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Low-mode averaging (LMA) and its
variants
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Motivation - Low-mode averaging (LMA)

Idea [Neff et al. hep-lat/0106016, DeGrand and Schaefer hep-lat/0401011, Giusti et al.
hep-lat/0402002]: Decompose the quark propagator into two pieces
▶ One piece: affordable to do volume averaging
▶ Remaining piece: cannot afford volume average exactly

Determine Nc lowest modes of D,Q = γ5D, eo-preconditioned D,Q

Write S = D−1 = truncated spectral/singular sum + remainder

Q−1 =
Nc

∑
i=1

1
λi

φiφ
†
i

︸ ︷︷ ︸
Q−1

eigen

+(1−P)Q−1(1−P)†
︸ ︷︷ ︸

Q−1
rest=Q−1−Q−1

eigen

, (1)

with

Qφi = λiφi, |λi|= small, P =
Nc

∑
i=1

φiφ
†
i .
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Motivation - Low-mode averaging (LMA)

Assume a set of Nc orthonormal low modes {φc}Nc−1
c=0 of Q = γ5D

Restrictor R : V0 →V1 as

R =




— φ
†
0 —
...

— φ
†
Nc−1—




Prolongator T : V1 →V0 as

T = R† =




| |
φ0 . . . φNc−1
| |




Projector P : V0 →V0 and identity 1̂ : V1 →V1:

P = TR, 1̂ = RT
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Motivation - Low-mode averaging (LMA)

Define the coarse operator Q̂ : V1 →V1 as

Q̂ = RQT

If φc are exact modes of Q =⇒ diagonal Q̂ and inverse

Q̂ = diag(λ0, . . . ,λNc−1) Q̂−1 = diag(λ−1
0 , . . . ,λ−1

Nc−1)

Decompose the quark propagator

Q−1 = TQ̂−1R+
(
Q−1 −TQ̂−1R

)
(2)

=
Nc−1

∑
i=0

1
λi

φiφ
†
i +(1−P)Q−1(1−P†) (3)

eigen
rest

4 33

� ]



Motivation - Low-mode averaging (LMA)

Define the coarse operator Q̂ : V1 →V1 as

Q̂ = RQT

If φc are exact modes of Q =⇒ diagonal Q̂ and inverse

Q̂ = diag(λ0, . . . ,λNc−1) Q̂−1 = diag(λ−1
0 , . . . ,λ−1

Nc−1)

Decompose the quark propagator

Q−1 = TQ̂−1R+
(
Q−1 −TQ̂−1R

)
(2)

=
Nc−1

∑
i=0

1
λi

φiφ
†
i +(1−P)Q−1(1−P†) (3)

eigen

rest

4 33

� ]



Motivation - Low-mode averaging (LMA)

Define the coarse operator Q̂ : V1 →V1 as

Q̂ = RQT

If φc are exact modes of Q =⇒ diagonal Q̂ and inverse

Q̂ = diag(λ0, . . . ,λNc−1) Q̂−1 = diag(λ−1
0 , . . . ,λ−1

Nc−1)

Decompose the quark propagator

Q−1 = TQ̂−1R+
(
Q−1 −TQ̂−1R

)
(2)

=
Nc−1

∑
i=0

1
λi

φiφ
†
i +(1−P)Q−1(1−P†) (3)

eigen
rest

4 33

� ]



The two-point correlator

Two-point connected light-quark vector correlator
In the time-momentum representation [Bernecker and Meyer 1107.4388]
(local-local), S = D−1

G(t) =
1

|Ω0| ∑
y∈Ω0

∑
x⃗∈Σ0

C(y0 + t,⃗x|y), (4)

C(x|y) = tr
[
Γ1S(x|y)Γ2S(x|y)†] , (5)

Stochastic sources: introduce extra noise
Point sources: cost = O(V)

Ideally, but unrealistic: full lattice volume average

5 33

� ]

https://arxiv.org/abs/1107.4388


The two-point correlator with LMA

Plug in decomposition of propagator

G(t) = Gee(t)+Gre(t)+Ger(t)︸ ︷︷ ︸
G×(t)

+Grr(t) (6)

Get 3-4 terms: eigen-eigen, cross (rest-eigen + eigen-rest), rest-rest

Gee(t): exact, volume-averaged, at its gauge noise

✓

Grr(t): little variance contribution → few sources

✓

G×(t): typically significant contribution to total noise ≫
gauge noise
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The limits of LMA

1. V2-problem: number of required low modes scales O(V) with the
volume, on state-of-the-art lattices at the physical point
▶ 1000-6000 eigenmodes [Kuberski 2312.13753, Blum et al. 1801.07224, Borsanyi

et al. 1711.04980, Blum et al. 1512.09054]
▶ Memory requirements
▶ Storage and I/O requirements (people don’t store them anymore!)

Note

Number of eigenmodes are limited by memory / resources.

2. Cross-term-problem: Cross term has lots of noise → expensive!
▶ Method 1: all-mode averaging, AMA, [Blum et al. 1208.4349, Shintani et al.

1402.0244, Blum et al. 1801.07224, Blum et al. 1512.09054]
▶ Method 2: truncated solver method (TSM) + bias correction [Kuberski

2312.13753, Borsanyi et al. 1711.04980]
▶ Method 3: stochastically evaluate the rest-rest + rest-eigen piece

[Lynch and DeTar (2023), Bazavov et al. 2301.08274]
▶ Other methods ...
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Multigrid / Deflation
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Local coherence / weak approx. property

Low modes of Dirac operator are locally coherent [Lüscher 0706.2298]
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]0

incoherent

Figure: (Local) coherence of low modes (taken from Ref. [Lüscher 1002.4232]).

