Multilevel sampling for glueball calculations and more.

Collaboration

L. Barca, S. Schaefer (DESY)

J. Finkenrath (CERN)

F. Knechtli, T. Korzec, J. A. Urrea-Niño (Wuppertal)

M. Peardon (Dublin)

S. Martins (Odense)

DECEMBER 9-11, 2024 CERN

NGT Algorithm Workshop – Lattice QCD at the large scale on exascale computing facilities

Based on [Phys.Rev.D110 (2024)] SU(3) YM[Work in progress...] Quenched QCD

Lattice QCD & Signal/Noise problem

Estimator for
$$C(t) = \langle O(t)\overline{O}(0) \rangle$$
 affected by statistical error.
Signal Noise/Statistical uncertainty
 $C(t) = \langle O(t)\overline{O}(0)^{\dagger} \rangle$ $\sigma_C(t) = \sqrt{\langle (O(t)\overline{O}(0))^2 \rangle - \langle O(t)\overline{O}(0) \rangle^2} / \sqrt{N}$
 $\sim e^{-Et}$ $\sim \frac{c_0}{\sqrt{N}}, \frac{e^{-\tilde{E}t}}{\sqrt{N}}, \cdots$ N Monte Carlo

Need sufficiently large distances t in many cases to extract effective masses reliably. However, Signal in most cases decays faster than Noise, which in some cases remains constant.

Signal/Noise ratio (S/N) is a ubiquitous problem in Lattice QCD

Spectroscopy, Hadron structure, ...

(MC) samples

Multilevel sampling: The idea

If action and observables are local, the two-point correlation function

$$\langle \mathcal{O}(t_1)\bar{\mathcal{O}}(t_0)\rangle = \frac{1}{\mathscr{Z}} \int [dU]e^{-S[U]} \mathcal{O}(U)$$

can be factorised into a product of integrals

$$\langle \mathcal{O}(t_1)\mathcal{O}(t_0) = \frac{1}{\mathscr{Z}} \int [dU_B] e^{-S_B[U_B]} \left[\mathcal{O}^{(2)}(U_B, t_1) \right] \left[\bar{\mathcal{O}}^{(1)}(U_B, t_0) \right]$$

$$\left[\mathcal{O}^{(r)}(U_B, t) \right] = \int [dU^{(r)}] e^{-S_r[U^{(r)}|U_B]} \mathcal{O}(U^{(r)}, t)$$

$$C^{2lvl}(t_1, t_0) = \langle \left[\mathcal{O}(t_1) \right] \left[\bar{\mathcal{O}}(t_0) \right] \rangle = C(t_1)$$

$$\sigma_C^{2lvl}(t_1, t_0) \ll \sigma_C^{std}(t_1, t_0)$$

$$\langle O(t_1)O(t_0) = \frac{1}{\mathscr{Z}} \int [dU_B] e^{-S_B[U_B]} \left[O^{(2)}(U_B, t_1) \right] \left[\bar{O}^{(1)}(U_B, t_0) \right]$$
with
$$\left[O^{(r)}(U_B, t) \right] = \int [dU^{(r)}] e^{-S_r[U^{(r)}|U_B]} O(U^{(r)}, t) \qquad C^{2lvl}(t_1, t_0) = \langle \left[O(t_1) \right] \left[\bar{O}(t_0) \right] \rangle = C(t_1)$$

$$\sigma_C^{2lvl}(t_1, t_0) \ll \sigma_C^{std}(t_1, t_0)$$

Numerically, this is like doing $[N] \times [N]$ sub-measurements with N MC samples. For 3-pts $[N] \times [N] \times [N]$, etc...

