the photon
from the strange quark or the charm quark. In practice, the strange-quark (charm-quark) contribution to RA,V (t,k),

indicated in the following by R(s)
A,V (t,k) (R

(c)
A,V (t,k)), is obtained by setting the electric charge qc = 0 (qs = 0) in the

9
We have checked that the use of uniform weights, wA = wB = 1/2, leads to very similar results.
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�Cµ⌫;2
f,W

(t,k). When passing the threshold value E� = MPS
f̄f

the leading exponential contribution in Eq. (A15) (the term

proportional to Bf,0) grows asymptotically with ty and is only regularized by the finite time extent T of the lattice. In
this case, from the leading exponential term in Eq. (A15) one has that the divergent part of the error for E� > MPS

f̄f
is

given by

�Cµ⌫;2
f,W

(t,k) ' Bf,0 eM
PS
f̄f t

Z T/2

t
dty e�(MPS

f̄f �E�)ty = Bf,0
eE�t

(E� �MPS
f̄f

)

h
e(E��MPS

f̄f )(T/2�t)
� 1

i
. (A16)

The prefactor eE�t in Eq. (A16) is irrelevant since it does not contribute to Rµ⌫
W (see Eq. (9)) and thus to the hadronic

tensor Hµ⌫
W .

The reason behind the behaviour described by Eqs. (A14)-(A16) is that the kernel function eE�ty , accounting for
the propagation of the photon, weights the di↵erent regions in ty in di↵erent ways, giving an exponential enhancement
at large times ty, which are therefore noisier. For real photon emission, the kernel eE�ty never gives rise to a divergent
integral in Eq. (A14), since the propagating vector states have non-zero three-momentum k so that Ef,V (k) > E�

(see Eq. (A10)). However, the states propagating in �2
Mµ⌫

f,W
(ty � t, t,k) are at rest, and when E� > MPS

f̄f
, the leading

exponential contribution proportional to
R
dty e(E��MPS

f̄f )ty in Eq. (A16) becomes divergent in the limit T ! 1.

2. Numerical checks

For the Ds meson studied in this paper, the threshold value of x� = 2E�/MDs above which the error starts to grow
asymptotically is, according to Eq. (A16), given by

xth
� = 2

M⌘ss0

MDs

' 0.7 . (A17)

For x� > xth
� the error will increase only in the contribution to Cµ⌫

W (t,k) where the photon is emitted from the strange
quark, because for the emission from the charm quark, one has MPS

c̄c = M⌘cc0 ' 3GeV, and the corresponding threshold
value of x� is well beyond the physical region explored x�  1.

The total error on the strange-quark contribution to Rµ⌫
W (t,k) ⌘ Rµ⌫

W (t,k,0) (see Eq. (16)) for small times t can be
modelled as:

�Rµ⌫
W
(t,k) = ARµ⌫

W
+

BRµ⌫
W

|E� �M⌘ss0 |
e(E��M⌘ss0

)(T/2�t) , (A18)

where ARµ⌫
W

is a background noise term, which we take as being independent from E� . The contribution ARµ⌫
W

to the
noise arises from the non-divergent contributions to the noise in Eq. (A14) as well as those coming from the first
time ordering, t > ty, in Eq. (A1). Assuming that at x� = 0.8 the error is large enough such that the term ARµ⌫

W
is

negligible compared to the one proportional to BRµ⌫
W
, we can directly test Eq. (A18) against our numerical data. This

is shown in Fig. (13) where the error on the strange-quark contribution to R12
V (t, x�) ⌘ R12

V (t,k(x�)) is plotted as a
function of x� � 0.8 for two di↵erent times t/a = 2, 3. As it is clear from the figure, the data are in remarkably good
agreement with the theoretical prediction.

We conclude this appendix with a remark concerning the possibility of extending the calculation of FV and FA to
the decays of Dd and Bu mesons over the full kinematical range, which is of even greater interest for phenomenology.
In light of the above discussion, for these heavy-light mesons the threshold value of the photon energy E� above which
the errors will start to exhibit the exponential behaviour shown in Eq. (A16), is given by the pion mass M⇡. This
means that intrinsically large statistical fluctuations are to be expected in Cµ⌫

W (t,k) already at very small values of x� .
In this case, a possible step towards avoiding the S/N problem, consists in evaluating the integral over ty in Eq. (A1)
on a reduced time interval ty 2 [0, tcut], and then checking for convergence of the result as a function of tcut. In this
way one can expect to avoid including in the integration large values of ty which do not contribute substantially to the
signal (which is dominated by the region of times ty close to t) but which are responsible for the exponential increase
of the error.