Conclusion

Using domain decomposition / coarsening on 10-100 low modes
is enough to span the O(V) low-mode space!
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Local coherence in more detail I

Assume we have a few lowest modes φc of D - say Nc = 20

Project to a block decomposition

φ
Bŷ
c (x) =

{
φc(x) if x ∈ By

0 else
(7)

where the block Bŷ is indexed by a new coarse coordinate ŷ ∈ Λ̂

Reorthonormalize
Gives a basis B of size Nc|Λ̂|
Local coherence =⇒ span of Nc|Λ̂| fields has a large overlap with
the space of N ≫ Nc low modes!
Lüscher: local coherence [Lüscher 0706.2298], Multigrid: weak
approximation property [Brezina et al. (2005), Babich et al. 1005.3043]
Used in Krylov solvers with deflation/multigrid preconditioning
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Local coherence in more detail II
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mode

0.4

0.5

0.6

0.7

0.8

0.9

1.0

F7: 4x4x4x4 Nc=20

F7: 48x8x8x8 Nc=20

F7: 4x4x4x4 Nc=100

F7: 48x8x8x8 Nc=100

x-axis: mode number c = 0, . . .349

y-axis: ∥Pφc∥/∥φc∥ where P = ∑φ∈B φφ †.
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Multigrid / Deflation

Setup subspace(s) as in the previous slide (domain-decomposed
low modes)
Define restrictors R and prolongators T = R† from/to these
subspaces

R : ψ 7→ θ , θ(i) = ⟨φi|ψ⟩ , (8)
T : θ 7→ ψ = ∑

i
θ(i)φi, (9)

Define the coarse-grid Dirac operator(s) as D̂ = RDT

R ·
D · T

=D̂

Connection to solver: sloppy D̂−1 as preconditioner for the Dirac
equation

LDψ = Lη with L = TD̂−1R (left preconditioning)

Main message

Coarse-grid operator D̂ has smaller dimension,
smaller condition number and is thus cheaper to
invert!
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Multigrid / Deflation

L0: V0 = 64 (8× 8)

Figure: test.

8 x0/a = 0
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Figure: test.

8 x0/a = 2
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Multigrid / Deflation

L0: V0 = 64 (8× 8) L1: V1 = 16 (4× 4)

Figure: test.

8 x0/a = 3
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Multigrid / Deflation

L0: V0 = 64 (8× 8) L1: V1 = 16 (4× 4)

block size 2× 2

Figure: test.

8 x0/a = 4
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Multigrid / Deflation

L0: V0 = 64 (8× 8) L1: V1 = 16 (4× 4) L2: V2 = 4 (2× 2)

Figure: test.

8 x0/a = 5
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Multigrid / Deflation

L0: V0 = 64 (8× 8) L1: V1 = 16 (4× 4) L2: V2 = 4 (2× 2) L3: V3 = 1 (1× 1)

Figure: test.

8 x0/a = 6
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Multigrid / Deflation

L0: V0 = 64 (8× 8) L1: V1 = 16 (4× 4) L2: V2 = 4 (2× 2) L3: V3 = 1 (1× 1)

R1

R2

R3

T1

T2

T3

Figure: test.

8 x0/a = 7
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Multigrid low-mode averaging
(MG LMA)
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Propagator

Decompose the quark propagator S = D−1 using the coarsenings

S =
N−1

∑
i=0

Si = S−K1︸ ︷︷ ︸
=S0

+K1 −K2︸ ︷︷ ︸
=S1

+K2 −K3︸ ︷︷ ︸
=S2

+ · · ·+KN−1︸ ︷︷ ︸
SN−1

, (10)

Ki = Ti(D̂i)
−1Ri, Si = deflated propagator on level i.

Each level is defined by a different domain decomp./coarse grid

−→ −→
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Two-point correlator

Plug into the correlator
For the correlator we find a matrix of correlators:

Cij(x,y) = tr [Γ1Si(x|y)Γ2Sj(y|x)] , C = ∑
i,j

Cij. (11)

i, j = 0, . . . ,N −1 correspond to MG-level (with L0 the fine grid)
Grouping the N2 correlators into levels (see figure on next slide)
gives us

G(t) =
N−1

∑
k=0

GLk(t). (12)
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Grouping of correlators

C00

C01

C02

C03

C10

C11

C12

C13

C20

C21

C22

C23

C30

C31

C32

C33

G = GL0 + GL1 + GL2 + GL3

Crr

Cer

Cre

Cee

G= Grr + G×
︸ ︷︷ ︸

GL0

+ Gee︸︷︷︸
GL1

Each level-contribution can be evaluated with a different strategy,
i.e. number and type of sources!

Main message

Evaluating GLk requires inversions of the Dirac operator D̂k on
level k and coarser, but not finer levels!
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Exact estimator on coarsest level

If dimension small enough dimC(VN−1)∼ 104

GL(N−1)(t) =
1

TL3

L0−a

∑
y0=0

tr
{

Γ̂1(y0 + t)Q̂−1
Γ̂2(y0)Q̂−1

}
, (13)

with

Γ̂1,2(x0)ij = ∑
x⃗

φ
†
i (x)Γ1,2φj(x) (14)

Full lattice volume averaged correlator:

G(t) =
1

TL2 ∑
y∈Λ

∑
x⃗∈Λ

tr
[
Γ1S(y0 + t,⃗x|y)Γ2S(y0 + t,⃗x|y)†] (15)
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Where is the variance?
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Ensembles

Name Size [T ×L3] L [fm] mπ L
E71 64×323 2.1 fm 3.2
F72 96×483 3.2 fm 4.8
G71 128×643 4.2 fm 6.4
H71 192×963 6.3 fm 9.6

Table: All ensembles have a pion mass mπ = 270 MeV and a lattice spacing of
a = 0.0658 fm with Nf = 2 O(a)-improved Wilson fermions.