 $U, t_1) \ \bar{O}(U, t_0)$

Multilevel sampling: Pure Gauge Theory

Both pure gauge action and observables are local and multilevel can be adopted straightforwardly

$$\langle \mathcal{O}(t_1)\mathcal{O}(t_0) = \frac{1}{\mathscr{Z}} \int [dU_B] e^{-S_B[U_B]} \left[\mathcal{O}^{(2)}(U_B, t_1) \right] \left[\bar{\mathcal{O}}^{(1)}(U_B, t_0) \right]$$

$$S[U] = \frac{\beta}{3} \sum_{x \in \Lambda} \sum_{\mu < \nu} \operatorname{Re} \left\{ \operatorname{Tr} \left[1 - U_{\mu}(x) U_{\nu}(x+\mu) U_{\mu}^{\dagger}(x+\nu) U_{\nu}^{\dagger}(x) \right] \right\}$$

$$O(t) \equiv W(t) = \sum_{\vec{x}} \operatorname{Tr} \left[U_{\mu}(x) U_{\nu}(x+\mu) U_{\mu}^{\dagger}(x) \right]$$

e.g. Wilson plaquette action

 $(x + \nu)U_{\nu}^{\dagger}(x)$

e.g. Wilson plaquette observable

In the same way as with the standard algorithm

we generate N_0 gauge configurations (e.g. HMC)

Two-level sampling: Algorithm

if t_0 and t_1 belong to the same region, the two-level analysis cannot be adopted

• • •

Instead, correlate over $N_0 \times N_1$ samples

 $C(t_1 - t_0) = \langle O(U_{ij}, t_1) O(U_{ij}, t_1) \rangle$

$$\sigma^2(t_1 - t_0) \propto \frac{1}{N_0 N_1} +$$

$$\langle U_{ij}, t_0 \rangle = \frac{1}{N_0 N_1} \sum_{i=1}^{N_0} \sum_{j=1}^{N_1} O(U_{ij}, t_1) O(U_{ij}, t_0)$$

Standard

Two-level sampling: Algorithm

if t_0 and t_1 belong to different regions

Take average over level-1 $\left[O(U_i, t)\right] =$

Correlate on level-0 $C(t_1 - t_0) = \langle [O(U_i, t_1)] \rangle$

Variance scaling

$$\sigma^2(t_1 - t_0) \propto \frac{1}{N_0 N_1^2}$$

$$\frac{1}{N_1} \sum_{j=1}^{N_1} O(U_{ij}, t)$$

$$\left[\mathbf{O}(U_i, t_0) \right] \rangle = \frac{1}{N_0} \sum_{i=1}^{N_0} \left[\mathbf{O}(U_i, t_1) \right] \left[\mathbf{O}(U_i, t_0) \right]$$

+ ... Two-level

Numerical Simulations

In the following:

4D SU(3) theory, $\beta = 6.2$, $V = 24^3 \times 48$ $N_0 = 101, N_1 = 1,...,1000$

Sub-lattice decomposition on level-1:

$$C(t_1 - t_0) = \langle \mathcal{O}(U_{ij},$$

Phys.Rev.D 110 (2024) 5, 054515

LB, F. Knechtli, S. Martins, M. Peardon, S. Schaefer, J.A. Urrea-Niño

 $t_1) \operatorname{O}(U_{ij}, t_0) \rangle$

Two-level error reduction

4D SU(3) theory, $\beta = 6.2$, $V/a^4 = 24^3 \times 48$

Two-level error reduction

Error scales like $1/\sqrt{N_0N_1}$

when operators in same region

4D SU(3) theory, $\beta = 6.2$, $V/a^4 = 24^3 \times 48$

Two-level error reduction

Error scales like $1/\sqrt{N_0N_1}$

when operators in same region

 $\sigma_C^2(t_1, t_0) \approx \frac{c_0}{N_0 \Lambda}$

4D SU(3) theory, $\beta = 6.2$, $V/a^4 = 24^3 \times 48$

when operators in different regions

$$\frac{c_0^2}{N_1^2} + \frac{c_1^2}{N_0 N_1} \left[e^{-m\Delta_1} + e^{-m\Delta_0} \right] + \frac{c_2^2}{N_0} e^{-m\Delta_1} e^{-m\Delta_0} \qquad \Delta_{1,0} = |t_{1,0}|$$

Two-level error reduction at fixed Δt

Errors for $C(\Delta t = 2a)$

Distance from boundaries is limiting the 2-lvl error reduction.

Multilevel is not efficient at short distance!