However, such approach requires the computation of the Euclidean three points function

Mµ⌫
W (ty, t;k,p) = h0| T̂ [j⌫W (t) ĵµem(ty,k) �̂

†
P (0,p)] |0i , (A19)
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FIG. 9: The strange- and charm-quark contributions to FA (top figure) and FV (bottom figure) as a function of the
dimensionless variable x� .

three terms is the following (r` ⌘ m`/MDs):

dRpt

dx�
= �

2

(1� r2` )
2

1

x�

⇢
(2� x�)2

1� x�
� 4r2`

�
(1� x� � r2` )

�
⇥
2(1� r2` )(1 + r2` � x�) + x2

�

⇤
log

✓
1� x�

r2`

◆�
, (37)

dRint

dx�
= �

2MDs

fDs(1� r2` )
2

⇢
FA x�


r4`

1� x�
� 1 + x� + 2r2` log

✓
1� x�

r2`

◆�

+ (FV � FA)x
2
�


r2`

1� x�
� 1 + log

✓
1� x�

r2`

◆��
, (38)

dRSD

dx�
=

M2
Ds

f2
Ds

�
F 2
V + F 2

A

� x3
�

r2` (1� r2` )
2

(2 + r2` � 2x�)(1� x� � r2` )
2

6(1� x�)2
. (39)

The total decay rate

�`(�E�) ⌘

Z 1�r2`

2�E�
MDs

dx�
d�(Ds ! `⌫�)

dx�
(40)

can be then evaluated for any desired photon energy cut �E� using the previous formulae and our determination
of the form factors FV and FA. As Eqs. (37) - (39) indicate, the point-like contribution gives rise, in the soft photon
limit �E� ! 0, to a logarithmically divergent contribution proportional to log (�E�) and is therefore the dominant

3.8 4.0 4.2 4.4 4.6 4.8 5.0 5.2

Frezzotti et al. ’23 
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ℬ(Ds → eνeγ)[Eγ > 10 MeV] × 106

ℬ(D+
s → e+νeγ)[Eγ > 10 MeV] < 1.3 × 10−4

Experiment
BESIII Collaboration upper bound
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Conclusions and future perspectives

With moderate statistics we are able to provide rather precise, first-principles 
results for the form factors in the full kinematical (photon-energy) range

Lattice calculations of radiative leptonic heavy-meson decays at high photon 
energy could provide useful information to better understand the internal 
structure of hadrons 

The form factors for real emissions are accessible from Euclidean correlators

We compared analysis methods using 3d and 4d data. 3d method results in 
smallest statistical uncertainties and allows to tame S/N problems at large 
photon energies.

To extend the study to B-meson decays we will take advantage of new RBC/
UKQCD ensembles at a−1 ≈ (3.5, 4.5) GeV



48I 64I 96I

L3
· T/a4 483 · 96 643 · 128 963 · 192

� 2.13 2.25 2.31

aml 0.00078 0.000678 0.0054

amh 0.0362 0.02661 0.02132

↵ 2.0 2.0 2.0

a�1 (GeV) 1.730(4) 2.359(7) ⇡ 2.8

a (fm) 0.1141(3) 0.0837(3) ⇡ 0.071

L (fm) 5.476(12) 5.354(16) ⇡ 6.8

Ls/a 10 12 12

m⇡ (MeV) 139.2(4) 139.2(5) ⇡ 135

m⇡L 3.863(6) 3.778(8) ⇡ 4.7

Nconf 120 160 20

Table 1: Parameter values for the ensembles produced by the RBC/UKQCD
Collaboration with Nf = 2 + 1 domain wall fermions and Iwasaki gauge ac-
tion [17]: volume L3

· T in lattice units; �; bare sea-quark masses aml (light),
amh (s sector); Möbius scaling factor ↵; lattice spacing; spatial lattice size L
in physical units; extra fifth-dimensional extent Ls; simulated pion masses m⇡

and number of gauge configurations Nconf . With respect to Ref. [17] we use the
zMöbius DWF variant of the gauge ensemble 48I to reduce Ls from the value
of 24, used in when generating the ensemble, to Ls = 10, further accelerating
the Dirac inversions and minimizing the computational cost. In addition, the
gauge ensemble, 96I, has been added to improve the investigation of discretiza-
tion and finite-volume e↵ects. The parameters of this ensemble are currently
being measured and precise estimates will be available by the time the proposed
computation starts. By adopting the values of the e.m. shifts of the quark masses
computed in Ref. [25] within the finite-volume QEDL prescription [26], we are
able to calibrate our lattices such that the bare light and strange-quark masses
are tuned to produce a pion mass of 135.0 MeV and a kaon mass of 495.7 MeV.

of this eigenvector method allows for a reduction of memory cost by a factor of
30 for the largest 963 ⇥ 192 physical pion ensemble.

