

MULTIGRID LOW-MODE AVERAGING

R. GRUBER, T. HARRIS, M. K. MARINKOVIC ETH ZÜRICH

DECEMBER 9, 2024

- 1. Low-mode averaging (LMA) and its variants
- 2. Multigrid / Deflation
- 3. Multigrid low-mode averaging (MG LMA)
- 4. Where is the variance?
- 5. Cost
- 6. Chirality
- 7. Conclusion

LOW-MODE AVERAGING (LMA) AND ITS VARIANTS

- Idea [Neff et al. hep-lat/0106016, DeGrand and Schaefer hep-lat/0401011, Giusti et al. hep-lat/0402002]: Decompose the quark propagator into two pieces
 - One piece: affordable to do volume averaging
 - Remaining piece: cannot afford volume average exactly
- Determine N_c lowest modes of $D, Q = \gamma^5 D$, eo-preconditioned D, Q
- Write $S = D^{-1} =$ truncated spectral/singular sum + remainder

$$Q^{-1} = \underbrace{\sum_{i=1}^{N_c} \frac{1}{\lambda_i} \phi_i \phi_i^{\dagger}}_{Q_{eigen}^{-1}} + \underbrace{(1-P)Q^{-1}(1-P)^{\dagger}}_{Q_{rest}^{-1} = Q^{-1} - Q_{eigen}^{-1}},$$
(1)

with

$$Q\phi_i = \lambda_i \phi_i, \qquad |\lambda_i| = \text{small}, \qquad P = \sum_{i=1}^{N_c} \phi_i \phi_i^{\dagger}.$$

MOTIVATION - LOW-MODE AVERAGING (LMA)

Assume a set of N_c orthonormal low modes $\{\phi_c\}_{c=0}^{N_c-1}$ of $Q = \gamma^5 D$ Restrictor $R: \mathcal{V}_0 \to \mathcal{V}_1$ as

$$R = \begin{pmatrix} - & \phi_0^{\dagger} & - \\ & \vdots \\ - & \phi_{N_c-1}^{\dagger} \end{pmatrix}$$

Prolongator $T: \mathcal{V}_1 \rightarrow \mathcal{V}_0$ as

$$T = R^{\dagger} = \begin{pmatrix} | & | \\ \phi_0 & \dots & \phi_{N_c-1} \\ | & | \end{pmatrix}$$

Projector $P: \mathcal{V}_0 \rightarrow \mathcal{V}_0$ and identity $\hat{\mathbf{1}}: \mathcal{V}_1 \rightarrow \mathcal{V}_1$:

$$P = TR, \qquad \hat{\mathbf{1}} = RT$$

Define the coarse operator $\hat{Q}: \mathcal{V}_1 \rightarrow \mathcal{V}_1$ as

$$\hat{Q} = RQT$$

■ If ϕ_c are exact modes of $Q \implies$ diagonal \hat{Q} and inverse

$$\hat{Q} = \mathsf{diag}(\lambda_0, \dots, \lambda_{N_c-1})$$
 $\hat{Q}^{-1} = \mathsf{diag}(\lambda_0^{-1}, \dots, \lambda_{N_c-1}^{-1})$

Decompose the quark propagator

$$Q^{-1} = T\hat{Q}^{-1}R + (Q^{-1} - T\hat{Q}^{-1}R)$$
(2)

$$=\sum_{i=0}^{N_c-1} \frac{1}{\lambda_i} \phi_i \phi_i^{\dagger} + (1-P)Q^{-1}(1-P^{\dagger})$$
(3)

Define the coarse operator $\hat{Q}: \mathcal{V}_1 \rightarrow \mathcal{V}_1$ as

$$\hat{Q} = RQT$$

■ If ϕ_c are exact modes of $Q \implies$ diagonal \hat{Q} and inverse

$$\hat{Q} = \mathsf{diag}(\lambda_0, \dots, \lambda_{N_c-1})$$
 $\hat{Q}^{-1} = \mathsf{diag}(\lambda_0^{-1}, \dots, \lambda_{N_c-1}^{-1})$

Decompose the quark propagator

$$Q^{-1} = T\hat{Q}^{-1}R + (Q^{-1} - T\hat{Q}^{-1}R)$$
(2)

$$= \sum_{i=0}^{N_c-1} \frac{1}{\lambda_i} \phi_i \phi_i^{\dagger} + (1-P)Q^{-1}(1-P^{\dagger})$$
(3)
eigen

Define the coarse operator $\hat{Q}: \mathcal{V}_1 \rightarrow \mathcal{V}_1$ as

$$\hat{Q} = RQT$$

■ If ϕ_c are exact modes of $Q \implies$ diagonal \hat{Q} and inverse

$$\hat{Q} = \mathsf{diag}(\lambda_0, \dots, \lambda_{N_c-1})$$
 $\hat{Q}^{-1} = \mathsf{diag}(\lambda_0^{-1}, \dots, \lambda_{N_c-1}^{-1})$

Decompose the quark propagator

$$Q^{-1} = T\hat{Q}^{-1}R + (Q^{-1} - T\hat{Q}^{-1}R)$$
(2)
= $\sum_{i=0}^{N_c-1} \frac{1}{\lambda_i} \phi_i \phi_i^{\dagger} + (1-P)Q^{-1}(1-P^{\dagger})$ (3)
eigen (3)

Two-point connected light-quark vector correlator

In the time-momentum representation [Bernecker and Meyer 1107.4388] (local-local), $S = D^{-1}$

$$G(t) = \frac{1}{|\Omega_0|} \sum_{y \in \Omega_0} \sum_{\vec{x} \in \Sigma_0} C(y_0 + t, \vec{x}|y), \tag{4}$$

$$C(x|y) = \operatorname{tr}\left[\Gamma_1 S(x|y) \Gamma_2 S(x|y)^{\dagger}\right],$$
(5)

- Stochastic sources: introduce extra noise
- **Point sources:** cost = O(V)
- Ideally, but unrealistic: full lattice volume average

$$G(t) = G_{ee}(t) + \underbrace{G_{re}(t) + G_{er}(t)}_{G_{\times}(t)} + G_{rr}(t)$$
(6)

- $G_{ee}(t)$: exact, volume-averaged, at its gauge noise
- $G_{rr}(t)$: little variance contribution \rightarrow few sources
- $G_{ imes}(t)$: typically significant contribution to total noise \gg gauge noise

$$G(t) = G_{ee}(t) + \underbrace{G_{re}(t) + G_{er}(t)}_{G_{\times}(t)} + G_{rr}(t)$$
(6)

- $G_{ee}(t)$: exact, volume-averaged, at its gauge noise
- $G_{rr}(t)$: little variance contribution \rightarrow few sources
- $G_{ imes}(t)$: typically significant contribution to total noise \gg gauge noise

$$G(t) = G_{ee}(t) + \underbrace{G_{re}(t) + G_{er}(t)}_{G_{\times}(t)} + G_{rr}(t)$$
(6)

- $G_{ee}(t)$: exact, volume-averaged, at its gauge noise
- $G_{rr}(t)$: little variance contribution \rightarrow few sources
- $G_{ imes}(t)$: typically significant contribution to total noise \gg gauge noise

$$G(t) = G_{ee}(t) + \underbrace{G_{re}(t) + G_{er}(t)}_{G_{\times}(t)} + G_{rr}(t)$$
(6)

- $G_{ee}(t)$: exact, volume-averaged, at its gauge noise
- $G_{rr}(t)$: little variance contribution \rightarrow few sources
- $G_{ imes}(t)$: typically significant contribution to total noise \gg gauge noise

The limits of LMA

- 三月
- 1. V^2 -problem: number of required low modes scales O(V) with the volume, on state-of-the-art lattices at the physical point
 - 1000-6000 eigenmodes [Kuberski 2312.13753, Blum et al. 1801.07224, Borsanyi et al. 1711.04980, Blum et al. 1512.09054]
 - Memory requirements
 - Storage and I/O requirements (people don't store them anymore!)

