

Parallel Tempered Metadynamics

Slowing Down Critical Slowing Down [PhysRevD.109.114504]/[2307.04742]

Timo Eichhorn, Gianluca Fuwa,

Christian Hoelbling, Lukas Varnhorst

NGT Algorithm Workshop - 10.11.2024

- $z_V \gtrsim 1$, depends on integrator, hard to imagine an algorithm where $z_V < 1$
 - HMC + second order integrator: $z_V = 1 + 1/4$
 - HMC + fourth order integrator: $z_V = 1 + 1/8$
- $z_{\pi} \sim 1$ –2 after many algorithmic improvements, almost constant down to very small (below physical) quark masses
 - Hasenbusch mass preconditioning, domain decomposition, multiple pseudofermions
 - Multiple timescale integration
 - Multigrid solvers
 - Deflation
- $z_a \sim 2$ according to "naive" expectations

 $z_a \sim 5-6$ in the presence of topological sectors

- $z_V \gtrsim 1$, depends on integrator, hard to imagine an algorithm where $z_V < 1$
 - HMC + second order integrator: $z_V = 1 + 1/4$
 - HMC + fourth order integrator: $z_V = 1 + 1/8$
- $z_{\pi} \sim 1$ -2 after many algorithmic improvements, almost constant down to very small (below physical) quark masses
 - Hasenbusch mass preconditioning, domain decomposition, multiple pseudofermions
 - Multiple timescale integration
 - Multigrid solvers
 - Deflation
- $z_a \sim 2$ according to "naive" expectations

 $z_a \sim 5$ –6 in the presence of topological sectors

- $\mathbf{z}_V \gtrsim 1$, depends on integrator, hard to imagine an algorithm where $\mathbf{z}_V < 1$
 - HMC + second order integrator: $z_V = 1 + 1/4$
 - HMC + fourth order integrator: $z_V = 1 + 1/8$
- $z_{\pi} \sim 1$ –2 after many algorithmic improvements, almost constant down to very small (below physical) quark masses
 - Hasenbusch mass preconditioning, domain decomposition, multiple pseudofermions
 - Multiple timescale integration
 - Multigrid solvers
 - Deflation
- $z_a \sim 2$ according to "naive" expectations

 $z_a \sim 5\text{-}6$ in the presence of topological sectors

- $z_V \gtrsim 1$, depends on integrator, hard to imagine an algorithm where $z_V < 1$
 - HMC + second order integrator: $z_V = 1 + 1/4$
 - HMC + fourth order integrator: $z_V = 1 + 1/8$
- $z_{\pi} \sim 1$ -2 after many algorithmic improvements, almost constant down to very small (below physical) quark masses
 - Hasenbusch mass preconditioning, domain decomposition, multiple pseudofermions
 - Multiple timescale integration
 - Multigrid solvers
 - Deflation
- $z_a \sim 2$ according to "naive" expectations

 $z_a \sim 5$ –6 in the presence of topological sectors \Rightarrow from now on z refers to z_a

Topological freezing - 2D U(1)

Correlation between topological charge and gauge action

Topological freezing - 4D SU(3) with Wilson action

Topological freezing - 4D SU(3) with different actions

Similar scaling for different actions/"surprisingly universal" behaviour

Possible approaches to the problem

- Fixed topology simulations
- Master field simulations
- Modified boundary conditions
 - Open boundaries, P-periodic
 - Parallel tempering in boundary conditions
- Nested sampling
- Trivializing maps
- Machine learning (normalizing flows, diffusion models...)
- Multiscale thermalization
- Instanton updates

• Metadynamics

• ...

Metadynamics: Remove barriers between sectors

General idea

Original action landscape

Modified action landscape

Able to move between sectors

Metadynamics

- Well established method for molecular dynamics simulations [cond-mat/0208352]
- In context of lattice gauge theory first proposed for CP^{N-1} models in [1508.07270]
- Add (time-dependent) bias potential $V_t(s)$ to action, depending on set of collective variables (CVs) s
- Converges towards negative free energy \pm const. \Rightarrow Marginal distribution of CVs becomes flat
- Reweighting necessary

Construct from Gaussians

$$egin{aligned} V_t(s) &= \sum_{t' \leq t} \prod_i^N g(s_i - s_i(t')) \ g(s) &= w \expigl(-s^2/(2\delta s^2)igr) \end{aligned}$$