1Generated by Tim Harris using openQCD 2.4.2 [Lüscher et al. (2012-2023)]
2CLS lattice from Ref. [CLS (2012-2023)]
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Relative variances: G7 2.1 3.2 4.2 6.2 fm
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Figure: Relative variance for LMA (left) and MG LMA (right) to the vector
correlator with one stochastic source for each term.

Main message

We observe a significant variance contribution
from the cheap-to-evaluate L1-term w.r.t LMA.
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Absolute variances: G7 2.1 3.2 4.2 6.2 fm
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Figure: Absolute variances for LMA (left) and MG LMA (right) to the vector
correlator with one stochastic source for each term. The black line is the gauge
variance.

Main message

We are able to push the remaining L0 noise down
to the gauge noise using only a few stochastic
sources.

19 33

� ]



Absolute variances: G7 2.1 3.2 4.2 6.2 fm

0 1 2 3 4
Time x0 [fm]

10 18

10 16

10 14

10 12

10 10

10 8

10 6

Ab
so

lu
te

 v
ar

ia
nc

e 
2

LMA: Nc, Ns = 50, 2
Stochastic
rest-rest + rest-eigen (L0)
eigen-eigen (exact) (L1)
Gauge variance

0 1 2 3 4
Time x0 [fm]

2-level MG LMA: Nc, Ns = 50, 2
Stochastic
Fine-grid (L0)
Coarse-grid (L1)
Gauge variance

0 1 2 3 4
Time x0 [fm]

4-level MG LMA: Nc, Ns = 50, 2
Stochastic
Fine-grid (L0)
Coarse-grid (L1)
Coarse-grid (L2)
eigen-eigen (exact) (L3)
Gauge variance

Figure: Absolute variances for LMA (left) and MG LMA (right) to the vector
correlator with one stochastic source for each term. The black line is the gauge
variance.

Main message

We are able to push the remaining L0 noise down
to the gauge noise using only a few stochastic
sources.

19 33

� ]



Variance vs. sources: G7 2.1 3.2 4.2 6.2 fm
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Figure: Absolute variances for LMA (left) and MG LMA (right) against number of
stochastic sources Nst. The black line is the gauge variance.
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Variance vs. volume
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Figure: Absolute variances for LMA (left) and MG LMA (right) against the lattice
extent L. The black line is the gauge variance.

Main message

MG LMA with a constant number of low modes
scales well with the volume.
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Cost - G7 2.1 3.2 4.2 6.2 fm

Table: Cost breakdown to reach the gauge variance for G7 (4.2 fm).

Estimator # modes # sources meas. cost1 model cost1

Stochastic 0 L0: 4096 16384 16384
LMA2 50 L0: 2048 8192 8192

2-lvl MG LMA2 50 L0:
L1:

16⋆

2048⋆⋆⋆ 557.8 80.7

4-lvl MG LMA2 50
L0:
L1:
L2:

1⋆
16⋆⋆

1024⋆⋆⋆
466.7 14.4

My implementation:

⋆ fine-grid 128×643 inv: 11.1±0.4 sec (iter: 46.53±0.23)
⋆⋆ coarse-grid 32×163 inv: 37.3±2.4 sec (iter: 1417±22)
⋆⋆⋆ coarse-grid 16×83 inv: 0.667±0.041 sec (iter: 502.1±5.8)

1Unit = fine-grid inversions.
2Cost of determination of low modes not included (or add 100 - 200 to the cost).
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Requirements

Requirement 1) Coarse operators should be better conditioned
than fine ones:

κ(K̂)≤ κ(K) (16)

for K = D,γ5D,D†,Dγ5, . . .

Requirement 2) Variance contribution of coarse levels should
dominate
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Degrees of freedom

Fine-grid lattice
Spacetime points: x ∈ Λ

Colours: Nc = 3
Spins: Ns = 4
▶ 2 chiral d.o.f.
▶ 2 non-chiral d.o.f.

Coarse-grid lattice
Spacetime points: x̂ ∈ Λ̂

Colours: Nc = number of low
modes
Spins: Ns = 1
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Singular vectors of D

Spectral decomposition of Q

Q = ∑
i

λiφiφ
†
i where Qφi = λiφi (17)

Singular value decomposition of D

D = ∑
i
|λi|φ̃iφ

†
i where φ̃i = sign(λi)γ

5
φi (18)

(Q̃φ̃i = λiφ̃i where Q̃ = Dγ
5)

Low modes of Q are linear combinations of low modes of D (not
the case for low modes of Q̃)

∥Dφi∥ ∼ |λi|
∥∥Dφ̃i

∥∥≫ |λi| (19)
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Coarsening strategy

This suggest to use:
right singular vectors of D for prolongation: T

left singular vectors of D for restriction: R = T†γ5

Thus the coarse operator is (Petrov-Galerkin approach; R ̸= T†)

T†
γ

5DT (20)

Notice

This is just Q̂ = RQT in the Galerkin-approach (R = T†)
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Problem of coarsening Q
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Figure: Lower left: lowest 100 eigenvalues (in magnitude) of the Hermitian Dirac
operator γ5D and γ̂5D. Lower right eigenvalues plotted on the x-axis with a gray
vertical line at every fine grid eigenvalue (blue). Upper panel: zoom. Nc = 20.

q Requirement 1) κ(K̂)≤ κ(K), unless Ns = 2
¥ Requirement 2) Coarse level variance dominates
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Problem of coarsening D
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G

Figure: Variance contribution for LMA (left) and MG LMA (right) without chirality
preservation (yellow) and with chirality preservation (green).