The limits of LMA

- 三月
- 1. V^2 -problem: number of required low modes scales O(V) with the volume, on state-of-the-art lattices at the physical point
 - 1000-6000 eigenmodes [Kuberski 2312.13753, Blum et al. 1801.07224, Borsanyi et al. 1711.04980, Blum et al. 1512.09054]
 - Memory requirements
 - Storage and I/O requirements (people don't store them anymore!)

Note

Number of eigenmodes are limited by memory / resources.

The limits of LMA

- 三月
- 1. V^2 -problem: number of required low modes scales O(V) with the volume, on state-of-the-art lattices at the physical point
 - 1000-6000 eigenmodes [Kuberski 2312.13753, Blum et al. 1801.07224, Borsanyi et al. 1711.04980, Blum et al. 1512.09054]
 - Memory requirements
 - Storage and I/O requirements (people don't store them anymore!)

Note

Number of eigenmodes are limited by memory / resources.

- 2. Cross-term-problem: Cross term has lots of noise \rightarrow expensive!
 - Method 1: all-mode averaging, AMA, [Blum et al. 1208.4349, Shintani et al. 1402.0244, Blum et al. 1801.07224, Blum et al. 1512.09054]
 - Method 2: truncated solver method (TSM) + bias correction [Kuberski 2312.13753, Borsanyi et al. 1711.04980]
 - Method 3: stochastically evaluate the rest-rest + rest-eigen piece [Lynch and DeTar (2023), Bazavov et al. 2301.08274]
 - Other methods ...

LOCAL COHERENCE / WEAK APPROX. PROPERTY

■ Low modes of Dirac operator are locally coherent [Lüscher 0706.2298]

Figure: (Local) coherence of low modes (taken from Ref. [Lüscher 1002.4232]).

LOCAL COHERENCE / WEAK APPROX. PROPERTY

■ Low modes of Dirac operator are locally coherent [Lüscher 0706.2298]

Figure: (Local) coherence of low modes (taken from Ref. [Lüscher 1002.4232]).

Conclusion

Using domain decomposition / coarsening on 10-100 low modes is enough to span the O(V) low-mode space!

LOCAL COHERENCE IN MORE DETAIL I

- Assume we have a few lowest modes ϕ_c of D say $N_c = 20$
- Project to a block decomposition

$$\phi_c^{B_{\hat{y}}}(x) = \begin{cases} \phi_c(x) & \text{if } x \in B_y \\ 0 & \text{else} \end{cases}$$
(7)

where the block $B_{\hat{y}}$ is indexed by a new coarse coordinate $\hat{y} \in \hat{\Lambda}$

- Reorthonormalize
- Gives a basis \mathcal{B} of size $N_c|\hat{\Lambda}|$
- Local coherence \implies span of $N_c |\hat{\Lambda}|$ fields has a large overlap with the space of $N \gg N_c$ low modes!
- Lüscher: local coherence [Lüscher 0706.2298], Multigrid: weak approximation property [Brezina et al. (2005), Babich et al. 1005.3043]
- Used in Krylov solvers with deflation/multigrid preconditioning

LOCAL COHERENCE IN MORE DETAIL II

• x-axis: mode number c = 0, ... 349• y-axis: $||P\phi_c||/||\phi_c||$ where $P = \sum_{\phi \in \mathcal{B}} \phi \phi^{\dagger}$.

- Setup subspace(s) as in the previous slide (domain-decomposed low modes)
- Define restrictors *R* and prolongators $T = R^{\dagger}$ from/to these subspaces

$$R: \psi \mapsto \theta, \quad \theta(i) = \langle \phi_i | \psi \rangle, \tag{8}$$

$$T: \theta \mapsto \psi = \sum_{i} \theta(i)\phi_i, \tag{9}$$

• Define the coarse-grid Dirac operator(s) as $\hat{D} = RDT$

Connection to solver: sloppy \hat{D}^{-1} as preconditioner for the Dirac equation

 $LD\psi = L\eta$ with $L = T\hat{D}^{-1}R$ (left preconditioning)

- Setup subspace(s) as in the previous slide (domain-decomposed low modes)
- Define restrictors *R* and prolongators $T = R^{\dagger}$ from/to these subspaces

Connection to solver: sloppy \hat{D}^{-1} as preconditioner for the Dirac equation

 $LD\psi = L\eta$ with $L = T\hat{D}^{-1}R$ (left preconditioning)

MULTIGRID LOW-MODE AVERAGING (MG LMA)

Decompose the quark propagator $S = D^{-1}$ using the coarsenings

$$S = \sum_{i=0}^{N-1} S_i = \underbrace{S - K_1}_{=S_0} + \underbrace{K_1 - K_2}_{=S_1} + \underbrace{K_2 - K_3}_{=S_2} + \dots + \underbrace{K_{N-1}}_{S_{N-1}}, \quad (10)$$

$$K_i = T_i (\hat{D}_i)^{-1} R_i, \quad S_i = \text{deflated propagator on level i.}$$

Each level is defined by a different domain decomp./coarse grid

- Plug into the correlator
- For the correlator we find a matrix of correlators:

$$C_{ij}(x,y) = \operatorname{tr}\left[\Gamma_1 S_i(x|y) \Gamma_2 S_j(y|x)\right], \quad C = \sum_{i,j} C_{ij}.$$
 (11)

- i, j = 0, ..., N 1 correspond to MG-level (with LO the fine grid)
- Grouping the *N*² correlators into levels (see figure on next slide) gives us

$$G(t) = \sum_{k=0}^{N-1} G_{Lk}(t).$$
 (12)

GROUPING OF CORRELATORS

$$G = \underbrace{G_{rr} + G_{\times}}_{G_{L0}} + \underbrace{G_{ee}}_{G_{L1}}$$

 $G = G_{L0} + G_{L1} + G_{L2} + G_{L3}$

Each level-contribution can be evaluated with a different strategy, i.e. number and type of sources!

Main message

Evaluating G_{Lk} requires inversions of the Dirac operator \hat{D}_k on level k and coarser, but not finer levels!

EXACT ESTIMATOR ON COARSEST LEVEL

■ If dimension small enough dim_C(\mathcal{V}_{N-1}) ~ 10⁴

$$G_{\mathrm{L}(N-1)}(t) = \frac{1}{TL^3} \sum_{y_0=0}^{L_0-a} \operatorname{tr}\left\{\widehat{\Gamma_1}(y_0+t)\hat{Q}^{-1}\widehat{\Gamma_2}(y_0)\hat{Q}^{-1}\right\}, \quad (13)$$

with

$$\widehat{\Gamma_{1,2}}(x_0)_{ij} = \sum_{\vec{x}} \phi_i^{\dagger}(x) \Gamma_{1,2} \phi_j(x)$$
(14)

Full lattice volume averaged correlator:

$$G(t) = \frac{1}{TL^2} \sum_{y \in \Lambda} \sum_{\vec{x} \in \Lambda} \operatorname{tr} \left[\Gamma_1 S(y_0 + t, \vec{x}|y) \Gamma_2 S(y_0 + t, \vec{x}|y)^{\dagger} \right]$$
(15)

WHERE IS THE VARIANCE?

Name	Size $[T \times L^3]$	L [fm]	m_π L
E7 ¹	64×32^{3}	2.1 fm	3.2
F7 ²	96×48^3	3.2 fm	4.8
G7 ¹	128×64^{3}	4.2 fm	6.4
H7 ¹	192×96^{3}	6.3 fm	9.6

Table: All ensembles have a pion mass $m_{\pi} = 270$ MeV and a lattice spacing of a = 0.0658 fm with $N_f = 2 O(a)$ -improved Wilson fermions.