We point out that AMA helps us in improving the statistical precision of our
correlation functions. This is accomplished by computing correlators originating
from many time slices spaced throughout the temporal extent of the lattice. Our

9

24



Supplementary

slides



A strategy for Lattice QCD:

The isospin-breaking part of the Lagrangian 

is treated as a perturbation 


   Expand in:

arXiv:1110.6294

+

arXiv:1303.4896

RM123 Collaboration

αemmd – mu



  - Identify the isospin-breaking term in the QCD action

  

Sm = muuu +mddd⎡⎣ ⎤⎦
x
∑ =

1
2

mu +md( ) uu + dd( )− 1
2

md −mu( ) uu − dd( )⎡

⎣
⎢

⎤

⎦
⎥

x
∑ =

    = mud uu + dd( )− Δm uu − dd( )⎡⎣ ⎤⎦
x
∑ = S0 − Δm Ŝ

- Expand the functional integral in powers of Δm

   
O =

Dφ  O e−S0+Δm Ŝ∫
Dφ   e−S0+Δm Ŝ∫

1st

!
Dφ  O e−S0 1+ Δm Ŝ( )∫
Dφ   e−S0 1+ Δm Ŝ( )∫

!
O

0
+ Δm O Ŝ

0

1+ Δm Ŝ
0

= O
0
+ Δm O Ŝ

0

- At leading order in Δm the corrections only appear in the 
  valence-quark propagators:
(disconnected contractions of ūu and 
ƌd vanish due to isospin symmetry)

1 The (md-mu) expansion

Advantage: 
factorized out

Ŝ = Σx(ūu-ƌd)

for isospin symmetry



   
SQED = 1

2
Aν (x) −∇µ

−∇µ
+( )Aν (x)

x;µν
∑ =

( p.b.c.) 1
2

Aν
*(k) 2sin(kµ / 2)( )2 Aν (k)

k ;µν
∑

  - Non-compact QED: the dynamical variable is the gauge potential A�(x) 
    in a fixed covariant gauge (                 )

  
∇µ

− Aµ (x) = 0

- The photon propagator is IR divergent � subtract the zero momentum mode 

2 The QED expansion!

+ 

  - Full covariant derivatives are defined introducing QED and QCD links:

  
Aµ (x)→ Eµ (x) = e− iaeAµ ( x ) Dµ

+qf (x) = Eµ (x)⎡⎣ ⎤⎦
 ef Uµ (x) qf (x + µ̂)− qf (x)

QED QCD 

 - Since                                                                  the expansion leads to:
   
Eµ (x) = e− i  e  Aµ ( x ) = 1− i  e  Aµ (x)−1/ 2 e2

 Aµ
2(x)+…

+ counterterms 24 

2



The QED expansion

for the quark propagator

In the electro-quenched approximation: 



a   

 
C1(t)αβ = − d 3∫ !x  d 4x1  d 4x2 0 T JW

ν (0) jµ (x1) φ†(!x,−t){ } 0  

 
× Δ(x1, x2 ) γ ν (1−γ 5 ) S(0, x2 ) γ µ( )αβ eEℓt2−i  

"pℓ⋅
"x2

 ω ℓ =
"
kℓ
2 +mℓ

2

 
ωγ =

!
kγ
2 +mγ

2

We need to ensure that the t2 integration converges as t2 → ∞ . The large t2

behavior is given by the factor
 
exp Eℓ −ω ℓ −ωγ( )  t2⎡⎣ ⎤⎦

 Eℓ =
"pℓ
2 +mℓ

2
 
!
kℓ +
!
kγ =

!pℓ

 
ω ℓ +ωγ( )

min
= mℓ

2 +mγ
2( ) + "pℓ2 > Eℓ

The integral is convergent and the con6nua6on from Minkowski to Euclidean space

can be performed (same if we set mγ=0 but remove the photon zero mode in FV).

A technical but important point:

- mass gap between the decaying par6cle and the intermediate states

- absence of lighter intermediate states

CONDITIONS:

51

Lattice calculation of Γ0(L) at O(α)

δC qℓ( ) t( )αβ

Γ0 at O( )α



The contributions from soft virtual photon to        and         in the first 
term are exactly the same and the IR divergence cancels in the 
difference                  .Γ0 − Γ0

pt

Γ0 Γ0
pt

The sum                          in the second term is also IR finite since it is 
a physically well defined quantity. This term can be thus calculated in 
perturbation theory with a different IR cutoff.  

The two terms are also separately gauge invariant.

Γ[Pℓ2] = (Γ0 − Γpt
0 ) + (Γpt

0 + Γpt
1 (E))

Γpt(E) = lim
mγ→0

[Γpt
0 (mγ) + Γpt

1 (E, mγ))]
ΔΓ0 L( ) = Γ0 L( )− Γ0

pt L( )

The strategy

P+

 ΔE≪ ΛQCD

K+

s

u

!+

ν!