¥ Requirement 1) κ(K̂)≤ κ(K)

q Requirement 2) Coarse level variance dominates, unless Ns = 2
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How to coarsen Q?

The Dirac operator is pseudo-Hermitian w.r.t. γ5: (γ5D)† = γ5D

We may retain this property on the coarse grid by imposing
[P,γ5] = 0:

(γ̂5D̂)† = γ̂5D̂ (21)

γ̂5D = γ̂5D̂ (22)

where P = TR and γ̂5 = Rγ5T

Conclusion

How to coarsen? By keeping both fine-grid chirality indices ex-
plicit on the coarse subspace.
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How to obtain explicit chiral d.o.f.?

Explicit chiral d.o.f. can be implemented in different ways:

{φi}Nc−1
i=0 7−→ {φi}Nc−1

i=0 ∪{γ5φi}Nc−1
i=0 (23)

{φi}Nc−1
i=0 7−→ {P−φi}Nc−1

i=0 ∪{P+φi}Nc−1
i=0 (24)

where P± = 1
2 (1± γ5) are the chiral projectors.

Eq. (23) are left and right singular vectors of D

Eq. (24): coarse γ̂5 and fine γ5 have the same structure
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Condition numbers

102 103 104 105 106 107 108

-dimension of Dirac operator on grid

102

103

104
G7 - Condition number
G7 - BICGSTAB #iteration steps

Solvers

Figure: G7 (4.2 fm): C-dimension of the Dirac operator (x-axis) vs. Number of
BiCGSTAB iterations and condition number (y-axis). The rightmost operator is
the fine-grid, the others ones are different coarse-grid Dirac operators.
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Requirements - revisited

Conclusion

If we impose explicit chiral d.o.f. (i.e. chiral doubling of the
modes), requirements are met. No matter which operator we
coarsen!

¥ Requirement 1) Coarse operators should be better conditioned
than fine ones:

κ(K̂)≤ κ(K) (25)

for K = D,γ5D,D†,Dγ5, . . .

¥ Requirement 2) Variance contribution of coarse levels should
dominate
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Concluding summary

Subspaces based on domain-decomposed / coarsened low modes
Propagator decomposition → Correlator decomposition into-MG
levels
Method can be defined recursively
Every level-contribution → separate statistics
50 low modes capture all the variance (independent of the lattice
volume!)
Fewer low modes & more variance contribution than LMA

Key idea

Hierarchical evaluation: noisy part is cheaper to evaluate!
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Backup slide: Gauge variance estimator I

We define the gauge variance as the minimum variance (Nst = number
of stochastic sources)

σ
2
vol = lim

Nst→∞
σ

2
appx (26)

where

σ
2
appx = ⟨G2

appx⟩−⟨Gappx⟩2, (27)

Gappx =
1

Nst

Nst

∑
i=1

Gi, (28)

Gi =−a6

L6 ∑
x⃗′ ,⃗x,⃗y

η
†
i (x

′)S(x′,x)ΓS(y,x)Γηi(x) (29)
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Backup slide: Gauge variance estimator II

Thus our estimator is

σ
2
vol ≈

1
L2

0

1
Nst

∑
{x0}

[
1

Nst −1 ∑
i̸=j

{
⟨Gi(x0,y0)Gj(x0,y0)⟩U

−⟨Gi(x0,y0)⟩U⟨Gj(x0,y0)⟩u

}

+ ∑
{x′0}

(1−δx0,x′0
)

1
Nst

∑
i,j

{
⟨Gi(x0,y0)Gj(x′0,y

′
0)⟩U

−⟨Gi(x0,y0)⟩U⟨Gj(x′0,y
′
0)⟩U

}]
.
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Backup slide: Gauge variance estimation
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Figure: Absolute variance vs. number of stochastic noise sources. The gauge
variance is reached.
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Backup slide: V2-problem of LMA
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LMA: Nc = 50 low modes

Low mode contribution (L1) diminishes with larger volume

V2-problem of LMA

Need more low modes with larger volume.
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LMA - Cross-term-problem
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Backup slide: the cross-term problem in more
detail

2. Cross-term-problem: Cross term has lots of noise contribution.
▶ Method 1: all-mode averaging, AMA, [Blum et al. 1208.4349, Shintani et al.

1402.0244, Blum et al. 1801.07224, Blum et al. 1512.09054]

Q−1 =
Nc

∑
i=1

1
λi

ξiξ
†
i +Pn(Q)P

︸ ︷︷ ︸
SAMA

+Q−1 −SAMA︸ ︷︷ ︸
Srest

, Pn = TSM-poly. of deg. n.

▶ Method 2: truncated solver method (TSM) + bias correction [Kuberski
2312.13753, Borsanyi et al. 1711.04980]

Very similar to AMA
Needs 1 inversion per mode per gamma-matrix:

G×(x,y) =
1

|Λ0|
Nc

∑
i=1

1
λi

∑
x⃗

〈
χ

Γ2
j (y0 + t,⃗x)

∣∣∣Γ1γ
5
ξi(y0 + t,⃗x)

〉

χ
Γ
j = D−1

Γξj

Needs 1 inversion for every mode for every gamma-matrix!
▶ Method 3: stochastically evaluate the rest-eigen piece
▶ ...

Expensive cross-term
treatment is hidden in here.

many inversions!
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▶ Method 3: stochastically evaluate the rest-eigen piece
▶ ...