Metadynamics

- Single collective variable Q_{meta}
 - Clover-based topological charge
 - n = 4-10 stout smearing steps with $\rho = 0.12$
 - Trade-off between
 - Staying in relevant regions of phase space (less smearing)
 - Having sufficient resolution (more smearing)
- Resulting modified action $S_t^M = S + V_t(Q)$
- \Rightarrow Staple becomes less local, so use HMC
- \Rightarrow Stout force recursion (as with smeared fermions)

$$F_{\rm meta} = \frac{\partial V}{\partial Q_{\rm meta}} \frac{\partial Q_{\rm meta}}{\partial U^{(n)}} \frac{\partial U^{(n)}}{\partial U}$$

Construct from Gaussians

$$V_t(Q) = \sum_{t' \le t} g(Q - Q(t'))$$

 $g(Q) = w \exp\left(-Q^2/(2\delta Q^2)\right)$

(

Metadynamics: 4D SU(3) with DBW2 action

10/27

Metadynamics: 4D SU(3) with DBW2 action

- Improvement of autocorrelation times by at least two orders of magnitude:
 - HMC or 1HB+4OR: $\tau_{Q^2} > 400\,000$
 - MetaD: $\tau_{Q^2} \sim 2000-3000$
- Caveat: Large computational overhead (Caveat²: much smaller for full QCD)

Metadynamics: 4D SU(3) with DBW2 action

- Improvement of autocorrelation times by at least two orders of magnitude:
 - HMC or 1HB+4OR: $\tau_{Q^2} > 400\,000$
 - MetaD: $\tau_{Q^2} \sim 2000-3000$
- Caveat: Large computational overhead (Caveat²: much smaller for full QCD)

10/27

 $n_{\rm smear}$

Metadynamics - Reweighting efficiency

Efficiency of reweighting?

• Effective sample size

$$\text{ESS} = \frac{\left(\sum_{i} w_{i}\right)^{2}}{\sum_{i} w_{i}^{2}}$$

- Reweighting significantly reduces ESS down to $\mathcal{O}(10~\%)$
- Two causes:
 - Oversampling of sectors with large |Q| \Rightarrow Modify bias potential
 - Oversampling of configurations between sectors
 - ⇒ Combine with parallel tempering (PT-MetaD)

Metadynamics - bias potential modification

Parallel Tempered Metadynamics (PT-MetaD)

Address oversampling of configurations between sectors

- Two streams (inspired by [1706.04443]):
 - Stream 1 with bias potential \Rightarrow tunneling
 - Stream 2 without bias potential ⇒ measurements (no reweighting)
- Propose swaps like in standard parallel tempering
- Swaps only depend on bias potential!

$$\Delta S_t^M = \left[S_t^M(U_1) + S(U_2)\right] - \left[S_t^M(U_2) + S(U_1)\right]$$
$$= V_t(Q_{\text{meta},1}) - V_t(Q_{\text{meta},2})$$

$\Rightarrow \ {\rm Fermions} \ {\rm pose} \ {\rm no} \ {\rm additional} \ {\rm difficulty}$

• Monitor $\tau_{\rm int}$ of observables defined on product space $_{\rm 13/27}$

Scaling of PT-MetaD in 2D U(1)

Putting everything together

- Further improvement compared to standard MetaD
- Best results when combined with modification of bias potential
- ⇒ Almost 5 orders of magnitude improvement for finest lattice spacing compared to conventional algorithm
 - Scaling of all (PT-)MetaD variations much milder compared to conventional algorithms

Scaling of PT-MetaD in 2D U(1)

• Non-topological sampling improved

PT-MetaD - 4D SU(3)

$V = 16^4, \beta = 1.25$, DBW2 action

PT-MetaD - 4D SU(3)

Extension to QCD

- No conceptual difficulties
- In some ways better suited to QCD simulations than pure gauge
 - HMC already required
 - (Stout) smearing often used for fermions
 - \Rightarrow Potentially no overhead from (stout) force recursion
- Buildup of potential may take too long (timescales of ${\cal O}(10^4)$ unfeasible)

1. Use prior knowledge/symmetries

- Charge conjugation symmetry of action ($Q \leftrightarrow -Q$) In practice: Whenever we update the bias potential at some Q_{meta} we also update it at $-Q_{meta}$
 - \Rightarrow Approximately $2 \times$ speed-up
- Expect a (near) Gaussian distribution of Q with variance $\langle Q^2 \rangle \sim V$ \Rightarrow Extrapolate from smaller volumes?
- Barrier shapes seem to be periodic
 ⇒ Extrapolate from inner sectors?