E ≪ ΛQCD

Γpt
0 + Γpt

1 (E)



Leptonic decays at O(α):  RESULTS
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R Kπ

m
ud

   (GeV)

m
s
 = m

s
phys

PDG

δRKπ = C0 +Cχ log mud( )+C1mud +C2mud
2 + Da2

+ K2

L2
1
MK

2 −
1
Mπ

2

⎡

⎣
⎢

⎤

⎦
⎥ +

K2
µ

L2
1
Eµ
K( )2

− 1
Eµ

π( )2
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

+δΓ pt ΔEγ
max,K( )−δΓ pt ΔEγ

max,π( )

δR
K ±π ± = −0.0126 10( )stat 2( )input 5( )chir 5( )FVE 4( )disc 6( )qQED

            =− 0.0126 14( )

LATTICE RESULT

V.Cirigliano and H.Neufeld,


PLB 700 (2011) 7

 δRK − δR
π
= −  0.0112 (21)

ChPT

Vus
Vud

fK
0( )

fπ
0( ) = 0.27683 29( )exp 20( )th

fK
0( )

fπ
0( ) = 1.1966 18( )

Vus
Vud

= 0.23135 24( )exp 39( )th
FLAG(2019) Nf=2+1+1 Vus = 0.22538 46( )

Vus = 0.22526 46( )
Hardy and Towner, 2016

Vud  from

Seng et al., 2018

RM123 & Soton Coll., 2017



Structure dependent contributions !
to decays of D and B mesons!

For!the!studies!of!D!and!B!mesons!decays!we!cannot!apply!ChPT!

For!B!mesons!in!par3cular!we!have!another!small!scale,!

!!!!!!!!the!radia3on!of!a!sos!photon!may!s3ll!induce!sizeable!SD!effects!
 mB* −mB !  45 MeV

A!phenomenological!analysis!based!on!a!simple!pole!model!for!F
V
!and!F

A
!

confirms!this!picture!! D.!Becirevic,!B.!Haas,!E.!Kou,!PLB!681!(2009)!257!

 
FV !

"CV

1− pB − k( )2 /mB*
2

 
FA !

"CA

1− pB − k( )2 /mB1
2

Under!this!assump3on!the!SD!contribu3ons!to!!!!!!!!!!!!!!!!!!!!!!

for!Eγ!�!20!MeV!can!be!very!large,!but!are!small!for!!!!!!!!!!!!!!!!!

!!!!!!!!!!!!!!!!!!!!!!and!

B→ eν(γ )

B→ µν(γ ) B→τν(γ )
A!laWce!calcula3on!of!FV!and!FA!would!be!very!useful!

B→ eν(γ ) B→ µν(γ ) B→τν(γ )

SD large SD small 

64 A lattice calculation of FV and FA would be very useful

D. Becirevic et al., PLB 681 (2009) 257



R1
A(ΔE) = Γ1

A(ΔE)
Γ0

α ,pt + Γ1
pt (ΔE)

  ,   A = { SD, INT } SD!=!structure!dependent!

INT!=!interference!

π → µν(γ )

K → eν(γ ) K → µν(γ )

π → eν(γ )

ΔE = 20 MeV

Interference!contribu3ons!are!negligible!in!all!the!decays!

Structurejdependent!contribu3ons!can!be!sizable!for!!!!!!!!!!!!!!!!!!!!!!!!!but!they!!

are!negligible!for!!!!!!!!!!!!!!!!!!!!!!!!!!!(which!is!experimentally!accessible)!

K → eν(γ )
ΔE < 20 MeV 63 



Cross-checksD+
s ! `+⌫� form factors vs T : p� = (0, 0, 1) 2⇡L , tDs/a = �12

Recall

Tµ⌫ = ✏µ⌫⌧⇢p
⌧
�v

⇢
FV + i [�gµ⌫(p� · v) + vµ(p�)⌫ ]FA � i
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+(p�)µ-terms
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Analytic continuation from Minkowski to 
Euclidean spacetime [2]Euclidean spectral decomposition of I>µ⌫

Time ordering: tem > 0

T
>
µ⌫ = �

X
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tH ! �1 to achieve
ground state saturation

T ! 1 to remove unwanted exponentials
that come with intermediate states

Euclidean spectral decomposition of I>µ⌫
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order in perturbation theory, resulting in
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i
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where e is the elementary electric charge, ✏µ is the photon polarization vector, Q` is the charge of the lepton in units
of e, and fH is the H meson decay constant. The remaining hadronic piece is contained in the hadronic tensor
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where the electromagnetic current (EM) is given by Jem
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=
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Qq q̄�µq, and the weak current is given by Jweak

⌫
=

q̄1�⌫(1 � �5)q2. The hadronic tensor can be written as the sum Tµ⌫ = T<
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of the contributions from the two

di↵erent time orderings of the currents, corresponding to the integrals over tem from �1 to 0 and from 0 to +1,
respectively. The form factor decomposition for real photons, i.e. p2
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= 0, is given by [20]
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where pµ
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= mHvµ. To calculate the decay rate, Tµ⌫ is contracted with the photon polarization vector ✏µ. Because
✏µ · pµ