Expensive cross-term
treatment is hidden in here.

many inversions!
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Backup slide: the cross-term problem in more
detail

2. Cross-term-problem: Cross term has lots of noise contribution.
▶ Method 1: all-mode averaging, AMA, [Blum et al. 1208.4349, Shintani et al.

1402.0244, Blum et al. 1801.07224, Blum et al. 1512.09054]

Q−1 =
Nc

∑
i=1

1
λi

ξiξ
†
i +Pn(Q)P

︸ ︷︷ ︸
SAMA

+Q−1 −SAMA︸ ︷︷ ︸
Srest

, Pn = TSM-poly. of deg. n.

▶ Method 2: truncated solver method (TSM) + bias correction [Kuberski
2312.13753, Borsanyi et al. 1711.04980]

Very similar to AMA
Needs 1 inversion per mode per gamma-matrix:

G×(x,y) =
1

|Λ0|
Nc

∑
i=1

1
λi

∑
x⃗

〈
χ

Γ2
j (y0 + t,⃗x)

∣∣∣Γ1γ
5
ξi(y0 + t,⃗x)

〉

χ
Γ
j = D−1

Γξj

Needs 1 inversion for every mode for every gamma-matrix!
▶ Method 3: stochastically evaluate the rest-eigen piece
▶ ...

Expensive cross-term
treatment is hidden in here.

many inversions!
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Backup slide: Cross-term-problem of LMA
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F7: LMA - variances

Increasing number of low modes doesn’t push L0-noise
contribution to gauge noise (dotted line)

Cross-term-problem of LMA

Reminiscent variance of L0-term (rest-rest + rest-eigen) doesn’t
vanish.
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MG LMA - Problems solved
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Backup slide: Problems solved using MG LMA
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MG LMA: Nc = 50 low modes

L1-grid: generated with B = 84 block size

=⇒ Coarse operator dimension increases with volume (same
ratio)
Constant number of low modes even when increasing the volume
=⇒ V2-problem solved!
L0-noise is negligible
=⇒ Cross-term-problem solved!
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L1-grid: generated with B = 84 block size
=⇒ Coarse operator dimension increases with volume (same
ratio)

Constant number of low modes even when increasing the volume
=⇒ V2-problem solved!
L0-noise is negligible
=⇒ Cross-term-problem solved!
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L1-grid: generated with B = 84 block size
=⇒ Coarse operator dimension increases with volume (same
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Constant number of low modes even when increasing the volume
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L0-noise is negligible

=⇒ Cross-term-problem solved!
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=⇒ V2-problem solved!
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MG LMA vs. LMA with more low
modes
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Backup slide: MG LMA vs. LMA with more low
modes
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Figure: LMA (left) with Nc = 256 low modes vs. MG LMA (center and right) with
Nc = 25 low modes. The variance contributions are comparable.
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LMA as a special case of MG LMA
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Backup slide: L1-propagator vs. eigen-eigen piece

LMA: eigen-eigen propagator

SLMA =
Nc−1

∑
i=0

1
λi

ξiξ
†
i γ

5 (30)

MG LMA: L1-propagator (propagator restricted to coarse grid)

S1 = T1D̂−1R1 =
NbNcNs−1

∑
i,j=0

(D̂−1)ijφiφ
†
j (31)

=⇒ LMA is a special case of MG LMA
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Frequency splitting
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Backup slide: Frequency splitting

Decomposition of propagator [Giusti et al. 1903.10447]

S = M2n,m +D−1
m H2n

m , (32)

M2n,m = (Dee +Doo)
−1

2n−1

∑
k=0

Hk
m, (33)

Hm =−(DeoD−1
oo +DoeD−1

ee ). (34)

Frequency splitting
▶ Split away the low frequency modes (high eigenmodes of D)
▶ When the variance is in the high end of the spectrum (i.e.

disconnected diagrams which get most of their contributions from
short distances), because the large mass doesn’t affect the even
larger energy scales close to 1/a.

Low-mode averaging
▶ Split away the high frequency modes (low eigenmodes of D)
▶ Beneficial when the variance is in the low end of the spectrum (i.e.

long-distance two-point functions)
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https://arxiv.org/abs/1903.10447


RBC
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Backup slide: RBC storage of low modes

Storage of low modes [Clark et al. 1710.06884]
Creation of multigrid subspace using N ≈ 200−400 exact low
modes of Dirac operator
Determination of further 1k−2k low modes in the coarse grid
subspace (coarse grid is significantly smaller than fine grid)
Storage of 1k−2k low modes in the coarse grid basis =⇒ smaller
I/O and memory footprint
Contraction is done in the coarse grid subspace using coarse grid
modes
Like applying LMA to coarse grid operator
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https://arxiv.org/abs/1710.06884


Distillation
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Backup slide: Distillation

Distillation [Knechtli et al. 2205.11564] is a Smearing technique (alters
absolute value of correlation function)
Used for spectroscopy
Determination of low modes of the spatial Laplacian
Smearing operator as projector to distillation subspace
Improves the overlap of operators with hadronic states
Was explored as variance reduction technique à la LMA in
Ref. [Bushnaq (2023)]
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https://arxiv.org/abs/2205.11564


Scaling with pion mass
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Backup slide: Variance vs. pion mass

Name Size [T ×L3] Pion mass a [fm] L [fm]
G7 128×643 270 MeV 0.065 fm 4.2 fm
G8 128×643 180 MeV 0.065 fm 4.2 fm
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Pion mass scaling at x0 = 1.3 fm (x0/a = 20)