Doing $N_1 > 10$ is just a wast of resources with the multilevel analysis

5 16 17 1	8 19 20	21 22 23
-----------	---------	-----------------

Noise/Signal towards continuum limit

Weighted average

$$\overline{C}(\Delta t) = \frac{\sum_{t_0} w(t_0) C(\Delta t = t_1 - t_0)}{\sum_{t_0} w(t_0)}$$

$$w(t_0) = 1 / \sigma_C^2(t_0)$$

Coloured band highlights transition between different scalings

$$\frac{\tilde{c}_1^2}{N_1}e^{2m^{\Gamma}\Delta t/2} + \frac{\tilde{c}_2^2}{N_0}$$

Noise/Signal towards continuum limit

GEVP effective masses

Results agree with state-of-the-art calculations that use $\mathcal{O}(10^5)$ configs [A. Athenodorous, M. Teper, 2020]

Multilevel algorithm: Quenched QCD

$$\langle \mathbf{O}(t_1)\bar{\mathbf{O}}(t_0)\rangle = \frac{1}{\mathscr{Z}} \int [dU]e^{-S[U]} \mathbf{O}(t_0)$$

$$S[U] = \frac{\beta}{3} \sum_{x \in \Lambda} \sum_{\mu < \nu} \operatorname{Re} \left\{ \operatorname{Tr} \left[1 - U_{\mu}(x) U_{\nu}(x+\mu) U_{\mu}^{\dagger}(x+\nu) U_{\nu}^{\dagger}(x) \right] \right\} \quad \text{e.g. V}$$

 $O(t_1)\bar{O}(t_0) = \text{Tr}\left[D^{-1}(t_1, t_0)D^{-1}(t_0, t_1)\right]$

 $D^{-1}(t_1, t_0)$ depends on the values of the gauge fields over the full lattice

Action is still pure gauge, thus local, but observables can be traces of fermionic propagators (non-local)

 $(t_1) \, \bar{O}(t_0)$

e.g. scalar meson two-point functions

Need factorisation of $D^{-1}(t_1, t_0)$ into local regions. *Phys.Rev.D* 93 (2016) 9, 094507 [M. Ce', S. Schaefer, L. Giusti]

Fermionic observables investigated

Combine <u>multilevel</u> + <u>distillation</u> to compute correlations of $O(t) \in \{O_{\pi\pi}^{I=0}(t), O_{\Gamma}^{I=0} = \bar{q}\Gamma q\}$ with $\Gamma = \gamma_5, \gamma_4\gamma_5, \gamma_i, \gamma_5\gamma_i, \gamma_i\gamma_j, I$.

The 2-pts of these observables have severe signal/noise due to the variance being constant for disconnected contributions.

$$\langle \mathcal{O}_{\gamma_5}(t) \ \bar{\mathcal{O}}_{\gamma_5}(t_0) \rangle = - \langle \operatorname{Tr} \left[\gamma_5 D^{-1}(t, t_0) \gamma_5 D^{-1}(t, t_0)^{\dagger} \right] \rangle + \langle \operatorname{Tr} \left[\gamma_5 D^{-1}(t, t) \right] \operatorname{Tr} \left[\gamma_5 D^{-1}(t_0, t_0) \right] \rangle$$
Connected Disconnected

We want to apply a two-level integration to the disconnected piece:

$$\langle \mathcal{O}_{\Gamma}(t)\bar{\mathcal{O}}_{\Gamma}(t_0)\rangle_{\text{disc.}} = \frac{1}{\mathscr{Z}} \int [dU]e^{-S[U]} \operatorname{Tr}$$

 $\longrightarrow \frac{1}{\mathscr{Z}_B} \int [dU_B]e^{-S[U_B]}$

Ultimate Physics goal (Full QCD)

Study $f_0(1500), f_0(1760) \rightarrow \pi\pi, \dots$

and decay of other glueball candidates

e.g. X(2370) announced by BESIII @CERN

See J. Urrea-Niño's talk @Lattice2024

 $\left[\mathbf{D}^{-1}(\mathbf{t},\mathbf{t})\Gamma \right] \mathbf{Tr} \left[\mathbf{D}^{-1}(\mathbf{t}_0,\mathbf{t}_0)\Gamma \right]$

 $\left| \operatorname{Tr} \left| \mathbf{D}^{-1}(\mathbf{t}, \mathbf{t}) \Gamma \right| \right| \left| \operatorname{Tr} \left| \mathbf{D}^{-1}(\mathbf{t}_0, \mathbf{t}_0) \Gamma \right| \right|$