¹Generated by Tim Harris using openQCD 2.4.2 [Lüscher et al. (2012-2023)] ²CLS lattice from Ref. [CLS (2012-2023)]

Relative variances: G7

2.1 3.2 4.2 6.2 fm

Figure: Relative variance for LMA (left) and MG LMA (right) to the vector correlator with **one stochastic source** for each term.

Relative variances: G7

2.1 3.2 4.2 6.2 fm

Absolute variances: G7

2.1

3.2

4.2

Figure: Absolute variances for LMA (left) and MG LMA (right) to the vector correlator with **one stochastic source** for each term. The black line is the gauge variance.

6.2

fm

Absolute variances: G7

2.1

3.2

4.2

fm

6.2

VARIANCE VS. SOURCES: G7

stochastic sources N_{st} . The black line is the gauge variance.

2.1

3.2

4.2

6.2

fm

VARIANCE VS. VOLUME

Figure: Absolute variances for LMA (left) and MG LMA (right) against the lattice extent *L*. The black line is the gauge variance.

VARIANCE VS. VOLUME

Cost

Cost - G7

Table: Cost breakdown to reach the gauge variance for G7 (4.2 fm).

Estimator	# modes	# sources		meas. cost	¹ model cost ¹
Stochastic	0	LO:	4096	16384	16384
LMA ²	50	LO:	2048	8192	8192
2-lvl MG LMA ²	50	LO:	16*	557.8	20.7
		L1:	2048***		00.7
		LO:	1*		
4-lvl MG LMA ²	50	L1:	16**	466.7	14.4
		L2:	1024***		
	Му	🤹 in	nplementati	on:	
* fine-grid	128×6	4 ³ i	nv: 11.1±().4 sec	(iter: 46.53 ± 0.23)
** coarse-gr	id $32 \times 16^{\circ}$	16 ³ inv: 37.3 ± 2		2.4 sec (iter: 1417 ± 22)	
*** coarse-gr	id 16×8^3	i	nv: 0.667±	0.041 sec	(iter: 502.1 ± 5.8)

¹Unit = fine-grid inversions.

²Cost of determination of low modes not included (or add 100 - 200 to the cost).

CHIRALITY

Requirement 1) Coarse operators should be better conditioned than fine ones:

$$\kappa(\hat{K}) \le \kappa(K)$$
 (16)

for $K = D, \gamma^5 D, D^{\dagger}, D\gamma^5, \dots$

Requirement 2) Variance contribution of coarse levels should dominate

Fine-grid lattice

- **Spacetime points:** $x \in \Lambda$
- Colours: $N_c = 3$
- **Spins:** $N_s = 4$
 - ▶ 2 chiral d.o.f.
 - 2 non-chiral d.o.f.

Coarse-grid lattice

- **Spacetime points:** $\hat{x} \in \hat{\Lambda}$
- Colours: *N*_c = number of low modes
- **Spins:** $N_s = 1$

Spectral decomposition of Q

$$Q = \sum_{i} \lambda_i \phi_i \phi_i^{\dagger}$$
 where $Q \phi_i = \lambda_i \phi_i$ (17)

 \blacksquare Singular value decomposition of D

$$D = \sum_{i} |\lambda_i| \tilde{\phi}_i \phi_i^{\dagger}$$
 where $\tilde{\phi}_i = \operatorname{sign}(\lambda_i) \gamma^5 \phi_i$ (18)

 $(\tilde{Q}\tilde{\phi}_i = \lambda_i\tilde{\phi}_i \quad \text{where} \quad \tilde{Q} = D\gamma^5)$

• Low modes of Q are linear combinations of low modes of D (not the case for low modes of \tilde{Q})

$$\|D\phi_i\| \sim |\lambda_i| \qquad \|D\tilde{\phi}_i\| \gg |\lambda_i|$$
 (19)

This suggest to use:

- right singular vectors of *D* for prolongation: *T*
- **left** singular vectors of *D* for restriction: $R = T^{\dagger} \gamma^5$

Thus the coarse operator is (Petrov-Galerkin approach; $R
eq T^{\dagger}$)

$$T^{\dagger}\gamma^{5}DT$$
 (20)

This suggest to use:

- right singular vectors of *D* for prolongation: *T*
- **left** singular vectors of *D* for restriction: $R = T^{\dagger} \gamma^{5}$

Thus the coarse operator is (Petrov-Galerkin approach; $R \neq T^{\dagger}$)

$$T^{\dagger}\gamma^{5}DT$$
 (20)

Notice
This is just $\hat{Q}=RQT$ in the Galerkin-approach ($R=T^{\dagger}$)

Figure: Lower left: lowest 100 eigenvalues (in magnitude) of the Hermitian Dirac operator $\gamma^5 D$ and $\widehat{\gamma^5 D}$. **Lower right** eigenvalues plotted on the x-axis with a gray vertical line at every fine grid eigenvalue (blue). **Upper panel**: zoom. $N_c = 20$.

Figure: Lower left: lowest 100 eigenvalues (in magnitude) of the Hermitian Dirac operator $\gamma^5 D$ and $\widehat{\gamma^5 D}$. **Lower right** eigenvalues plotted on the x-axis with a gray vertical line at every fine grid eigenvalue (blue). **Upper panel**: zoom. $N_c = 20$.

- 8 Requirement 1) $\kappa(\hat{K}) \leq \kappa(K)$, unless $N_s = 2$
 - Requirement 2) Coarse level variance dominates

PROBLEM OF COARSENING D

Figure: Variance contribution for LMA (left) and MG LMA (right) without chirality preservation (yellow) and with chirality preservation (green).

PROBLEM OF COARSENING D

Figure: Variance contribution for LMA (left) and MG LMA (right) without chirality preservation (yellow) and with chirality preservation (green).

Sequirement 1) $\kappa(\hat{K}) \leq \kappa(K)$

 \bigcirc Requirement 2) Coarse level variance dominates, unless $N_s = 2$

- The Dirac operator is pseudo-Hermitian w.r.t. γ^5 : $(\gamma^5 D)^{\dagger} = \gamma^5 D$
- We may retain this property on the coarse grid by imposing $[P, \gamma^5] = 0$:

$$(\widehat{\gamma^5}\widehat{D})^{\dagger} = \widehat{\gamma^5}\widehat{D}$$
 (21)

$$\widehat{\gamma^5 D} = \widehat{\gamma^5} \hat{D} \tag{22}$$

where P = TR and $\widehat{\gamma^5} = R\gamma^5 T$

29

33

- The Dirac operator is pseudo-Hermitian w.r.t. γ^5 : $(\gamma^5 D)^{\dagger} = \gamma^5 D$
- We may retain this property on the coarse grid by imposing $[P, \gamma^5] = 0$:

$$(\widehat{\gamma}^{\widehat{5}}\widehat{D})^{\dagger} = \widehat{\gamma}^{\widehat{5}}\widehat{D}$$
 (21)

$$\widehat{\gamma^5 D} = \widehat{\gamma^5} \hat{D} \tag{22}$$

where
$$P = TR$$
 and $\widehat{\gamma^5} = R\gamma^5 T$

Conclusion

How to coarsen? By keeping both fine-grid chirality indices explicit on the coarse subspace.

29

$$\{\phi_i\}_{i=0}^{N_c-1} \longmapsto \{\phi_i\}_{i=0}^{N_c-1} \cup \{\gamma_5\phi_i\}_{i=0}^{N_c-1}$$

$$\{\phi_i\}_{i=0}^{N_c-1} \longmapsto \{P_-\phi_i\}_{i=0}^{N_c-1} \cup \{P_+\phi_i\}_{i=0}^{N_c-1}$$

$$(23)$$

where $P_{\pm} = \frac{1}{2}(1 \pm \gamma_5)$ are the chiral projectors.