Figure: Absolute variance of L0-terms vs. pion mass. We used Nc = 50 low
modes on both lattices and the same MG setup.
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Scaling with number of low
modes
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Backup slide: Variance vs. number of low modes
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Figure: F7 (3.2 fm): Absolute variance (y-axis) for LMA (yellow) and MG LMA
(green) to the vector correlator with varying number of low modes (x-axis)
(block size held constant, 64). Blue is the stochastic estimator (for reference),
the dashed black line is the gauge variance.
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Scaling with block size
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Backup slide: Variance vs. block size
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Figure: F7 (3.2 fm): Absolute variance (y-axis) for L0-term (yellow) to the vector
correlator with varying block sizes (x-axis) (number of low modes held
constant, Nc = 50). Blue is the stochastic estimator (for reference), the dashed
black line is the gauge variance.
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Performance model with multiple
RHS
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Backup slide: Why multiple RHS? I

Problem
Time for one application of Dirac operator is linear in its memory
footprint
▶ Fine-grid Dirac operator D: (4V ·9 ·2+2V ·36) floats

=⇒ 2304V bytes.
▶ Coarse-grid Dirac operator D̂: 9N2

c N2
s Nb complex floats

=⇒ 144(NcNs)
2Nb bytes

Might happen that mem(D̂) > mem(D), but still dim(D)≫ dim(D̂).
=⇒ coarse-grid operator more expensive than fine-grid p

Also we have cond(D)> cond(D̂)

Krylov solvers: number of iterations = iter(D)∼ cond(D)
=⇒ fewer iterations for coarse grid operators ✓
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Backup slide: Why multiple RHS? II

Solution
Memory bandwidth of one spinor field (fine-grid):

mem(ψ) = dim(D) = 12V complex floats

Memory bandwidth of one spinor field (coarse-grid):

mem(ψ) = dim(D̂) = NcNsNb complex floats

Memory bandwidth (Operator with one RHS):

mem(Op)+2dim(Op)

Memory bandwidth (Operator with Nrhs RHS):

mem(Op)+2Nrhs dim(Op)
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Backup slide: Speedup

We define the speedup as

Sp(Nrhs) =
iter(D)
iter(D̂)

mem(D)+2Nrhs dim(D)

mem(D̂)+2Nrhs dim(D̂)
. (35)

With one RHS:

Sp(1)≈ iter(D)
iter(D̂)

mem(D)

mem(D̂)
≈ cond(D)

cond(D̂)

mem(D)

mem(D̂)
. (36)

with comparable solvers

My implementation

With many RHS:

Sp(∞)≈ iter(D)
iter(D̂)

dim(D)

dim(D̂)
≈ cond(D)

cond(D̂)︸ ︷︷ ︸
>1

dim(D)

dim(D̂)︸ ︷︷ ︸
30−500

≫ 1. (37)

Nrhs → ∞

with comparable solvers

Ideal implementation
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Backup slide: Scaling w.r.t. dimension
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102

103

104
G7 - Condition number
G7 - BICGSTAB #iteration steps

Solvers

Figure: G7 (4.2 fm): C-dimension of the Dirac operator (x-axis) vs. Number of
bicgstab iterations and condition number (y-axis). The rightmost operator is
the fine-grid, the others ones are different coarse-grid Dirac operators.
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Backup slide: Memory bandwidth model
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Figure: G7 (4.2 fm): Time for one application of a fine- or coarse-grid Dirac
operator (y-axis) vs. its memory footprint.
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Chirality on the subspace
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Backup slide: Why preserve chirality I

Chirality preservation on the subspace (γ5-Hermiticity on the
subspace):

[P,γ5] = 0 =⇒ γ̂5D̂ =
(

γ̂5D̂
)†

. (38)

where γ̂5 = Rγ5T and P = TR

Or number of remaining spin d.o.f., Ns = 1,2,4 on the coarse
subspace
When generating the subspace basis from eigenmodes φi

{φi}Nc
i=1 7−→ {φi}Nc

i=1 ∪{γ
5
φi}Nc

i=1 (39)
{φi}Nc

i=1 7−→ {P+φi}Nc
i=1 ∪{P−φi}Nc

i=1 (40)

where P± = 1
2

(
1± γ5

)
.
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Backup slide: Why preserve chirality II
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Figure: Variance contribution for LMA (left) and MG LMA (right) without chirality
preservation (yellow) and with chirality preservation (green).
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Backup slide: Why preserve chirality III
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Figure: Lower left: lowest 100 eigenvalues (in magnitude) of the Hermitian Dirac
operator γ5D and γ̂5D. Lower right eigenvalues plotted on the x-axis with a gray
vertical line at every fine grid eigenvalue (blue). Upper panel: zoom. Nc = 20.
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Detailed setups
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Backup slide: Detailed setups

Estimator # modes Sources Levels
Stochastic N/A semwall L0: only fine-grid

LMA 50 semwall L0: (rest-rest + rest-eigen)
exact L1: (eigen-eigen)

2-level MG LMA 50 semwall L0: fine-grid
L1: block size 84

3-level MG LMA 50 semwall L0: fine-grid
L1: block size 84

exact L2: (eigen-eigen)

4-level MG LMA 50 semwall
L0: fine-grid
L1: block size 44

L2: block size 84

exact L3: (eigen-eigen)
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Variance contribution - All en-
sembles
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Relative variances: E7 2.1 3.2 4.2 6.2 fm
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Figure: Relative variance for LMA (left) and MG LMA (right) to the vector
correlator with one stochastic source for each term.

Main message

We observe a significant variance contribution
from the cheap-to-evaluate L1-term w.r.t LMA.
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Figure: Relative variance for LMA (left) and MG LMA (right) to the vector
correlator with one stochastic source for each term.

