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The inverse problem

I Concerns the calculation of the spectral density
ρ(E) associated to a lattice correlator C(t)

I Ill-posed in presence of a finite set of noisy data

I Ill-conditioned because the Euclidean signal is
exponentially suppresed in time.

I There are ways to regularise the problem, with a
price to pay.

I Methods can rely on very different assumptions.
We will focus on method for which:

ρσ(E) =
∑

t
gt(σ; E) C(t)

ρ(E) = lim
σ→0

ρσ(E)
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Difficulties

• Finite set of measurements vs function with
potentially continuous support

• Target function is a distribution

• Information is suppressed by exp(−tE)

• We work we data that is affected by errors

I Two regulators are enough!
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Smearing

I Smearing must be introduced to have a function
that is smooth even in a finite volume

ρσ(ω) =

∫
dE Sσ(E, ω) ρ(E)

I Linear combinations of correlators automatically
produce a smeared SD

ρσ(ω) =
∑

t
gt(σ;ω) C(t)

=
∑

t
gt(σ;ω)

∫
dE e−tE

ρ(E)

I We can now take the infinite volume limit

lim
L→∞

ρL(E) =

lim
σ→0

lim
L→∞

ρL(σ; E) = ρ(E)
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Bayesian Inference
Y. Burnier and A. Rothkopf [1307.6106]

J. Horak et al. [2107.13464]

A.P. Valentine and M. Sambridge 2019

L. Del Debbio, T. Giani and M. Wilson [2111.05787]

FASTSUM collaboration

and more!
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Bayesian Inference with Gaussian Processes

◦ Aim for a probability distribution over a functional space of possible spectral densities

◦ Consider the stochastic field R(E) Gaussian-distributed around the prior value ρprior(E) with covariance
Kprior(E, E′).

GP
(
ρ

prior
(E),Kprior

(E, E′
)
)

◦ Similarly, assume that observational noise is Gaussian: η(t)

G (η, Covd) = exp

(
−

1
2
~η

T Cov−1
d ~η

)

◦ The stochastic variable associated to the correlator, C, is related to R and η via

C(t) =

∫
dE e−tER(E) + η(t)
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Bayesian Inference with Gaussian Processes
◦ The joint, posterior distribution is again Gaussian,

centred around ρpost centre and variance:

ρ
post

(ω) = ρ
prior

(ω) +

tmax∑
t=1

gGP
t (ω)

(
C(t) −

∫ ∞

0
dE e−tE

ρ
prior

(E)

)

Kpost
(ω, ω) =

(
Kprior

(ω, ω) −
tmax∑
t=1

gGP
t (ω) f GP

t (ω)

)

◦ The coefficients can be written as

~gGP
(ω) = (Σ

GP
+ λCovd)

−1 ~f GP

◦ With the following ingredients:

Σ
GP

tr =

∫
dE1

∫
dE2 e−tE1 Kprior

(E1, E2) e−rE2 ill cond

f GP
t (ω) =

∫
dE Kprior

(ω, E) e−tE

• What is λ? Hyper-parameter that enters as
normalisation of the prior (Kprior/λ).
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HLT
M. Hansen, AL, N. Tantalo [1903.06476]

Related literature:

G. Backus and F. Gilbert 1968

C.A. Barata and K. Fredenhagen 1990

F.P. Pijpers and M.J. Thompson 1994

M.T. Hansen, H.B. Meyer, D. Robaina [1704.08993]
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In an ideal world...
I (HLT) Fix and target an appropriate smearing kernel such that when σ → 0 we recover Sσ(E, ω) → δ(E −ω)

I We need to find the set of coefficients spanning Sσ(E, ω):

∞∑
τ=1

gtrue
τ (σ, E) e−aτω

= Sσ(E, ω)

I We can find the coefficients by minimising

A[g(ω)] =

∫ ∞

E0

dE eαE

∣∣∣∣∣
∞∑

τ=1
gτ (σ, E) e−aτω − Sσ(E, ω)

∣∣∣∣∣
2

I Without errors on C(t) and infinitely many points, this is the solution.

∞∑
τ=1

gtrue
τ (σ, E) C(t) = ρσ(E)
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Slightly less ideal world

I In reality, the correlator is known at a finite number of points. This translates into a systematic error in the
reconstructed kernel and therefore in the reconstructed SD

τmax∑
τ=1

gτ (σ, E)C(aτ) = ρσ(E) + r(τmax, σ; E)

I The sum truncated to τmax is however well-defined and define unambiguously a given smearing kernel

I In fact, let us look at an example for both HLT and GP. For the latter, we shall choose a prior:

Kprior
ε (E, E′

) =
e−(E−E′)2/2ε2

λ
, ρ

prior
= 0
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Example: no errors

I Blue should be a Gaussian
I Orange should be what it should be
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Example: no errors

I Similarly for the reconstructed smeared density:
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Real world: regulator is needed

I The main complication is that noisy data severely hinder this approach. Minimising A[g] amounts to solve a
massively ill-conditioned linear system

~g = Σ
−1~f

Σtr =

∫
dE1 e−tE1 e−rE1

I Backus-Gilbert regularisation:

∫ ∞

0
dE eαE

∣∣∣∣∣
tmax∑
t=1

gte−tE − Sσ(ω, E)

∣∣∣∣∣
2

+ λ ~g · Covd ·~g

I The linear system is now
~g = (Σ + λCovd)

−1 ~f

I We introduced a bias (λ 6= 0).
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The bias
I In the HLT method we perform a “stability analysis” (Bulava et al. [2111.12774])

I We could do the same with the Bayesian reconstruction. Let us pick a prior:

Kprior
ε (E, E′

) =
e−(E−E′)2/2ε2

λ
, ρ

prior
= 0
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The bias

I In the Bayesian literature, hyperparameters are determined by minimising the negative log likelihood (NLL)

− log P(data|parameters)

I The methods seem compatible
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The plateau analysis
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The plateau analysis
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The plateau analysis
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Bayesian inference with
fixed smearing kernel

L. Del Debbio, AL, M. Panero, N. Tantalo [2409.04413]
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Bayesian formulation of HLT
I Compute the posterior probability distribution for a

spectral density smeared with a fixed kernel
Gσ(E, E′) = exp−(E−E′

)
2/2σ2

Diagonal model covariance

Kprior
(E, E′

) =
δ(E − E′)

λ
,

I The solution is now given by the same coefficients as
HLT

gGP
(σ;ω) = g(σ;ω) even at finite σ

I The only difference is in the error (averaged in
frequentist methods)

Kσ
post(ω, ω)

2
=

1
2

∫
dE
(∑

t
gt(σ, ω)e−tE − Gσ(E, ω)

)
Gσ(E, ω)
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Closure tests
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Strategy

I Generate toys for spectral densities / correlators

C(t) =

nmax−1∑
n=0

wne−|t|En , E0 < E1 ≤ . . . ,

I We are generating instances of wn with a multivariate normal distribution, centred around zero, and
covariance

Kweights(n, n′
) = κ exp

(
−

(En − En′ )
2

2ε2

)
,

I with ε smaller than the spacing between states

I For the corresponding correlators, we inject noise from a covariance matrix measured on the lattice.
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Toys
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Results
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Results

I Results for δσ(E) = ρtrue
σ (E) − ρestimate

σ (E)
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Results

I Results for pσ(E) =
ρtrue(E)σ−ρestimate

σ (E)

∆tot
σ (E)
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Thank you
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