- Eq. (23) are left and right singular vectors of D
- **Eq. (24):** coarse $\widehat{\gamma^5}$ and fine γ^5 have the same structure

33

30

CONDITION NUMBERS

Solvers

Figure: G7 (4.2 fm): C-dimension of the Dirac operator (x-axis) vs. Number of BiCGSTAB iterations and condition number (y-axis). The rightmost operator is the fine-grid, the others ones are different coarse-grid Dirac operators.

Conclusion

If we impose explicit chiral d.o.f. (i.e. chiral doubling of the modes), requirements are met. No matter which operator we coarsen!

Requirement 1) Coarse operators should be better conditioned than fine ones:

$$\kappa(\hat{K}) \le \kappa(K)$$
 (25)

for $K = D, \gamma^5 D, D^{\dagger}, D\gamma^5, \dots$

Requirement 2) Variance contribution of coarse levels should dominate

CONCLUSION

- Subspaces based on domain-decomposed / coarsened low modes
- \blacksquare Propagator decomposition \rightarrow Correlator decomposition into-MG levels
- Method can be defined recursively
- Every level-contribution → separate statistics
- 50 low modes capture all the variance (independent of the lattice volume!)
- Fewer low modes & more variance contribution than LMA

- Subspaces based on domain-decomposed / coarsened low modes
- \blacksquare Propagator decomposition \rightarrow Correlator decomposition into-MG levels
- Method can be defined recursively
- Every level-contribution → separate statistics
- 50 low modes capture all the variance (independent of the lattice volume!)
- Fewer low modes & more variance contribution than LMA

Key idea

Hierarchical evaluation: noisy part is cheaper to evaluate!

REFERENCES I

- [1] L. GIUSTI ET AL., "FREQUENCY-SPLITTING ESTIMATORS OF SINGLE-PROPAGATOR TRACES", Eur. Phys. J. C 79, 586 (2019), arXiv:1903.10447 [hep-lat].
- [2] F. KNECHTLI ET AL., "OPTIMIZING CREATION OPERATORS FOR CHARMONIUM SPECTROSCOPY ON THE LATTICE", Phys. Rev. D 106, 034501 (2022), arXiv:2205.11564 [hep-lat].
- [3] L. N. BUSHNAQ, "EXPLORING EFFICIENT METHODS FOR PRECISION QCD CALCULATIONS ON THE LATTICE", PhD thesis (Trinity Coll., Dublin, 2023).
- M. A. CLARK ET AL., "MULTI-GRID LANCZOS", EPJ Web Conf. 175, edited by M. Della Morte et al., 14023 (2018), arXiv:1710.06884 [hep-lat].
- [5] H. NEFF ET AL., "ON THE LOW FERMIONIC EIGENMODE DOMINANCE IN QCD ON THE LATTICE", Phys. Rev. D 64, 114509 (2001), arXiv:hep-lat/0106016.
- [6] T. A. DEGRAND AND S. SCHAEFER, "IMPROVING MESON TWO POINT FUNCTIONS IN LATTICE QCD", Comput. Phys. Commun. 159, 185–191 (2004), arXiv:hep-lat/0401011.

REFERENCES II

- [7] L. GIUSTI ET AL., "LOW-ENERGY COUPLINGS OF QCD FROM CURRENT CORRELATORS NEAR THE CHIRAL LIMIT", JHEP 04, 013 (2004), arXiv:hep-lat/0402002.
- [8] T. BLUM ET AL., "New CLASS OF VARIANCE-REDUCTION TECHNIQUES USING LATTICE SYMMETRIES", Phys. Rev. D 88, 094503 (2013), arXiv:1208.4349 [hep-lat].
- [9] E. SHINTANI ET AL., "COVARIANT APPROXIMATION AVERAGING", Phys. Rev. D 91, 114511 (2015), arXiv:1402.0244 [hep-lat].
- [10] S. KUBERSKI, "MUON g 2: LATTICE CALCULATIONS OF THE HADRONIC VACUUM POLARIZATION", PoS LATTICE2023, 125 (2024), arXiv:2312.13753 [hep-lat].
- [11] T. BLUM ET AL. (RBC, UKQCD), "CALCULATION OF THE HADRONIC VACUUM POLARIZATION CONTRIBUTION TO THE MUON ANOMALOUS MAGNETIC MOMENT", Phys. Rev. Lett. 121, 022003 (2018), arXiv:1801.07224 [hep-lat].

References III

- [12] S. BORSANYI ET AL. (BUDAPEST-MARSEILLE-WUPPERTAL), "HADRONIC VACUUM POLARIZATION CONTRIBUTION TO THE ANOMALOUS MAGNETIC MOMENTS OF LEPTONS FROM FIRST PRINCIPLES", Phys. Rev. Lett. 121, 022002 (2018), arXiv:1711.04980 [hep-lat].
- [13] T. BLUM ET AL., "CALCULATION OF THE HADRONIC VACUUM POLARIZATION DISCONNECTED CONTRIBUTION TO THE MUON ANOMALOUS MAGNETIC MOMENT", Phys. Rev. Lett. 116, 232002 (2016), arXiv:1512.09054 [hep-lat].
- [14] M. LÜSCHER, "LOCAL COHERENCE AND DEFLATION OF THE LOW QUARK MODES IN LATTICE QCD", JHEP 07, 081 (2007), arXiv:0706.2298 [hep-lat].
- [15] M. BREZINA ET AL., **"ADAPTIVE SMOOTHED AGGREGATION (** α **SA) MULTIGRID"**, SIAM review **47**, 317–346 (2005).
- [16] R. BABICH ET AL., "ADAPTIVE MULTIGRID ALGORITHM FOR THE LATTICE WILSON-DIRAC OPERATOR", Phys. Rev. Lett. 105, 201602 (2010), arXiv:1005.3043 [hep-lat].
- [17] D. BERNECKER AND H. B. MEYER, "VECTOR CORRELATORS IN LATTICE QCD: METHODS AND APPLICATIONS", Eur. Phys. J. A 47, 148 (2011), arXiv:1107.4388 [hep-lat].

References IV

- [18] CLS, COORDINATED LATTICE SIMULATIONS, (2012-2023) https://wiki-zeuthen.desy.de/CLS/.
- [19] M. LÜSCHER, "COMPUTATIONAL STRATEGIES IN LATTICE QCD", in Les Houches Summer School: Session 93: Modern perspectives in lattice QCD: Quantum field theory and high performance computing (Feb. 2010), pp. 331–399, arXiv:1002.4232 [hep-lat].
- [20] T. WHYTE ET AL., "OPTIMIZING SHIFT SELECTION IN MULTILEVEL MONTE CARLO FOR DISCONNECTED DIAGRAMS IN LATTICE QCD", Comput. Phys. Commun. 294, 108928 (2024), arXiv:2212.04430 [hep-lat].
- [21] M. LÜSCHER ET AL., OPENQCD, SIMULATION PROGRAMS FOR LATTICE QCD, (2012-2023) https://luscher.web.cern.ch/luscher/openQCD/.
- [22] M. LYNCH AND C. DETAR, **"CONTRASTING LOW-MODE NOISE REDUCTION TECHNIQUES FOR LIGHT HISQ MESON PROPAGATORS",** in The 39th international symposium on lattice field theory, (2023), p. 252.

[23] A. BAZAVOV ET AL. (FERMILAB LATTICE, HPQCD,, MILC), "LIGHT-QUARK CONNECTED INTERMEDIATE-WINDOW CONTRIBUTIONS TO THE MUON G-2 HADRONIC VACUUM POLARIZATION FROM LATTICE QCD", Phys. Rev. D 107, 114514 (2023), arXiv:2301.08274 [hep-lat].