Main message

We observe a significant variance contribution
from the cheap-to-evaluate L1-term w.r.t LMA.
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Relative variances: F7 2.1 3.2 4.2 6.2 fm
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Figure: Relative variance for LMA (left) and MG LMA (right) to the vector
correlator with one stochastic source for each term.

Main message

We observe a significant variance contribution
from the cheap-to-evaluate L1-term w.r.t LMA.
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Relative variances: F7 2.1 3.2 4.2 6.2 fm
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Figure: Relative variance for LMA (left) and MG LMA (right) to the vector
correlator with one stochastic source for each term.

Main message

We observe a significant variance contribution
from the cheap-to-evaluate L1-term w.r.t LMA.
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Relative variances: G7 2.1 3.2 4.2 6.2 fm
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Figure: Relative variance for LMA (left) and MG LMA (right) to the vector
correlator with one stochastic source for each term.

Main message

We observe a significant variance contribution
from the cheap-to-evaluate L1-term w.r.t LMA.
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Figure: Relative variance for LMA (left) and MG LMA (right) to the vector
correlator with one stochastic source for each term.

Main message

We observe a significant variance contribution
from the cheap-to-evaluate L1-term w.r.t LMA.
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Relative variances: H7 2.1 3.2 4.2 6.2 fm
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Figure: Relative variance for LMA (left) and MG LMA (right) to the vector
correlator with one stochastic source for each term.

Main message

We observe a significant variance contribution
from the cheap-to-evaluate L1-term w.r.t LMA.
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Figure: Relative variance for LMA (left) and MG LMA (right) to the vector
correlator with one stochastic source for each term.

Main message

We observe a significant variance contribution
from the cheap-to-evaluate L1-term w.r.t LMA.
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Absolute variance - All ensem-
bles
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Absolute variances: E7 2.1 3.2 4.2 6.2 fm
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Figure: Absolute variances for LMA (left) and MG LMA (right) to the vector
correlator with one stochastic source for each term. The black line is the gauge
variance.

Main message

We are able to push the remaining L0 noise down
to the gauge noise using only a few stochastic
sources.
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Figure: Absolute variances for LMA (left) and MG LMA (right) to the vector
correlator with one stochastic source for each term. The black line is the gauge
variance.

Main message

We are able to push the remaining L0 noise down
to the gauge noise using only a few stochastic
sources.
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Figure: Absolute variances for LMA (left) and MG LMA (right) to the vector
correlator with one stochastic source for each term. The black line is the gauge
variance.

Main message

We are able to push the remaining L0 noise down
to the gauge noise using only a few stochastic
sources.
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Figure: Absolute variances for LMA (left) and MG LMA (right) to the vector
correlator with one stochastic source for each term. The black line is the gauge
variance.

Main message

We are able to push the remaining L0 noise down
to the gauge noise using only a few stochastic
sources.
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Figure: Absolute variances for LMA (left) and MG LMA (right) to the vector
correlator with one stochastic source for each term. The black line is the gauge
variance.

Main message

We are able to push the remaining L0 noise down
to the gauge noise using only a few stochastic
sources.
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Figure: Absolute variances for LMA (left) and MG LMA (right) to the vector
correlator with one stochastic source for each term. The black line is the gauge
variance.

Main message

We are able to push the remaining L0 noise down
to the gauge noise using only a few stochastic
sources.
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Absolute variances: H7 2.1 3.2 4.2 6.2 fm
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Figure: Absolute variances for LMA (left) and MG LMA (right) to the vector
correlator with one stochastic source for each term. The black line is the gauge
variance.

Main message

We are able to push the remaining L0 noise down
to the gauge noise using only a few stochastic
sources.
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Figure: Absolute variances for LMA (left) and MG LMA (right) to the vector
correlator with one stochastic source for each term. The black line is the gauge
variance.

Main message

We are able to push the remaining L0 noise down
to the gauge noise using only a few stochastic
sources.
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Variance vs. sources - All ensem-
bles
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Variance vs. sources: E7 2.1 3.2 4.2 6.2 fm
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Figure: Absolute variances for LMA (left) and MG LMA (right) against number of
stochastic sources Nst. The black line is the gauge variance.
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Variance vs. sources: F7 2.1 3.2 4.2 6.2 fm

1 2 4 8 16 32 64 128 256 5121024
Number of stochastic soures Nst

10 18

10 16

10 14

10 12

10 10

10 8

10 6

Ab
so

lu
te

 v
ar

ia
nc

e 
2

LMA: Nc, Ns = 50, 2
1/Nst

Gauge variance
Stochastic
rest-rest + rest-eigen (L0)
eigen-eigen (exact) (L1)

1 2 4 8 16 32 64 128 256 5121024
Number of stochastic soures Nst

2-level MG LMA: Nc, Ns = 50, 2
1/Nst

Gauge variance
Stochastic
Fine-grid (L0)
Coarse-grid (L1)

x0 = 1.3 fm (x0/a = 20)

Figure: Absolute variances for LMA (left) and MG LMA (right) against number of
stochastic sources Nst. The black line is the gauge variance.
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Variance vs. sources: G7 2.1 3.2 4.2 6.2 fm

1 2 4 8 16 32 64 128 256 5121024
Number of stochastic soures Nst

10 18

10 16

10 14

10 12

10 10

10 8

10 6

Ab
so

lu
te

 v
ar

ia
nc

e 
2

LMA: Nc, Ns = 50, 2
1/Nst

Gauge variance
Stochastic
rest-rest + rest-eigen (L0)
eigen-eigen (exact) (L1)