- 2. Well-tempered Metadynamics [Barducci' 08]
 - Standard Metadynamics

$$V_{t+1}(Q) = V_t(Q) + w \exp\left(-\frac{(Q_t - Q)^2}{2\sigma^2}\right)$$

• Well-tempered Metadynamics

$$V_{t+1}(Q) = V_t(Q) + \exp\left(-\frac{V_t(Q)}{\Delta T}\right) w \exp\left(-\frac{(Q_t - Q)^2}{2\sigma^2}\right)$$

Tunable parameter ΔT :

- $\Delta T \rightarrow 0$: No Metadynamics
- $\Delta T \rightarrow \infty$: Standard Metadynamics

2. Well-tempered Metadynamics [Barducci' 08]

- Able to choose larger *w* while maintaining smoothness in the end
- Quirk: Bias does not converge to -S(Q) but - \frac{\Delta T}{1+\Delta T}S(Q)
 ⇒ Small \Delta T may reintroduce ergodicity
 problems, as the barriers are not entirely

canceled out

3. Multiple walkers [Raiteri' 06]

- Run N_{walkers} simulation streams in parallel, all working on the same potential
- Minimal communication between processes required (e.g., a single MPI.Allgather call per iteration) \Rightarrow speed-up of factor $\sim N_{walkers}$
- **Possible variation**: Start each walker in a different topological sector to eliminate time before falling into unexplored sector

QCD results

- Simulated action
 - Fermion Action:
 - $N_f = 2, am = 0.02$
 - 4×0.125 Stout-smeared Staggered
 - Gauge Action:
 - $\begin{array}{l} \mathsf{DBW2}\,\beta = 1.05 \\ \Rightarrow a^{-1} \approx 0.05\,\mathrm{fm} \end{array}$
 - Bias potential:

Clover charge with 6×0.12 stout smearing

- Lattice Volume: $(16a)^4 \approx (0.8 \, \mathrm{fm})^4$
- Bias parameters: $\delta \textit{Q} = \textit{w} = 0.02$, $\gamma = \infty$, $[\textit{Q}_{\min},\textit{Q}_{\max}] = [-3,3]$ and 6 walkers
- Relative overhead of only $\sim 20~\%$ compared to conventional RHMC

Parallel buildup with 6 streams/walkers

QCD results - PT-MetaD timeseries (static potential)

Better tunneling than conventional RHMC, but suboptimal potential?

QCD results - PT-MetaD timeseries (static potential)

Better tunneling than conventional RHMC, but suboptimal potential?

26/27

Summary

- PT-MetaD + modified bias potential
 - At least as efficient in reducing autocorrelation times as standard MetaD
 - No reweighting required \Rightarrow No reduction of effective sample size
 - Improved scaling
 - With lattice spacing
 - $\circ~$ With volume (compared to standard parallel tempering in β)
- Open questions:
 - Scaling behavior in dynamical simulations
 - Can the buildup of the potential be accelerated or entirely avoided?
 - Synergy with other approaches (only targets topological freezing, not critical slowing down in general)
- Pure gauge code: **(** [Lettuce] (currently undergoing rewrite)
- Dynamical code: 🖓 [MetaQCD.jl]

Backup

Scale setting

1/10

• Rational fit ansatz with 3 and four parameters

$$egin{aligned} &\lnig(*/a^2ig) = rac{8\pi^2}{33}etarac{1+d_1/eta+d_2/eta^2}{1+d_3/eta}\ &1+d_3/eta\ &\lnig(*/a^2ig) = rac{8\pi^2}{33}etarac{1+d_1/eta+d_2/eta^2}{1+d_3/eta+d_4/eta^2} \end{aligned}$$

where * is either t_0 or w_0^2

- Setup same as in [2307.04742], only difference between runs:
 - DBW2 action: Use RK3 integrator (from [1006.4518])
 - Other actions: Use RK3W7 integrator (from [2101.05320])
- Results should not be interpreted as an attempt at precise scale setting due to
 - Relatively small volumes (48×32^3)
 - Large autocorrelations for Iwasaki and DBW2 actions (only few tunneling events for finest lattice)