BACKUP SLIDES: TABLE OF CONTENTS

- 8
- Gauge variance estimator
- 9 LMA V²-problem
- 10 LMA Cross-term-problem
- 11 MG LMA Problems solved
- 12 MG LMA vs. LMA with more low modes
- 13 LMA as a special case of MG LMA
- 14 Frequency splitting
- 15 RBC
- 16 Distillation
- 17 Scaling with pion mass
- 18 Scaling with number of low modes
- 19 Scaling with block size

- 20 Performance model with multiple RHS
- 21 Chirality on the subspace
- 22 Detailed setups
- 23 Variance contribution All ensembles
- 24 Absolute variance All ensembles
- 25 Variance vs. sources All ensembles
- 26 Cost All ensembles
- 27 Optimizations
- 28 Comparison LMA vs. MG LMA
- 29 Multigrid Multilevel Monte Carlo (MGMLMC)
- 30 Multilevel Monte Carlo

GAUGE VARIANCE ESTIMATOR
We define the gauge variance as the minimum variance (N_{st} = number of stochastic sources)

$$\sigma_{\rm vol}^2 = \lim_{N_{st} \to \infty} \sigma_{\rm appx}^2$$
(26)

where

$$\sigma_{\rm appx}^2 = \langle G_{\rm appx}^2 \rangle - \langle G_{\rm appx} \rangle^2, \tag{27}$$

$$G_{appx} = \frac{1}{N_{st}} \sum_{i=1}^{N_{st}} G_i,$$
 (28)

$$G_i = -\frac{a^6}{L^6} \sum_{\vec{x}', \vec{x}, \vec{y}} \eta_i^{\dagger}(x') S(x', x) \Gamma S(y, x) \Gamma \eta_i(x)$$
⁽²⁹⁾

Thus our estimator is

$$\begin{split} \sigma_{\text{vol}}^2 &\approx \frac{1}{L_0^2} \frac{1}{N_{st}} \sum_{\{x_0\}} \left[\frac{1}{N_{st} - 1} \sum_{i \neq j} \left\{ \langle G_i(x_0, y_0) G_j(x_0, y_0) \rangle_U \right. \\ &- \langle G_i(x_0, y_0) \rangle_U \langle G_j(x_0, y_0) \rangle_u \right\} \\ &+ \sum_{\{x'_0\}} (1 - \delta_{x_0, x'_0}) \frac{1}{N_{st}} \sum_{i,j} \left\{ \langle G_i(x_0, y_0) G_j(x'_0, y'_0) \rangle_U \\ &- \langle G_i(x_0, y_0) \rangle_U \langle G_j(x'_0, y'_0) \rangle_U \right\} \right]. \end{split}$$

BACKUP SLIDE: GAUGE VARIANCE ESTIMATION

E7: at $x_0 = 1.3 \, fm \, (x_0/a = 20)$

Figure: Absolute variance vs. number of stochastic noise sources. **The gauge** variance is reached.

LMA – V^2 -problem

BACKUP SLIDE: V^2 -problem of LMA

Low mode contribution (L1) diminishes with larger volume

BACKUP SLIDE: V^2 -problem of LMA

■ Low mode contribution (L1) diminishes with larger volume

LMA - CROSS-TERM-PROBLEM

BACKUP SLIDE: THE CROSS-TERM PROBLEM IN MORE

- 2. Cross-term-problem: Cross term has lots of noise contribution.
 - Method 1: all-mode averaging, AMA, [Blum et al. 1208.4349, Shintani et al. 1402.0244, Blum et al. 1801.07224, Blum et al. 1512.09054]

$$Q^{-1} = \underbrace{\sum_{i=1}^{N_c} \frac{1}{\lambda_i} \xi_i \xi_i^{\dagger} + P_n(Q)P}_{S_{AMA}} + \underbrace{Q^{-1} - S_{AMA}}_{S_{nest}}, \quad P_n = \mathsf{TSM-poly. of deg. n.}$$

- Method 2: truncated solver method (TSM) + bias correction [Kuberski 2312.13753, Borsanyi et al. 1711.04980]
 - Very similar to AMA
 - Needs 1 inversion per mode per gamma-matrix:

$$\begin{split} G_{\times}(x,y) &= \frac{1}{|\Lambda_0|} \sum_{i=1}^{N_c} \frac{1}{\lambda_i} \sum_{\vec{x}} \left\langle \chi_j^{\Gamma_2}(y_0 + t, \vec{x}) \left| \Gamma_1 \gamma^5 \xi_i(y_0 + t, \vec{x}) \right\rangle \right. \\ \chi_j^{\Gamma} &= D^{-1} \Gamma \xi_j \end{split}$$

Needs 1 inversion for every mode for every gamma-matrix!

Method 3: stochastically evaluate the rest-eigen piece

BACKUP SLIDE: THE CROSS-TERM PROBLEM IN MORE

- 2. Cross-term-problem: Cross term has lots of noise contribution.
 - Method 1: all-mode averaging, AMA, [Blum et al. 1208.4349, Shintani et al. 1402.0244, Blum et al. 1801.07224, Blum et al. 1512.09054]

$$Q^{-1} = \sum_{i=1}^{N_c} \frac{1}{\lambda_i} \xi_i \xi_i^{\dagger} + P_n(Q)P + Q^{-1} - S_{AMA}, \quad P_n = \mathsf{TSM-poly. of deg. n.}$$

Expensive cross-term

treatment is hidden in here.

Method 2: truncated solver method (TSM) + bias correction [Kuberski 2312.13753, Borsanyi et al. 1711.04980]

Very similar to AMA

Needs 1 inversion per mode per gamma-matrix:

$$\begin{split} G_{\times}(x,y) &= \frac{1}{|\Lambda_0|} \sum_{i=1}^{N_c} \frac{1}{\lambda_i} \sum_{\vec{x}} \left\langle \chi_j^{\Gamma_2}(y_0 + t, \vec{x}) \left| \Gamma_1 \gamma^5 \xi_i(y_0 + t, \vec{x}) \right\rangle \right. \\ \chi_j^{\Gamma} &= D^{-1} \Gamma \xi_j \end{split}$$

Needs 1 inversion for every mode for every gamma-matrix!

Method 3: stochastically evaluate the rest-eigen piece

BACKUP SLIDE: THE CROSS-TERM PROBLEM IN MORE

- 2. Cross-term-problem: Cross term has lots of noise contribution.
 - Method 1: all-mode averaging, AMA, [Blum et al. 1208.4349, Shintani et al. 1402.0244, Blum et al. 1801.07224, Blum et al. 1512.09054]

$$Q^{-1} = \sum_{i=1}^{N_c} \frac{1}{\lambda_i} \xi_i \xi_i^{\dagger} + P_n(Q)P + Q^{-1} - S_{AMA}, \quad P_n = \mathsf{TSM-poly. of deg. n.}$$

Expensive cross-term

treatment is hidden in here.

Method 2: truncated solver method (TSM) + bias correction [Kuberski 2312.13753, Borsanyi et al. 1711.04980]

Very similar to AMA

Needs 1 inversion per mode per gamma-matrix:

$$G_{\times}(x,y) = \frac{1}{|\Lambda_0|} \sum_{i=1}^{N_c} \frac{1}{\lambda_i} \sum_{\vec{x}} \left\langle \chi_j^{\Gamma_2}(y_0 + t, \vec{x}) \middle| \Gamma_1 \gamma^5 \xi_i(y_0 + t, \vec{x}) \right\rangle$$
$$\chi_j^{\Gamma} = D^{-1} \Gamma \xi_j \qquad \text{many inversions!}$$

Needs 1 inversion for every mode for every gamma-matrix!

Method 3: stochastically evaluate the rest-eigen piece

Increasing number of low modes doesn't push Lo-noise contribution to gauge noise (dotted line)

 Increasing number of low modes doesn't push Lo-noise contribution to gauge noise (dotted line)

Cross-term-problem of LMA

Reminiscent variance of Lo-term (rest-rest + rest-eigen) doesn't vanish.