1 2 4 8 16 32 64 128 256 5121024
Number of stochastic soures Nst

2-level MG LMA: Nc, Ns = 50, 2
1/Nst

Gauge variance
Stochastic
Fine-grid (L0)
Coarse-grid (L1)

1 2 4 8 16 32 64 128 256 5121024
Number of stochastic soures Nst

4-level MG LMA: Nc, Ns = 50, 2
1/Nst

Gauge variance
Stochastic
Fine-grid (L0)
Coarse-grid (L1)
Coarse-grid (L2)
eigen-eigen (exact) (L3)

x0 = 1.3 fm (x0/a = 20)

Figure: Absolute variances for LMA (left) and MG LMA (right) against number of
stochastic sources Nst. The black line is the gauge variance.
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Variance vs. sources: H7 2.1 3.2 4.2 6.2 fm
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Figure: Absolute variances for LMA (left) and MG LMA (right) against number of
stochastic sources Nst. The black line is the gauge variance.
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Cost - All ensembles
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Cost - E7 2.1 3.2 4.2 6.2 fm

Table: Cost breakdown to reach the gauge variance for E7 (2.1 fm).
Estimator # modes # sources meas. cost1 model cost1

Stochastic 0 L0: 1024 4096 4096
LMA2 50 L0: 16 64 64

2-lvl MG LMA2 50 L0:
L1:

1⋆
1024⋆⋆ 100.4 12.3

3-lvl MG LMA2 50 L0:
L1:

1⋆
16⋆⋆ 5.5 4.1

My implementation:

⋆ fine-grid 64×323 inv: 5.32±0.03 sec (iter: 35.65±0.15)
⋆⋆ coarse-grid 8×43 inv: 0.125±0.000 sec (iter: 140.5±0.3)

1Unit = fine-grid inversions.
2Cost of determination of low modes not included (or add 100 - 200 to the cost).
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Cost - F7 2.1 3.2 4.2 6.2 fm

Table: Cost breakdown to reach the gauge variance for F7 (3.2 fm).
Estimator # modes # sources meas. cost1 model cost1

Stochastic 0 L0: 2048 8192 8192
LMA2 50 L0: 1024 4096 4096

2-lvl MG LMA2 50 L0:
L1:

16⋆

2048⋆⋆ 462.3 80.7

3-lvl MG LMA2 50 L0:
L1:

16⋆

1024⋆⋆ 263.2 72.3

My implementation:

⋆ fine-grid 96×483 inv: 8.42±0.04 sec (iter: 43.77±0.15)
⋆⋆ coarse-grid 12×63 inv: 0.409±0.002 sec (iter: 337.6±1.3)

1Unit = fine-grid inversions.
2Cost of determination of low modes not included (or add 100 - 200 to the cost).
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Cost - G7 2.1 3.2 4.2 6.2 fm

Table: Cost breakdown to reach the gauge variance for G7 (4.2 fm).

Estimator # modes # sources meas. cost1 model cost1

Stochastic 0 L0: 4096 16384 16384
LMA2 50 L0: 2048 8192 8192

2-lvl MG LMA2 50 L0:
L1:

16⋆

2048⋆⋆⋆ 557.8 80.7

4-lvl MG LMA2 50
L0:
L1:
L2:

1⋆
16⋆⋆

1024⋆⋆⋆
466.7 14.4

My implementation:

⋆ fine-grid 128×643 inv: 11.1±0.4 sec (iter: 46.53±0.23)
⋆⋆ coarse-grid 32×163 inv: 37.3±2.4 sec (iter: 1417±22)
⋆⋆⋆ coarse-grid 16×83 inv: 0.667±0.041 sec (iter: 502.1±5.8)

1Unit = fine-grid inversions.
2Cost of determination of low modes not included (or add 100 - 200 to the cost).
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Optimizations
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Optimisations

1. Relax the precision of the low-modes (we used 10−12 precise
modes)

2. Investigate different source types (we used time-diluted
spin-diagonal random wall-sources)

3. Do contractions on the coarse grid(s) (we prolongate the coarse
propagators to fine grid)

4. Spin-sources on fine grid =⇒ 4 inversions/source (4 Spins) →
Coarse grid: 1-2 Spin d.o.f. =⇒ only 1-2 coarse inversions/source?
(we do 4 inversions on the coarse grid)

5. Implementation: solid coarse-grid solver
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Comparison - LMA vs. MG LMA
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Comparison

Comparison: LMA vs. MG LMA
Metric LMA MG LMA
# low modes O(1000) O(50)
Memory footprint TBytes1 GBytes
L0 treatment very complicated simple
Complexity of con-
traction code

different contrac-
tion for every term

same contraction
code for all

L0-Inversions O(1000) few (1-10)
L1-term treatment exact evaluation usually stochastic

with hierarchical
evaluation or exact

1G7-like lattice (Wilson) with Nc = 2000 low modes → 24 TB
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Multigrid Multilevel Monte
Carlo (MGMLMC)
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Multigrid Multilevel Monte Carlo (MGMLMC)

Estimation of traces of matrix inverses [Whyte et al. 2212.04430], tr
(
A−1

)
,

with
A−1 = A−1 −PA−1

c P† +PA−1
c P† (41)

Ac is a coarse operator from multigrid
They only apply if to full inverse matrix traces, no real
disconnected diagrams → final goal
Frequency splitting → noise in disconnected diagrams comes from
the high modes → MGMLMC is not expected to be very beneficial
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Multilevel Monte Carlo
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Multilevel Monte Carlo

Multigrid LMA propagator decomposition:

= +correction. (42)

Multilevel Monte Carlo propagator decomposition:

=

︸ ︷︷ ︸
local

+

︸ ︷︷ ︸
non−local

(43)
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