�
= 0, the form factors F1 and F2 do not contribute to the decay rate. For a given meson H, the axial form

factor FA and vector form factor FV are functions of v · p� , which is the photon energy seen in the rest frame of the
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� . We define a convenient dimensionless variable x� ⌘ 2E(0)

� /mH , which takes
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for physically allowed values of E(0)

� .
Unlike the vector form factor, the axial form factor is composed of two pieces, namely a structure-dependent

contribution and a point-like contribution. The point-like contribution describes the part of the decay amplitude

when the photon does not probe the internal structure of H and is given by (�Q`fH/E(0)
� ). Note that this piece is

divergent as E(0)
� goes to zero. The structure-dependent part of the axial form factor is finite and can be calculated

by subtracting the point-like contribution, FA,SD = FA � (�Q`fH/E(0)
� ). Note that in Ref [61], FA,SD is denoted as

FA. Additionally, the sign convention in Ref [61] for FA,SD is flipped relative to the convention used in this work.
In Sec. II B, we demonstrate how to relate the hadronic tensor to a Euclidean three-point function. This is done

by comparing the spectral decompositions of T<

µ⌫
and T>

µ⌫
to the spectral decompositions of the corresponding time

orderings of the Euclidean three-point function. Here, we first consider the spectral decomposition of the hadronic
tensor in Minkowski spacetime. By inserting a complete set of energy-momentum eigenstates and performing the
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Here we use notation appropriate for the case of a finite spatial volume in which the spectrum is discrete. In infinite
volume, the sums

P
n

and
P

m
would also contain integrals over the continuous spectrum of multi-particle states.

B. Correlation functions in Euclidean spacetime
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where the meson interpolating field is given by �†
H

= �q̄2�5q1 (the momentum arguments of C3,µ⌫(tem, tH) are omitted
for brevity). For a finite integration range T > 0, we define the time-integrated correlation functions, for both time
orderings, as
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Inserting two complete sets of energy-momentum eigenstates and performing the integrals over Euclidean time, we
find
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We can achieve saturation by the ground state for the initial-state pseudoscalar meson H by taking the limit tH ! �1.
For large |tH | with tH < 0, we find
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Each term in the sum over intermediate states in Eq. (11) di↵ers from the desired Minkowski-space result (5) by a

factor of
h
1 � e�(E��EH,~pH

+En,~pH�~p�
)T
i
, and each term in the sum over intermediate states in Eq. (12) di↵ers from

the desired Minkowski-space result (6) by a factor of
⇥
e(E��Em,~p�

)T
� 1

⇤
. We now argue that these factors become

equal to 1 (i.e., the exponentials vanish) for large T .
Starting with the tem < 0 time ordering, we notice that, because the electromagnetic current operator cannot change

the flavor quantum numbers of a state, the lowest-energy state appearing in the sum over n is the pseudoscalar meson
H. The unwanted exponential will vanish if |~p� |+

p
m2

H
+ (~pH � ~p�)2 >

p
m2

H
+ ~p2

H
, which is always true for |~p� | > 0.

Looking now at the tem > 0 time ordering, because the states in the sum over m have mass, |~p� | �

q
m2

m
+ ~p2

�
< 0 is

also satisfied for |~p� | > 0. The hadronic tensor can therefore be extracted by
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where Iµ⌫(tH , T ) = I<
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(tH , T )+I>
µ⌫

(tH , T ). We denote linear combinations of I<
µ⌫

(tH , T ) and I>
µ⌫

(tH , T ) that are used
to extract the form factor F = FV , FA, FA,SD, fH as F<(tH , T ) and F>(tH , T ), respectively, such that F (tH , T ) =
F<(tH , T ) + F>(tH , T ). For example, in the rest frame of the meson with photon momentum ~p� = (0, 0, p�,z), for
the tem < 0 time ordering we have F<

V
(tH , T ) = (I<21(tH , T ) � I<12(tH , T ))/(2p�,z).

Before proceeding, it is worth noting that, on a periodic lattice, one must be careful however when taking the
T ! 1 limits. Figure 1 depicts the di↵erent time orderings for the three-point correlation function in Eq. (7) on
a periodic lattice. For the tem > 0 time ordering, the largest possible value of T is aNT /2 + tH , where NT is the
number of lattice sites in the Euclidean time direction. Integrating past this time will incur systematic errors from
wrap-around e↵ects. For the tem < 0 time ordering, the largest possible value of T is �tH . Additionally, as one
integrates closer to the interpolating field, excited state e↵ects become larger. We will discuss these e↵ect further in
Sec. VI.
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Each term in the sum over intermediate states in Eq. (11) di↵ers from the desired Minkowski-space result (5) by a
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, and each term in the sum over intermediate states in Eq. (12) di↵ers from

the desired Minkowski-space result (6) by a factor of
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. We now argue that these factors become

equal to 1 (i.e., the exponentials vanish) for large T .
Starting with the tem < 0 time ordering, we notice that, because the electromagnetic current operator cannot change

the flavor quantum numbers of a state, the lowest-energy state appearing in the sum over n is the pseudoscalar meson
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also satisfied for |~p� | > 0. The hadronic tensor can therefore be extracted by
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F<(tH , T ) + F>(tH , T ). For example, in the rest frame of the meson with photon momentum ~p� = (0, 0, p�,z), for
the tem < 0 time ordering we have F<

V
(tH , T ) = (I<21(tH , T ) � I<12(tH , T ))/(2p�,z).