MG LMA - PROBLEMS SOLVED

• L1-grid: generated with $B = 8^4$ block size

■ L1-grid: generated with $B = 8^4$ block size \implies Coarse operator dimension increases with volume (same ratio)

- L1-grid: generated with B = 8⁴ block size
 ⇒ Coarse operator dimension increases with volume (same ratio)
- Constant number of low modes even when increasing the volume

- L1-grid: generated with B = 8⁴ block size
 ⇒ Coarse operator dimension increases with volume (same ratio)
- Constant number of low modes even when increasing the volume $\implies V^2$ -problem solved!

- L1-grid: generated with $B = 8^4$ block size \implies Coarse operator dimension increases with volume (same ratio)
- Constant number of low modes even when increasing the volume $\implies V^2$ -problem solved!
- Lo-noise is negligible

- L1-grid: generated with $B = 8^4$ block size \implies Coarse operator dimension increases with volume (same ratio)
- Constant number of low modes even when increasing the volume

 \implies V²-problem solved!

- Lo-noise is negligible
 - \implies Cross-term-problem solved!

MG LMA vs. LMA with more low modes

BACKUP SLIDE: MG LMA VS. LMA WITH MORE LOW

Figure: LMA (left) with $N_c = 256$ low modes vs. MG LMA (center and right) with $N_c = 25$ low modes. The variance contributions are comparable.

LMA AS A SPECIAL CASE OF MG LMA

LMA: eigen-eigen propagator

$$S_{LMA} = \sum_{i=0}^{N_c - 1} \frac{1}{\lambda_i} \xi_i \xi_i^{\dagger} \gamma^5$$
(30)

■ MG LMA: L1-propagator (propagator restricted to coarse grid)

$$S_1 = T_1 \hat{D}^{-1} R_1 = \sum_{i,j=0}^{N_b N_c N_s - 1} (\hat{D}^{-1})_{ij} \phi_i \phi_j^{\dagger}$$
(31)

 \implies LMA is a special case of MG LMA

FREQUENCY SPLITTING

BACKUP SLIDE: FREQUENCY SPLITTING

Decomposition of propagator [Giusti et al. 1903.10447]

$$S = M_{2n,m} + D_m^{-1} H_m^{2n}, (32)$$

$$M_{2n,m} = (D_{ee} + D_{oo})^{-1} \sum_{k=0}^{2n-1} H_m^k,$$
(33)

$$H_m = -(D_{eo}D_{oo}^{-1} + D_{oe}D_{ee}^{-1}).$$
(34)

Frequency splitting

- Split away the low frequency modes (high eigenmodes of D)
- When the variance is in the high end of the spectrum (i.e. disconnected diagrams which get most of their contributions from short distances), because the large mass doesn't affect the even larger energy scales close to 1/a.

Low-mode averaging

- Split away the high frequency modes (low eigenmodes of D)
- Beneficial when the variance is in the low end of the spectrum (i.e. long-distance two-point functions)

- Storage of low modes [Clark et al. 1710.06884]
- Creation of multigrid subspace using $N \approx 200 400$ exact low modes of Dirac operator
- Determination of further 1k 2k low modes in the coarse grid subspace (coarse grid is significantly smaller than fine grid)
- Storage of 1k 2k low modes in the coarse grid basis \implies smaller I/O and memory footprint
- Contraction is done in the coarse grid subspace using coarse grid modes
- Like applying LMA to coarse grid operator

DISTILLATION

- Distillation [Knechtli et al. 2205.11564] is a Smearing technique (alters absolute value of correlation function)
- Used for spectroscopy
- Determination of low modes of the spatial Laplacian
- Smearing operator as projector to distillation subspace
- Improves the overlap of operators with hadronic states
- Was explored as variance reduction technique à la LMA in Ref. [Bushnaq (2023)]

SCALING WITH PION MASS

BACKUP SLIDE: VARIANCE VS. PION MASS

Name	Size $[T \times L^3]$	Pion mass	<i>a</i> [fm]	L [fm]
G7	128×64^{3}	270 MeV	0.065 fm	4.2 fm
G8	128×64^{3}	180 MeV	0.065 fm	4.2 fm

Pion mass scaling at $x_0 = 1.3 \text{ fm} (x_0/a = 20)$

Figure: Absolute variance of Lo-terms vs. pion mass. We used $N_c = 50$ low modes on both lattices and the same MG setup.

SCALING WITH NUMBER OF LOW MODES

BACKUP SLIDE: VARIANCE VS. NUMBER OF LOW MODES

Figure: F7 (3.2 fm): Absolute variance (y-axis) for LMA (yellow) and MG LMA (green) to the vector correlator with varying number of low modes (x-axis) (block size held constant, 6⁴). Blue is the stochastic estimator (for reference), the dashed black line is the gauge variance.

Scaling wrt low modes at $x_0 = 1.3 fm (x_0/a = 20)$

SCALING WITH BLOCK SIZE

BACKUP SLIDE: VARIANCE VS. BLOCK SIZE

Figure: F7 (3.2 fm): Absolute variance (y-axis) for Lo-term (yellow) to the vector correlator with varying block sizes (x-axis) (number of low modes held constant, $N_c = 50$). Blue is the stochastic estimator (for reference), the dashed black line is the gauge variance.

PERFORMANCE MODEL WITH MULTIPLE RHS
Problem

- Time for one application of Dirac operator is linear in its memory footprint
 - ► Fine-grid Dirac operator D: $(4V \cdot 9 \cdot 2 + 2V \cdot 36)$ floats $\implies 2304V$ bytes.
 - Coarse-grid Dirac operator \hat{D} : $9N_c^2N_s^2N_b$ complex floats $\implies 144(N_cN_s)^2N_b$ bytes
- Might happen that $\operatorname{mem}(\hat{D}) > \operatorname{mem}(D)$, but still $\dim(D) \gg \dim(\hat{D})$.
 - \implies coarse-grid operator more expensive than fine-grid imes
- Also we have $cond(D) > cond(\hat{D})$
- Krylov solvers: number of iterations = $iter(D) \sim cond(D)$ ⇒ fewer iterations for coarse grid operators ✓

Solution

Memory bandwidth of one spinor field (fine-grid):

 $\mathsf{mem}(\psi) = \dim(D) = 12V$ complex floats

Memory bandwidth of one spinor field (coarse-grid):

 $mem(\psi) = dim(\hat{D}) = N_c N_s N_b$ complex floats

Memory bandwidth (Operator with one RHS):

mem(Op) + 2dim(Op)

■ Memory bandwidth (Operator with N_{rhs} RHS):

 $mem(Op) + 2N_{rhs} dim(Op)$

$$Sp(N_{rhs}) = \frac{\text{iter(D)}}{\text{iter}(\hat{D})} \frac{\text{mem}(D) + 2N_{rhs}\dim(D)}{\text{mem}(\hat{D}) + 2N_{rhs}\dim(\hat{D})}.$$
 (35)

With one RHS:

$$Sp(1) \approx \frac{\text{iter(D)}}{\text{iter(\hat{D})}} \frac{\text{mem}(D)}{\text{mem}(\hat{D})} \approx \frac{\text{cond(D)}}{\text{cond}(\hat{D})} \frac{\text{mem}(D)}{\text{mem}(\hat{D})}.$$
 (36)

■ With many RHS:

$$Sp(\infty) \approx \frac{\text{iter}(D)}{\text{iter}(\hat{D})} \frac{\dim(D)}{\dim(\hat{D})} \approx \underbrace{\frac{\text{cond}(D)}{\text{cond}(\hat{D})}}_{>1} \underbrace{\frac{\dim(D)}{\dim(\hat{D})}}_{30-500} \gg 1.$$
 (37)

$$Sp(N_{rhs}) = \frac{\text{iter}(D)}{\text{iter}(\hat{D})} \frac{\text{mem}(D) + 2N_{rhs}\dim(D)}{\text{mem}(\hat{D}) + 2N_{rhs}\dim(\hat{D})}.$$
 (35)