Factorisation of Fermion Propagator for quark loops

Challenge: Propagators depend on gauge fields over all space-time Λ $\operatorname{Tr}\left[\mathrm{D}^{-1}(t,t)\Gamma\right]$ non-local

Solution:

• Factorise propagators in different regions

When solving Dirac equations, consider only ~ half temporal extent and approximate propagators:

 $D^{-1}_{\Lambda}(y,y)$

M. Ce`, L. Giusti, S. Schaefer *[PRD.93.094507] [PRD.95.034503]*

$$D^{-1}(x,x) = D_{\Omega_1}^{-1}(x,x) + \dots$$

$$1 \qquad \qquad \Lambda_2 \qquad \Lambda_3 \qquad \text{Periodic back conditions}}$$

$$\Omega_1$$

Domain decomposition used also for vector 2-pts in HPV [Phys.Lett.B 816 (2021)] T. Harris, L. Giusti, et al.

Two-level sampling for disconnected diagrams

This approximation allows to factorise the disconnected diagram

$$\left\langle \mathcal{O}_{\gamma_5}(t)\bar{\mathcal{O}}_{\gamma_5}(t_0)\right\rangle_{\text{disc.}} = \frac{1}{\mathscr{Z}} \int [dU]e^{-S[U]} \operatorname{Tr}\left[\gamma_5 \mathcal{D}_{\Omega_1}^{-1}(t,t)\right] \operatorname{Tr}\left[\gamma_5 \mathcal{D}_{\Omega_0}^{-1}(t_0,t_0)\right]$$

which now allows 2-level integration:

$$= \frac{1}{\mathscr{Z}} \int [dU_B] e^{-S_B[U_B]} \left[\operatorname{Tr} \left[\gamma_5 D_{\Omega_1}^{-1}(t, t) \right] \right] dt'$$

$$\left[\operatorname{Tr}\left[\gamma_5 D_{\Omega_r}^{-1}(t,t)\right]\right]_{\Omega_r} = \int \left[dU^{(r)}\right] e^{-S_r}$$

$$t$$
 t_0
 Λ_0
 Λ_1
 Λ_2

+ correction

 $(t,t) \Big] \Big]_{\Omega_1} \Big[\gamma_5 D_{\Omega_0}^{-1}(t_0,t_0) \Big]_{\Omega_0} + \text{correction} \Big]$

 $\Gamma_r[U^{(r)}, U_B] \operatorname{Tr} \left[\gamma_5 \mathrm{D}_{\Omega_r}^{-1}(t, t) \right]$

Multilevel estimators and correction

• Use full propagators to compute estimator in the standard way:

$$C^{\text{std}}(t, t_0) = \frac{1}{N_0 N_1} \sum_{i,j} \mathcal{O}_{ij}(t, t) \ \mathcal{O}_{ij}(t_0, t_0)$$

$$\mathcal{O}_{ij}(t,t) = \operatorname{Tr}\left[\gamma_5 \mathrm{D}^{-1}(\mathrm{U}_{ij},t,t)\right]$$

$$\sigma_{C^{\text{std}}}^2(t, t_0) \approx \frac{c_0}{N_0 N_1}$$

Multilevel estimators and correction

• Use full propagators to compute estimator in the standard way:

$$C^{\text{std}}(t, t_0) = \frac{1}{N_0 N_1} \sum_{i,j} \mathcal{O}_{ij}(t, t) \ \mathcal{O}_{ij}(t_0, t_0)$$

• Use block propagators to compute estimator in the standard way and w/ two-level:

$$C^{\text{approx},1\text{lvl}}(t,t_0) = \frac{1}{N_0 N_1} \sum_{i,j} \mathcal{O}_{ij}^{\Omega_1}(t,t) \mathcal{O}_{ij}^{\Omega_0}(t_0,t_0)$$

$$C^{\text{approx},2\text{lvl}}(t,t_0) = \frac{1}{N_0} \sum_{i}^{N_0} \left[\frac{1}{N_1} \sum_{j=1}^{N_1} \mathcal{O}_{ij}^{\Omega_1}(t,t) \right] \left[\frac{1}{N_1} \sum_{j=1}^{N_1} \mathcal{O}_{ij}^{\Omega_0}(t_0,t_0) \right]$$