Before proceeding, it is worth noting that, on a periodic lattice, one must be careful however when taking the
T ! 1 limits. Figure 1 depicts the di↵erent time orderings for the three-point correlation function in Eq. (7) on
a periodic lattice. For the tem > 0 time ordering, the largest possible value of T is aNT /2 + tH , where NT is the
number of lattice sites in the Euclidean time direction. Integrating past this time will incur systematic errors from
wrap-around e↵ects. For the tem < 0 time ordering, the largest possible value of T is �tH . Additionally, as one
integrates closer to the interpolating field, excited state e↵ects become larger. We will discuss these e↵ect further in
Sec. VI.
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FIG. 6. Comparison of the 3d, 4d, and 4d>,< methods for FV , plotted as a function of x� (note that these are not our final
results for the form factor; see Fig. 14 for the final results with all improvements). Left: The red diamonds(blue squares) were
calculated using the 4d(4d>,<) method. Right: The blue squares(orange circles) show results using only 4d>,<(3d) method
data. The green triangles show results of simultaneous fits to both the 4d>,< and 3d data (since all fits include data at
multiple x� values, we can obtain results from the combination of methods even at x� where we do not have both 3d and 4d>,<

correlation functions). Points at the same x� are shifted slightly for clarity.

VIII. IMPROVED THREE-POINT FUNCTION CALCULATION

In the following, we describe our improved methods of calculating lattice correlators that will be used to extract
the form factors using the 3d method. We begin by discussing the infinite-volume approximation, which allows us
to calculate the three-point functions at arbitrary photon momentum (i.e., not subject to the usual restriction from
the periodic boundary conditions) with errors exponentially small in the lattice volume. Then, in Sec. VIII B we
introduce an alternate three-point function that can be used to extract the form factors. We demonstrate how it
can be extracted for free by reusing propagators required to calculate the original three-point correlation function in
Eq. (7).

A. Infinite-volume approximation

In this section we describe our approach to estimate momentum-projected correlation functions at arbitrary mo-
menta (i.e., not restricted to integer multiples of 2⇡/L) with exponentially small errors in the finite volume. We
simplify the discussion without loss of generality and consider the case of one spatial dimension with even integer
extent L (here we use lattice units). Let CL(x) be a finite-volume correlator and C1(x) the corresponding correlator
in the L ! 1 limit. We assume there exist c, d, ⇤, ⇤0

2 R+ and L0 2 N for which

|C1(x) � CL(x)|  ce�⇤L (17)

for all x with �L/2  x  L/2 and L � L0 and

|C1(x)|  de�⇤0|x| (18)

for all x with |x| > L/2. We now define

C̃L(q) ⌘

L/2�1X

x=�L/2

CL(x)eiqx (19)

and

C̃1(q) ⌘

1X

x=�1
C1(x)eiqx . (20)
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Under the above assumptions, it then follows that there is a c̃ 2 R+ for which

|C̃1(q) � C̃L(q)|  c̃e�⇤0L (21)

for all q 2 [�⇡, ⇡] and all L � L0, with ⇤0 ⌘ min(⇤, ⇤0/2). In other words, C̃L(q) is exponentially close to the
infinite-volume version C̃1(q). In practice, the coordinate x is often the relative distance between vertices y and z,
i.e., we are interested in

C̃(q) ⌘

X

y,z

C(y, z)eiq(y�z) . (22)

The constraint of Eq. (18) can be satisfied if C(y, z) eventually decreases exponentially as coordinates y and z are
separated. The implementation of Eq. (19), however, requires the truncation of the double sum over y and z to
�L/2  y � z < L/2. We are able to do this with point sources for either y or z but not if sequential solves and wall
sources are used for both y and z. We therefore develop a method in Sec. IXA that combines the statistical benefits
of a sequential solve with the improved momentum resolution o↵ered by a point-source-based setup.

In practice, ⇤ = m⇡ but ⇤0 can be substantially larger such that ⇤0 = m⇡ often holds.
Finally, we would like to point out that the method is similar in spirit to the QED1 method [71]. In Ref. [72] an

extension of this method was presented that allows for the calculation of QED self energies with only exponentially
small finite-volume errors.