With one RHS: with comparable solvers $Sp(1) \approx \frac{\text{iter}(D)}{\text{iter}(\hat{D})} \frac{\text{mem}(D)}{\text{mem}(\hat{D})} \stackrel{\bigstar}{\approx} \frac{\text{cond}(D)}{\text{cond}(\hat{D})} \frac{\text{mem}(D)}{\text{mem}(\hat{D})}.$ (36)

■ With many RHS:

$$Sp(\infty) \approx \frac{\text{iter}(D)}{\text{iter}(\hat{D})} \frac{\dim(D)}{\dim(\hat{D})} \approx \underbrace{\frac{\text{cond}(D)}{\text{cond}(\hat{D})}}_{>1} \underbrace{\frac{\dim(D)}{\dim(\hat{D})}}_{30-500} \gg 1.$$
 (37)

$$Sp(N_{rhs}) = \frac{\text{iter}(D)}{\text{iter}(\hat{D})} \frac{\text{mem}(D) + 2N_{rhs}\dim(D)}{\text{mem}(\hat{D}) + 2N_{rhs}\dim(\hat{D})}.$$
 (35)

With one RHS: with comparable solvers $Sp(1) \approx \frac{\text{iter}(D)}{\text{iter}(\hat{D})} \frac{\text{mem}(D)}{\text{mem}(\hat{D})} \stackrel{\bigstar}{\approx} \frac{\text{cond}(D)}{\text{cond}(\hat{D})} \frac{\text{mem}(D)}{\text{mem}(\hat{D})}.$ (36)

■ With many RHS:

$$Sp(\infty) \approx \frac{\text{iter}(D)}{\text{iter}(\hat{D})} \frac{\dim(D)}{\dim(\hat{D})} \approx \underbrace{\frac{\text{cond}(D)}{\text{cond}(\hat{D})}}_{>1} \underbrace{\frac{\dim(D)}{\dim(\hat{D})}}_{30-500} \gg 1.$$
(37)

$$Sp(N_{rhs}) = \frac{\mathsf{iter}(\mathsf{D})}{\mathsf{iter}(\hat{D})} \frac{\mathsf{mem}(D) + 2N_{rhs}\dim(D)}{\mathsf{mem}(\hat{D}) + 2N_{rhs}\dim(\hat{D})}.$$
 (35)

With one RHS: with comparable solvers $Sp(1) \approx \frac{\text{iter}(D)}{\text{iter}(\hat{D})} \frac{\text{mem}(D)}{\text{mem}(\hat{D})} \stackrel{\downarrow}{\approx} \frac{\text{cond}(D)}{\text{cond}(\hat{D})} \frac{\text{mem}(D)}{\text{mem}(\hat{D})}.$

With many RHS: with comparable solvers

$$Sp(\infty) \approx \frac{\text{iter}(D)}{\text{iter}(\hat{D})} \frac{\dim(D)}{\dim(\hat{D})} \approx \underbrace{\frac{\text{cond}(D)}{\text{cond}(\hat{D})}}_{>1} \underbrace{\frac{\dim(D)}{\dim(\hat{D})}}_{30-500} \gg 1.$$
 (37)

(36)

 $N_{rhs} \rightarrow \infty$

$$Sp(N_{rhs}) = \frac{iter(D)}{iter(\hat{D})} \frac{mem(D) + 2N_{rhs} \dim(D)}{mem(\hat{D}) + 2N_{rhs} \dim(\hat{D})}.$$
 (35)
With one RHS: with comparable solvers

$$Sp(1) \approx \underbrace{iter(D)}_{iter(\hat{D})} \frac{mem(D)}{mem(\hat{D})} \approx \underbrace{cond(D)}_{cond(\hat{D})} \frac{mem(D)}{mem(\hat{D})}.$$
 (36)
My (1) implementation
With many RHS: with comparable solvers

$$Sp(\infty) \approx \frac{iter(D)}{iter(\hat{D})} \frac{\dim(D)}{\dim(\hat{D})} \approx \underbrace{cond(D)}_{cond(\hat{D})} \frac{\dim(D)}{\dim(\hat{D})} \gg 1.$$
 (37)

>1

30-500

W

W

$$Sp(N_{rhs}) = \frac{iter(D)}{iter(\hat{D})} \frac{mem(D) + 2N_{rhs} \dim(D)}{mem(\hat{D}) + 2N_{rhs} \dim(\hat{D})}.$$
 (35)
With one RHS: with comparable solvers

$$Sp(1) \approx \underbrace{\frac{iter(D)}{iter(\hat{D})} \frac{mem(D)}{mem(\hat{D})}}_{iter(\hat{D})} \approx \frac{cond(D)}{cond(\hat{D})} \frac{mem(D)}{mem(\hat{D})}.$$
 (36)
My $\stackrel{\textcircled{o}}{=}$ implementation
With comparable solvers

$$Sp(\infty) \approx \underbrace{\frac{\mathsf{iter}(\mathsf{D})}{\mathsf{iter}(\hat{D})}}_{N_{rhs} \to \infty} \underbrace{\frac{\mathsf{dim}(D)}{\mathsf{dim}(\hat{D})}}_{N_{rhs} \to \infty} \approx \underbrace{\frac{\mathsf{cond}(\mathsf{D})}{\mathsf{cond}(\hat{D})}}_{>1} \underbrace{\frac{\mathsf{dim}(D)}{\mathsf{cond}(\hat{D})}}_{30-500} \gg 1.$$
(37)

Ideal implementation

BACKUP SLIDE: SCALING W.R.T. DIMENSION

Solvers

Figure: G7 (4.2 fm): C-dimension of the Dirac operator (x-axis) vs. Number of bicgstab iterations and condition number (y-axis). The rightmost operator is the fine-grid, the others ones are different coarse-grid Dirac operators.

Figure: G7 (4.2 fm): Time for one application of a fine- or coarse-grid Dirac operator (y-axis) vs. its memory footprint.

CHIRALITY ON THE SUBSPACE

Chirality preservation on the subspace (γ⁵-Hermiticity on the subspace):

$$[P,\gamma^5] = 0 \implies \widehat{\gamma^5} \hat{D} = \left(\widehat{\gamma^5} \hat{D}\right)^{\dagger}.$$
 (38)

where $\widehat{\gamma^5} = R\gamma^5 T$ and P = TR

- Or number of remaining spin d.o.f., $N_s = 1, 2, 4$ on the coarse subspace
- When generating the subspace basis from eigenmodes ϕ_i

$$\{\phi_i\}_{i=1}^{N_c} \longmapsto \{\phi_i\}_{i=1}^{N_c} \cup \{\gamma^5 \phi_i\}_{i=1}^{N_c}$$
(39)

$$\{\phi_i\}_{i=1}^{N_c} \longmapsto \{P_+\phi_i\}_{i=1}^{N_c} \cup \{P_-\phi_i\}_{i=1}^{N_c}$$
(40)

where $P_{\pm} = \frac{1}{2} (1 \pm \gamma^5)$.

BACKUP SLIDE: WHY PRESERVE CHIRALITY II

Figure: Variance contribution for LMA (left) and MG LMA (right) without chirality preservation (yellow) and with chirality preservation (green).

Figure: Lower left: lowest 100 eigenvalues (in magnitude) of the Hermitian Dirac operator $\gamma^5 D$ and $\widehat{\gamma^5 D}$. **Lower right** eigenvalues plotted on the x-axis with a gray vertical line at every fine grid eigenvalue (blue). **Upper panel**: zoom. $N_c = 20$.