Action	Definition	$\chi^2/{ m d.o.f.}$	AIC	BIC	d_1	d_2	d_3	d_4
Wilson	$t_{0, plag}$	0.4040	-9.1934	-7.4985	-10.6943	28.4179	-5.4472	-
	$t_{0,\text{clov}}$	0.3934 0.3701	-8.9091 -10.3339	-6.6493 -8.6390	-10.//99 - 10.5983	28.9095 27.9044	-5.64/5 -5.3532	0.9154 -
		0.4033	-8.5851	-6.3253	-10.6504	28.2014	-5.4607	0.4509
	$w_{0,\mathrm{plaq}}$	0.5524	-5.1255	-3.4307	-10.5471	27.6060	-5.3367	-
		0.5857	-3.7355	-1.4757	-10.6810	28.3705	-5.6140	1.1800
	$w_{0,\text{clov}}$	0.5417	-5.3796	-3.6848	-10.5483	27.6182	-5.3341	-
		0.5633	-4.2417	-1.9819	-10.7023	28.4958	-5.6505	1.3363

Action	Definition	$\chi^2/{ m d.o.f.}$	AIC	BIC	d_1	d_2	d_3	d_4
Lüscher-Weisz	$t_{0,plaq}$ $t_{0,clov}$ $w_{0,plaq}$ $w_{0,plaq}$	1.0344 0.9789 0.9815 0.9418 1.1786 1.2103 1.1485	3.1601 3.0282 2.3723 2.4476 5.1181 6.2105 4.7296	5.2842 5.8604 4.4965 5.2798 7.2423 9.0427 6.8537	-7.6495 -7.4807 -7.5710 -7.2601 -7.5313 -7.2295 -7.5347	14.5316 13.8374 14.2438 12.9838 14.0723 12.8438 14.0911	-3.8449 -3.5555 -3.7571 -3.2940 -3.7481 -3.2836 -3.7475	-0.7666 - -0.9920 - -1.0750 -
	vv U,clov	1.1911	5.9714	8.8036	-7.2632	12.9885	-3.3346	-0.9335

Action	Definition	$\chi^2/{ m d.o.f.}$	AIC	BIC	d_1	d_2	d_3	d_4
	$t_{0,\mathrm{plaq}}$	2.5849	15.9191	17.8363	-3.7990	3.4459	-1.8512	-
		2.3742	15.3946	17.9509	-4.2711	4.5271	-2.4362	0.6535
Iwasaki	$t_{0,\mathrm{clov}}$	2.6527	16.2816	18.1988	-3.5912	3.0251	-1.6435	-
		2.4833	16.0236	18.5798	-4.3548	4.7300	-2.5136	0.7051
	$w_{0,\mathrm{plaq}}$	2.3712	14.7111	16.6283	-3.6807	3.2020	-1.7553	-
		2.3945	15.5137	18.0699	-4.2616	4.5144	-2.4463	0.6869
	$w_{0,\text{clov}}$	2.4038	14.9027	16.8199	-3.6729	3.1919	-1.7434	-
		2.3323	15.1451	17.7013	-4.3325	4.6760	-2.5225	0.7476

Action	Definition	$\chi^2/{ m d.o.f.}$	AIC	BIC	d_1	d_2	d_3	d_4
	$t_{0,\mathrm{plaq}}$	1.2491	5.4809	7.1757	0.5953	-1.1083	0.1059	-
		1.3841	7.4450	9.7048	-0.3606	-0.3352	-0.6167	0.3067
DBW2	$t_{0,\mathrm{clov}}$	1.3058	6.0581	7.7530	1.0351	-1.3763	0.4058	-
		1.4430	7.9867	10.2465	-0.5080	-0.1750	-0.7426	0.4182
	$w_{0,\mathrm{plaq}}$	1.3569	6.5568	8.2516	0.8566	-1.2825	0.2488	-
		1.5076	8.5565	10.8163	0.6397	-1.1098	0.0882	0.0641
	$w_{0,\text{clov}}$	1.3615	6.6006	8.2954	0.9223	-1.3198	0.2951	-
		1.5127	8.6000	10.8598	1.3160	-1.6310	0.5862	-0.1135

(H)

Metadynamics: 4D SU(3) with DBW2 action

9/10

Detailed timeseries of PT-MetaD in 4D SU(3)

QCD bias potential

10/10