B. Three-point function with electromagnetic current at origin

The three-point function in Eq. (7) used to extract the hadronic tensor has the weak current fixed to the origin. In
this section, we show how Tµ⌫ can be extracted from a similar correlation function, except with the electromagnetic
current fixed to the origin, given by

CEM
3,µ⌫(tW , tH) = eEHtW

Z
d3x

Z
d3y ei(~p��~pH)·~xei~pH ·~y

hJem
µ

(0)Jweak
⌫

(tW , ~x)�†
H

(tH , ~y)i. (23)

The superscript EM is used throughout this work to di↵erentiate between the correlation function with the weak
current at the origin in Eq. (7). The additional factors eEHtW and e�i~pH ·~x are required to shift the interpolating field
in Euclidean time and space, respectively, relative to the other operators. Note that the phase to project to definite
photon momentum is flipped relative to the three-point function in Eq. (7). When using point sources, this correlation
function can be calculated for free by reusing propagators used to calculate the three-point function in Eq. (7). In
particular, two sets of propagator solves must be performed, one for each component of the electromagnetic current
Jem
µ

. For example, when H = Ds, the sequential propagator calculated for the strange(charm) quark contribution of
Jem
µ

when the weak current is at the origin is the same sequential propagator needed for the charm(strange) quark
contribution of Jem

µ
when the electromagnetic current is at the origin.

We define the time integrals of this correlation function for the di↵erent time orderings as

IEM,>

µ⌫
(tH , T ) =

Z
T

0
dtW e�E�tW CEM

3,µ⌫(tW , tH), (24)
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By inserting two complete sets of states and performing the integrals over time, we find the spectral decompositions
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and
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photon momentum is flipped relative to the three-point function in Eq. (7). When using point sources, this correlation
function can be calculated for free by reusing propagators used to calculate the three-point function in Eq. (7). In
particular, two sets of propagator solves must be performed, one for each component of the electromagnetic current
Jem
µ

. For example, when H = Ds, the sequential propagator calculated for the strange(charm) quark contribution of
Jem
µ

when the weak current is at the origin is the same sequential propagator needed for the charm(strange) quark
contribution of Jem

µ
when the electromagnetic current is at the origin.

We define the time integrals of this correlation function for the di↵erent time orderings as
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By inserting two complete sets of states and performing the integrals over time, we find the spectral decompositions
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VIII. IMPROVED THREE-POINT FUNCTION CALCULATION

In the following, we describe our improved methods of calculating lattice correlators that will be used to extract
the form factors using the 3d method. We begin by discussing the infinite-volume approximation, which allows us
to calculate the three-point functions at arbitrary photon momentum (i.e., not subject to the usual restriction from
the periodic boundary conditions) with errors exponentially small in the lattice volume. Then, in Sec. VIII B we
introduce an alternate three-point function that can be used to extract the form factors. We demonstrate how it
can be extracted for free by reusing propagators required to calculate the original three-point correlation function in
Eq. (7).

A. Infinite-volume approximation

In this section we describe our approach to estimate momentum-projected correlation functions at arbitrary mo-
menta (i.e., not restricted to integer multiples of 2⇡/L) with exponentially small errors in the finite volume. We
simplify the discussion without loss of generality and consider the case of one spatial dimension with even integer
extent L (here we use lattice units). Let CL(x) be a finite-volume correlator and C1(x) the corresponding correlator
in the L ! 1 limit. We assume there exist c, d, ⇤, ⇤0
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Under the above assumptions, it then follows that there is a c̃ 2 R+ for which

|C̃1(q) � C̃L(q)|  c̃e�⇤0L (21)

for all q 2 [�⇡, ⇡] and all L � L0, with ⇤0 ⌘ min(⇤, ⇤0/2). In other words, C̃L(q) is exponentially close to the
infinite-volume version C̃1(q). In practice, the coordinate x is often the relative distance between vertices y and z,
i.e., we are interested in

C̃(q) ⌘

X

y,z

C(y, z)eiq(y�z) . (22)

The constraint of Eq. (18) can be satisfied if C(y, z) eventually decreases exponentially as coordinates y and z are
separated. The implementation of Eq. (19), however, requires the truncation of the double sum over y and z to
�L/2  y � z < L/2. We are able to do this with point sources for either y or z but not if sequential solves and wall
sources are used for both y and z. We therefore develop a method in Sec. IXA that combines the statistical benefits
of a sequential solve with the improved momentum resolution o↵ered by a point-source-based setup.

In practice, ⇤ = m⇡ but ⇤0 can be substantially larger such that ⇤0 = m⇡ often holds.
Finally, we would like to point out that the method is similar in spirit to the QED1 method [71]. In Ref. [72] an

extension of this method was presented that allows for the calculation of QED self energies with only exponentially
small finite-volume errors.