DETAILED SETUPS

Estimator	# modes	Sources	Levels
Stochastic	N/A	semwall	Lo: only fine-grid
LMA	50	semwall	Lo: (rest-rest + rest-eigen)
		exact	L1: (eigen-eigen)
2-level MG LMA	50	semwall	Lo: fine-grid
			L1: block size 8 ⁴
3-level MG LMA	50	semwall	Lo: fine-grid
			L1: block size 8 ⁴
		exact	L2: (eigen-eigen)
4-level MG LMA	50	semwall	Lo: fine-grid
			L1: block size 4 ⁴
			L2: block size 8 ⁴
		exact	L3: (eigen-eigen)

VARIANCE CONTRIBUTION - ALL EN-SEMBLES

Relative variances: E7

2.1

3.2

4.2

fm

6.2

Figure: Relative variance for LMA (left) and MG LMA (right) to the vector correlator with **one stochastic source** for each term.

Relative variances: E7

2.1

3.2

4.2

6.2

fm

Relative variances: F7

2.1

3.2

4.2

fm

6.2

Figure: Relative variance for LMA (left) and MG LMA (right) to the vector correlator with **one stochastic source** for each term.

Relative variances: F7

2.1

3.2

4.2

fm

Relative variances: G7

2.1

3.2

4.2

fm

6.2

Figure: Relative variance for LMA (left) and MG LMA (right) to the vector correlator with **one stochastic source** for each term.

Relative variances: G7

Relative variances: H7

2.1

3.2

4.2

6.2

fm

Figure: Relative variance for LMA (left) and MG LMA (right) to the vector correlator with **one stochastic source** for each term.

Relative variances: H7

Absolute variance - All ensembles

Absolute variances: E7

2.1

3.2

4.2

fm

Figure: Absolute variances for LMA (left) and MG LMA (right) to the vector correlator with **one stochastic source** for each term. The black line is the gauge variance.

Absolute variances: E7

2.1

3.2

4.2

fm

Absolute variances: F7

2.1

3.2

4.2

fm

Figure: Absolute variances for LMA (left) and MG LMA (right) to the vector correlator with **one stochastic source** for each term. The black line is the gauge variance.

Absolute variances: F7

2.1

3.2

4.2

fm

Absolute variances: G7

2.1

3.2

4.2

6.2

fm

Figure: Absolute variances for LMA (left) and MG LMA (right) to the vector correlator with **one stochastic source** for each term. The black line is the gauge variance.

Absolute variances: G7

2.1

3.2

4.2

6.2

fm

Absolute variances: H7

2.1

3.2

4.2

6.2

fm

Figure: Absolute variances for LMA (left) and MG LMA (right) to the vector correlator with **one stochastic source** for each term. The black line is the gauge variance.

Absolute variances: H7

2.1

3.2

4.2

fm

VARIANCE VS. SOURCES - ALL ENSEM-BLES

VARIANCE VS. SOURCES: E7

2.1

3.2

4.2

6.2

fm

stochastic sources N_{st} . The black line is the gauge variance.
VARIANCE VS. SOURCES: F7

2.1

3.2

6.2

4.2

fm

stochastic sources N_{st} . The black line is the gauge variance.

VARIANCE VS. SOURCES: G7

2.1

3.2

4.2

6.2

fm

VARIANCE VS. SOURCES: H7

2.1

3.2

4.2

6.2

fm

stochastic sources N_{st} . The black line is the gauge variance.

COST - ALL ENSEMBLES

Table: Cost breakdown to reach the gauge variance for E7 (2.1 fm).

Estimator	# modes	# so	urces	meas. cost ¹	model cost ¹
Stochastic	0	LO:	1024	4096	4096
LMA ²	50	Lo:	16	64	64
2-lvl MG LMA ²	50	Lo:	1*	100.4	12.3
		L1:	1024**		
3-lvl MG LMA ²	50	Lo:	1*	5.5	4.1
		L1:	16**		

My 🂩 implementation:

* fine-grid 64×32^3 inv: 5.32 ± 0.03 sec (iter: 35.65 ± 0.15) ** coarse-grid 8×4^3 inv: 0.125 ± 0.000 sec (iter: 140.5 ± 0.3)

¹Unit = fine-grid inversions.

²Cost of determination of low modes not included (or add 100 - 200 to the cost).

Table: Cost breakdown to reach the gauge variance for F7 (3.2 fm).

Estimator	# modes	# so	urces	meas. cost ¹	model cost ¹
Stochastic	0	LO:	2048	8192	8192
LMA ²	50	Lo:	1024	4096	4096
2-lvl MG LMA ²	50	LO:	16*	462.3	80.7
		L1:	2048**		
3-lvl MG LMA ²	50	Lo:	16*	263.2	72.3
		L1:	1024**		

My 💩 implementation:

* fine-grid 96×48^3 inv: 8.42 ± 0.04 sec (iter: 43.77 ± 0.15) ** coarse-grid 12×6^3 inv: 0.409 ± 0.002 sec (iter: 337.6 ± 1.3)

¹Unit = fine-grid inversions.

²Cost of determination of low modes not included (or add 100 - 200 to the cost).

Table: Cost breakdown to reach the gauge variance for G7 (4.2 fm).

Estimator	# modes	# sources		meas. cost ¹	model cost ¹
Stochastic	0	LO:	4096	16384	16384
LMA ²	50	LO:	2048	8192	8192
2-lvl MG LMA ²	50	LO:	16*	557.8	80.7
		L1:	2048***		
		LO:	1*		
4-lvl MG LMA ²	50	L1:	16**	466.7	14.4
		L2:	1024***		

My 💩 implementation:

*	fine-grid	128×64^3	inv: 11.1 ± 0.4 sec	(iter: 46.53 ± 0.23)
**	coarse-grid	32×16^3	inv: 37.3 ± 2.4 sec	(iter: 1417 ± 22)
***	coarse-grid	16×8^{3}	inv: 0.667 ± 0.041 sec	(iter: 502.1 ± 5.8)

¹Unit = fine-grid inversions.

²Cost of determination of low modes not included (or add 100 - 200 to the cost).

OPTIMIZATIONS

- 1. Relax the precision of the low-modes (we used 10^{-12} precise modes)
- 2. Investigate different source types (we used time-diluted spin-diagonal random wall-sources)
- 3. Do contractions on the coarse grid(s) (we prolongate the coarse propagators to fine grid)
- 4. Spin-sources on fine grid ⇒ 4 inversions/source (4 Spins) →
 Coarse grid: 1-2 Spin d.o.f. ⇒ only 1-2 coarse inversions/source? (we do 4 inversions on the coarse grid)
- 5. Implementation: solid coarse-grid solver

COMPARISON - LMA VS. MG LMA

Comparison: LMA vs. MG LMA					
Metric	LMA	MG LMA			
# low modes	<i>O</i> (1000)	<i>O</i> (50)			
Memory footprint	TBytes ¹	GBytes			
Lo treatment	very complicated	simple			
Complexity of con-	different contrac-	same contraction			
traction code	tion for every term	code for all			
Lo-Inversions	0(1000)	few (1-10)			
L1-term treatment	exact evaluation	usually stochastic with hierarchical evaluation or exact			

¹G7-like lattice (Wilson) with $N_c=2000$ low modes ightarrow 24 TB

MULTIGRID MULTILEVEL MONTE Carlo (MGMLMC)

Estimation of traces of matrix inverses [whyte et al. 2212.04430], $tr(A^{-1})$, with

$$A^{-1} = A^{-1} - PA_c^{-1}P^{\dagger} + PA_c^{-1}P^{\dagger}$$
(41)

- \blacksquare A_c is a coarse operator from multigrid
- They only apply if to full inverse matrix traces, no real disconnected diagrams → final goal
- Frequency splitting \rightarrow noise in disconnected diagrams comes from the high modes \rightarrow MGMLMC is not expected to be very beneficial

MULTILEVEL MONTE CARLO

MULTILEVEL MONTE CARLO

Multigrid LMA propagator decomposition:

+ correction.

Multilevel Monte Carlo propagator decomposition:

(43)