 $\mathcal{O}_{ij}(t,t) = \operatorname{Tr}\left[\gamma_5 \mathrm{D}^{-1}(\mathrm{U}_{ij},t,t)\right]$ $\sigma_{C^{\text{std}}}^2(t, t_0) \approx \frac{c_0}{N_0 N_1}$

$$\mathcal{O}_{ij}^{\Omega_r}(t,t) = \operatorname{Tr}\left[\gamma_5 \mathrm{D}_{\Omega_r}^{-1}(\mathrm{U}_{ij})\right]$$

$$\sigma_{C^{\text{approx,1lvl}}}^2(t,t_0) \approx \frac{c_0}{N_0 N_1}$$

$$\sigma_{C^{\text{approx,2lvl}}}^2(t, t_0) \approx \frac{c_0}{N_0 N_1^2} + \dots$$

(j, t, t)

Multilevel estimators and correction

• Use full propagators to compute estimator in the standard way:

$$C^{\text{std}}(t, t_0) = \frac{1}{N_0 N_1} \sum_{i,j} \mathcal{O}_{ij}(t, t) \ \mathcal{O}_{ij}(t_0, t_0)$$

• Use block propagators to compute estimator in the standard way and w/ two-level:

$$C^{\text{approx},1\text{lvl}}(t,t_0) = \frac{1}{N_0 N_1} \sum_{i,j} \mathcal{O}_{ij}^{\Omega_1}(t,t) \mathcal{O}_{ij}^{\Omega_0}(t_0,t_0)$$

$$C^{\text{approx},2\text{lvl}}(t,t_0) = \frac{1}{N_0} \sum_{i}^{N_0} \left[\frac{1}{N_1} \sum_{j=1}^{N_1} \mathcal{O}_{ij}^{\Omega_1}(t,t) \right] \left[\frac{1}{N_1} \sum_{j=1}^{N_1} \mathcal{O}_{ij}^{\Omega_0}(t_0,t_0) \right]$$

Compute correction:

 $\epsilon(t, t_0) = C^{\text{std}}(t, t_0)$

Compute corrected 2-level:

$$C^{2\mathrm{lvl}}(t,t_0) = C^{\mathrm{appr}}$$

dard way: $\mathcal{O}_{ij}(t,t) = \operatorname{Tr}\left[\gamma_5 \mathrm{D}^{-1}(\mathrm{U}_{ij},t,t)\right]$ $\sigma_{C^{\mathrm{std}}}^2(t,t_0) \approx \frac{c_0}{N_0 N_1}$

$$\mathcal{O}_{ij}^{\Omega_r}(t,t) = \operatorname{Tr}\left[\gamma_5 \mathrm{D}_{\Omega_r}^{-1}(\mathrm{U}_{ij})\right]$$

$$\sigma_{C^{\text{approx,1lvl}}}^2(t,t_0) \approx \frac{c_0}{N_0 N_1}$$

$$\sigma_{C^{\text{approx},2\text{lvl}}}^{2}(t,t_{0}) \approx \frac{c_{0}}{N_{0}N_{1}^{2}} + \dots$$

$$) - C^{\operatorname{approx},1\operatorname{lvl}}(t,t_0)$$

 $rox,2lvl(t,t_0) + \epsilon(t,t_0)$

 $_{ij}, t, t)$

Comparison of Final results: Pseudoscalar quark loops ($\eta - \eta'$ channel)

Numerical Simulations

 $\beta = 6.0$; (a = 0.0876 fm); $m_{\pi} = 760 \text{ MeV}$ $V/a^4 = 16^3 \times 64$ $N_0 = 101$; $N_1 = 200$

Signal reached for much longer distances

Substantial improvement of two-level sampling over standard method.

Comparison of Final results: Pseudoscalar quark loops $(\eta - \eta' \text{ channel})$

 $\langle O_{\gamma_4\gamma_5}(t)\bar{O}_{\gamma_4\gamma_5}(0)\rangle_{\rm disconn}$

 $\beta = 6.0$; (a = 0.0876 fm); $m_{\pi} = 760$ MeV $V/a^4 = 16^3 \times 64$ $N_0 = 101$; $N_1 = 200$

Substantial improvement of two-level sampling over standard method.