B. Three-point function with electromagnetic current at origin

The three-point function in Eq. (7) used to extract the hadronic tensor has the weak current fixed to the origin. In
this section, we show how Tµ⌫ can be extracted from a similar correlation function, except with the electromagnetic
current fixed to the origin, given by

CEM
3,µ⌫(tW , tH) = eEHtW

Z
d3x

Z
d3y ei(~p��~pH)·~xei~pH ·~y

hJem
µ

(0)Jweak
⌫

(tW , ~x)�†
H

(tH , ~y)i. (23)

The superscript EM is used throughout this work to di↵erentiate between the correlation function with the weak
current at the origin in Eq. (7). The additional factors eEHtW and e�i~pH ·~x are required to shift the interpolating field
in Euclidean time and space, respectively, relative to the other operators. Note that the phase to project to definite
photon momentum is flipped relative to the three-point function in Eq. (7). When using point sources, this correlation
function can be calculated for free by reusing propagators used to calculate the three-point function in Eq. (7). In
particular, two sets of propagator solves must be performed, one for each component of the electromagnetic current
Jem
µ

. For example, when H = Ds, the sequential propagator calculated for the strange(charm) quark contribution of
Jem
µ

when the weak current is at the origin is the same sequential propagator needed for the charm(strange) quark
contribution of Jem

µ
when the electromagnetic current is at the origin.

We define the time integrals of this correlation function for the di↵erent time orderings as

IEM,>

µ⌫
(tH , T ) =

Z
T

0
dtW e�E�tW CEM

3,µ⌫(tW , tH), (24)

IEM,<

µ⌫
(tH , T ) =

Z 0

�T

dtW e�E�tW CEM
3,µ⌫(tW , tH). (25)

By inserting two complete sets of states and performing the integrals over time, we find the spectral decompositions
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(tH , T ) =

X

n,l

h0| Jweak
⌫

(0) |n(~pH � ~p�)i hn(~pH � ~p�)| Jem
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h
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�EH)T
i

(26)

and

IEM,<
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(tH , T ) =

X

m,l

h0| Jem
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, (27)
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FIG. 10: The form factors FA(x�) (upper) and FV (x�) (lower) of the Ds meson as a function of

x� at fixed lattice spacing (a = 0.0815 fm) for the ensemble B25.32 [15]. The full blue and shaded

orange bands are the results of the fits with the polynomial or pole formulae given in Eqs. (35)

and (36) respectively.

In this first study, we only have results for the D(s) mesons in the range 0  x�  0.4, corre-

sponding to E� . 400MeV in the rest frame of the hadron. In Fig. 10 we give the results for the

form factors of the Ds meson, FA(x�) and FV (x�), at a = 0.0815 fm. The full blue and shaded

orange bands are the results of the fits with the polynomial or pole formula given in Eqs. (35)

and (36) respectively. Since the lattice spacing is fixed, the coe�cients d̃0,1 are not included in the

fit. We see that the both the fits give a good description of our results in the region where we have

data, but di↵er significantly for x� � 0.4. This means that, although both the linear and the pole

fits describe accurately the form factors in the region in which we have data, it is not reliable to use

these fits in the region x� � 0.4. In our future investigations we plan to provide non-perturbative

data for the form factors in the full kinematical range 0  x�  1�m2
`
/m2

D(s)
.

In Fig. 11 we present the values of the form factors FA(x�) (upper) and FV (x�) (lower) for the

Ds meson as a function of x� . We show the data obtained at the three di↵erent values of the lattice

spacing, together with fits using Eq. (35) at each value of the lattice spacing. The orange bands

Desiderio et al., arXiv:2006.05358

sign: different FFs 
parameterization

fm mπ ≃ 260 MeV



: results (3d method) [2]Ds → ℓνℓγ
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Radiative leptonic decays of D±
(s), K

±, and ⇡± mesons

• D
+

s ! e
+⌫�: B(E� > 10 MeV) < 1.3⇥ 10

�4
SM: O(10

�4
)

[BESIII Collaboration, arXiv:1902.03351]

• D
+
! e

+⌫�: B(E� > 10 MeV) < 3.0⇥ 10
�5

SM: O(10
�5

)

[BESIII Collaboration, arXiv:1702.05837/PRD2017]

• K
�
! e

�⌫̄�, K
�
! µ�⌫̄�, ⇡�

! e
�⌫̄�, ⇡�

! µ�⌫̄�:

The partial branching fractions, photon-energy spectra, and angular

distributions are known from multiple experiments.

Contributions from “inner bremsstrahlung,” “structure-dependent,” and

interference terms are distinguished.

[M. Bychkov, G. D’Ambrosio (Particle Data Group), “Form Factors for Radiative Pion and Kaon Decays,”

Section 68 of the Review of Particle Physics, 2018]

Fit Ansatz inspired by the phenomenological analysis of arXiv:0907.1845
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