2-level enables to reconstruct signal for the full temporal extent.

Numerical Simulations

 $\beta = 6.0$; (a = 0.0876 fm); $m_{\pi} = 760 \text{ MeV}$ $V/a^4 = 16^3 \times 64$ $N_0 = 101$; $N_1 = 200$

Signal reached for longer distances.

Numerical Simulations

 $\beta = 6.0$; (a = 0.0876 fm); $m_{\pi} = 760 \text{ MeV}$ $V/a^4 = 16^3 \times 64$ $N_0 = 101$; $N_1 = 200$

Signal reached for longer distances.

Comparison of Final results: Axial-Vector quark loops (a_1 channel)

Numerical Simulations

 $\beta = 6.0$; (a = 0.0876 fm); $m_{\pi} = 760 \text{ MeV}$ $V/a^4 = 16^3 \times 64$ $N_0 = 101$; $N_1 = 200$

Signal reached for slightly longer distances.

 $\langle O_{\rm I}(t)\bar{O}_{\rm I}(0)\rangle_{\rm disconn}$

Numerical Simulations

 $\beta = 6.0$; (a = 0.0876 fm); $m_{\pi} = 760 \text{ MeV}$ $V/a^4 = 16^3 \times 64$ $N_0 = 101$; $N_1 = 200$

Signal improves a bit (decays quite fast)

Comparison of Final results: Scalar quark loops (f_0/σ channel)

Numerical Simulations

 $\beta = 6.0$; (a = 0.0876 fm); $m_{\pi} = 760 \text{ MeV}$ $V/a^4 = 16^3 \times 64$ $N_0 = 101$; $N_1 = 200$

- Need to further reduce error for reliable estimate
- Need to include connected piece

Comparison of Final results: $\pi\pi$ quark loops (I = 0 channel)

O

Numerical Simulations

 $\beta = 6.0$; (a = 0.0876 fm); $m_{\pi} = 760 \text{ MeV}$ $V/a^4 = 16^3 \times 64$ $N_0 = 92; N_1 = 198$

Many exceptional configs (O(50)/20,000)

2-level Error Reduction $\sigma_{C}(t, t_{0}; N_{1}) = 2 \text{lvl Error of } \langle [O_{\pi\pi}(t)] [\bar{O}_{\pi\pi}(t_{0})] \rangle$

Error increases by a factor 2 - 4 after correction

of $\langle [O_{\pi\pi}(t)] [\bar{O}_{\pi\pi}(t_0)] \rangle$ $\tilde{\sigma}_C(t, t_0; N_1)$ Error of corrected observable Error of $C_{\pi\pi}(t, t_0) = \langle [O_{\pi\pi}(t)] [\bar{O}_{\pi\pi}(t_0 = 26a)] \rangle$ with N_1

e.g.
$$\tilde{\sigma}_C(t - t_0 = 15a; N_1 = 200) \approx 2 * 10^{-3}$$

 $\sigma_C(t - t_0 = 15a; N_1 = 200) \approx 7 * 10^{-3}$

Multilevel Error Reduction at fixed distance

 $\sigma_C(t, t_0; N_1) = \text{Error of } \langle [O_{\pi\pi}(t)] [\overline{O}_{\pi\pi}(t_0)] \rangle$ $\tilde{\sigma}_C(t, t_0; N_1)$ Error of corrected observable

This motivates us to compute the first correction with 2-level integration.

Multilevel Error Reduction at fixed distance

 $\sigma_C(t, t_0; N_1) = \text{Error of } \langle [O_{\pi\pi}(t)] [\overline{O}_{\pi\pi}(t_0)] \rangle$ $\tilde{\sigma}_C(t, t_0; N_1)$ Error of corrected observable

Error of $C_{\pi\pi}(t - t_0 = 14a) = \langle [O_{\pi\pi}(t)] [\bar{O}_{\pi\pi}(t_0)] \rangle$ with N_1

Multilevel Error Reduction at fixed distance

 $\sigma_C(t, t_0; N_1) = \text{Error of } \langle [O_{\pi\pi}(t)] [\overline{O}_{\pi\pi}(t_0)] \rangle$

Similarities with systematic study in pure gauge.

$\tilde{\sigma}_C(t, t_0; N_1)$ Error of corrected observable

How good is the approximation? 1-pts

current sub-lattice decomposition

34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 5 6 53 54 55 56 57 58 59 60 28

Longer the distance from the other region, better the approximation

Factorisation of Fermion Propagator for quark loops

+

 $D^{(1)}(y,y)$

Open boundary conditions

╋

Ce`-Giusti-Schaefer

 $+\ldots$

 $||D^{(2)}(y,y)|| \propto ||D^{-1}_{\Lambda_0 \cup \Lambda_1}(y,y)|| e^{-m||\Lambda_1||}$

Lepage-Parisi

Factorisation of Fermion Propagator for quark loops

+

Open boundary conditions

First corrections to quark loops with 2-level

Conclusions

Model Two-level sampling for pure gauge glueballs very effective and well understood **V** Fit ansatz describes short and long distance scalings, as well as transition point GEVP effective masses agree with literature

- \cancel{x} Approximating Dirac inversions to local domains enables multilevel measurements
- \checkmark Results show multilevel error reduction for different observables $O_{2\pi}, O_{f_0}, O_{\gamma_5}, O_{\gamma_4\gamma_5}, \dots$
- Significant improvement for correlators whose signal drops w/ $E \lesssim 1.2$ GeV \checkmark

However, not significant improvement for heavier states $O_{2\pi}, O_{f_0}$

Compute first corrections with 2-level, which will improve the error

[LB et al. *Phys.Rev.D* 110 (2024) 5, 054515]

[Expected preprint on arXiv in the next months]

Lorenzo Barca | DESY. | NGT Algorithm Workshop, CERN 09-11/12/2024

Acknowledgements

DECEMBER 9-11, 2024

NGT Algorithm Workshop – Lattice QCD at the large scale on exascale computing facilities

Gauge generation and block solvers based on modified version of OpenQCD Distillation measurements on QCDlib

Computing resources: PAX in Zeuthen and Juwels in Jülich

Thank you !

Lorenzo Barca | DESY.

Nex Gen

Backup

Multilevel sampling: Background

Based on an old idea by Nobel laureate G. Parisi et al.

Further developed by M. Lüscher, P. Weisz ~20 years later:

Many other applications in pure gauge theory:

One test application in quenched QCD: *Phys.Rev.D* 93 (2016) 9, 094507 [M. Ce', S. Schaefer, L. Giusti] *Phys.Rev.D* 95 (2017) 3, 034503 [M. Ce', S. Schaefer, L. Giusti] and two in full QCD afaik: *Phys.Lett.B* 816 (2021) 136191 [L. Giusti, T.Harris, et al.]

- [*Phys.Lett.B* 128 (1983) 418-420]
- [*JHEP* 09 (2001) 010]

JHEP 07 (2002) 049, JHEP 01 (2003) 048, Nucl.Phys.B 664 (2003) 213-232, Nucl.Phys.B 671 (2003) 103-132, Nucl.Phys.B 677 (2004) 273-288, Nucl.Phys.B 692 (2004) 209-231, JHEP 01 (2004) 030, ..., Phys.Rev.D 110 (2024) 5, 054515 [LB]

Multilevel algorithm: Full QCD (e.g. $N_f = 2$)

Both the action and the observables depend on fermionic propagators (non-local)

$$\langle \mathcal{O}(t_1)\mathcal{O}^{\dagger}(t_0)\rangle = \frac{1}{\mathscr{Z}} \int [dU]e^{-S[U]} \det(D)^2 \mathcal{O}(U,t_1) \mathcal{O}^{\dagger}(U,t_0)$$

$$\det(D)^2 e^{-S[U]}$$

$O(t_1)O(t_0) = \text{Tr}\left[D^{-1}(t_1, t_0)D^{-1}(t_1, t_0)\right]$

Need both factorisation of $D^{-1}(t_1, t_0)$ and det(*D*) to use multi-level.

Probability distribution depends on det(D) (non-local)

 $D^{-1}(t_1, t_0)$ depends on the values of the gauge fields on the full lattice

Errors for $C(\Delta t = 0a)$

		_						
5	16	17	18	19	20	21	22	23

Errors for $C(\Delta t = 1a)$

	_			-	_	_		
15	16	17	18	19	20	21	22	23
		• *				<u> </u>		

$N_0 = 101$ $V/a^4 = 48 \times 24^3$ $\beta = 6.2, R^{PC} = E^{++}$

Errors for $C(\Delta t = 2a)$

Multilevel is not efficient at short distance!

Doing $N_1 > 100$ is just a wast of resources for multilevel measurements

5	16	17	18	19	20	21	22	23
0								

Errors for $C(\Delta t = 3a)$

5	16	17	18	19	20	21	22	23
	10	1 /	10	10	20			20

Errors for $C(\Delta t = 4a)$

Errors for $C(\Delta t = 5a)$

5 16 17 18 19 20 21	22	23

 $N_0 = 101$ $V/a^4 = 48 \times 24^3$ $\beta = 6.2, R^{PC} = E^{++}$

Errors for $C(\Delta t = 6a)$

Multilevel starts to outperform standard scaling

	_		_					
5	16	17	12	10	20	21	22	22
5	10	1 /	10	13	20		22	20

Errors for $C(\Delta t = 7a)$

Errors for $C(\Delta t = 8a)$

Errors for $C(\Delta t = 9a)$

 $N_0 = 101$ $V/a^4 = 48 \times 24^3$ $\beta = 6.2, R^{PC} = E^{++}$

Errors for $C(\Delta t = 10a)$

Multilevel error is reduced by 1000 with $N_1 = 1000$ for $t_0 + \Delta t/2 = 11a$

Errors for $C(\Delta t = 11a)$

 $N_0 = 101$ $V/a^4 = 48 \times 24^3$ $\beta = 6.2, R^{PC} = E^{++}$

Errors for $C(\Delta t = 12a)$

Notice

width δt of active regions is better to reduce error at $\Delta t = \delta t - a$

How good is the approximation? 1-pts

current sub-lattice decomposition

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 6

Longer the distance from the other region, better the approximation

Disconnected diagrams with 2-level

$$C_{f_0}^{(0)}(y_0 - x_0) = \left\langle \sum_{\vec{y}, \vec{x}} \left[\operatorname{Tr} \left(\mathcal{O}(y) \right) \right] \left[\operatorname{Tr} \left(\bar{\mathcal{O}}(x) \right) \right]$$

 $\mathbf{O}(\mathbf{y}) = \mathbf{O}_{f_0}(\mathbf{y})$

 $O(y) = O_{\pi\pi}(y)$

Multilevel Error Reduction

 $\sigma_C(t, t_0; N_1) = \text{Error of } \langle [O_{f_0}(t)] [\overline{O}_{f_0}(t_0)] \rangle$

Error of $C_{f_0}(t, t_0) = \langle [O_{f_0}(t)] [O_{f_0}(t_0 = 26a)] \rangle$ with N_1

$\tilde{\sigma}_C(t, t_0; N_1)$ Error of corrected observable

Promiscuous topics on multilevel

@Lattice 2024 (Liverpool)

- Study of glueball scattering with a 3-level integration in pure gauge theory
- Compute glueball gravitational form factors with a standard integration

from glueball 3-pts $\langle G(t) T_{\mu\nu}(\tau) G(0) \rangle$

• Test multi-dimensional multilevel for pure gauge and quenched observables

 $C(x, y) = \left\langle \left[\left[O(y_1, y_2, y_3, y_4) \right] \right] \right] \left[\left[\left[O(x_1, x_2, x_3, x_4) \right] \right] \right] \right\rangle$

... [LB, S.Martins]

M. Bruno, M. Hansen, A. Rago

D. Hackett, F. Romero-Lopez D. Pefkou, P. Shanahan

 $\langle [G(t)] [T_{\mu\nu}(\tau)] [G(0)] \rangle$ $\sigma_{C_{3pt}}^2(t,\tau,t_0) \sim \frac{1}{N_0 N_1^3}$

