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Critical Slowing Down & Topological Freezing

@ Local (diffusive) updates lead to critical slowing down
o Motivates non-local updates
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[Schaefer et al., 0910.1465]
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https://arxiv.org/abs/0910.1465

Normalizing Flows

Normalizing flows

@
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[Albergo et al., 1904.12072]

@ Learned change of variables f maps density r(z)

q(¢) = | det J¢(£(9))Ir(f(¢))

o r(z),f~1(z),|det Jr(z)| tractable = q(¢) tractable

@ Given (known) target p(¢), train f so g ~ p
o Can apply corrections for exact/unbiased sampling
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https://arxiv.org/abs/1904.12072

Normalizing flows & QCD

Modern effort began w/ scalar fields [Albergo et al., 1904.12072]
Required significant effort to get to QCD

o Working with U(1) & SU(3), gauge symmetry, pseudofermions, ...
Have tools for QCD [Abbott et al., 2208.03832]
Outline today

e More recent work on improving models
o Novel applications past accelerated sampling
o Scaling & Aurora (supercomputer)
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https://arxiv.org/abs/1904.12072
https://arxiv.org/abs/2208.03832

Model improvements

Model improvements
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Model improvements

Model improvements

@ Two main architectures: spectral & residual

o Reference: [Abbott et al, 2305.02402]

e Both based on active/frozen split

o See also: continuous flows [Bacchio et al. 2212.08469]
@ Many improvements to both

e Diagonal features, learned active loops, initialization, ...
o General theme: more gauge equivariant information

o E.g. convolutions — parallel transport
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https://arxiv.org/abs/2305.02402
https://arxiv.org/abs/2212.08469

Gauge Symmetry and Sampling

Gauge transformation
e Gauge symmetry = p(Q2- U) = p(V)
e Model gauge invariance: g(2- U) = q(U)
@ Achieve with 2 conditions:

o Prior gauge invariance: r(Q2- U) = r(U)
o Gauge Equivariance: (- U) =Q-f(U)
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Model improvements

Spectral Flows
[Boyda et al., 2008.05456]

e Transform “active loop” (e.g. untraced plaquette P,,)
e Under gauge transformation Q(x) € SU(N) k

(2 P)uw(x) = Qx) P (x) %)’ Puv(x)
e Given h: SU(N) — SU(N), transform U, so P, — h(P..)

f(Uu) - h(PNV)P;L/UM
o Gauge equivariance <= conjugation equivariance:

h(QPQT) = Qr(P)Q
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https://arxiv.org/abs/2008.05456

Model improvements

Spectral Flows

Goal: h(QXQT) = Qh(X)Qf J

Used for transforming active loop (plaquette, 2 x 1 loop, etc.)

Conjugation invariant data < eigenvalues
Diagonalize P € SU(N) via eigenbasis V'

it it
P=V Vi v Vi
eifn C

Define h: SU(N) — SU(N) by action on {61,...,0n}
o Need to be careful about order = choose canonical order
o Note: ) not independent, [], e’ = det X = 1 = remove Oy
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Model improvements

Diagonal Features

@ Eigenvectors V contain gauge-invariant information
o E.g. diag(VIWV), W = (frozen) Wilson loop
o Use same canonical order as for eigenvalues

@ Small test on 4* lattice, 8 = 2, 4d SU(3)
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Model improvements

Learned Active Loops

@ Usually use fixed active loop in each layer
o E.g. plaquette, 2 x 1 loop
@ ldea: use learned linear combination of possible loops
e Small test on 4* lattice, 3 = 2, 4d SU(3)
e ESS ~ # independent samples/model sample, perfect ESS = 1

— w/ learned active loop

w/o learned active loop
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Novel uses of Flows

Novel uses of Flows
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Novel uses of Flows

Novel Applications of Flows [Abbott et al., 2401.10874]

o If f ~ identity (can force), then f(U) and U are correlated
e — correlated differences, improved uncertainties

e Derivatives w/r/t action params

S—S5+aéS
O, (OUL) -0
da Aa =0

o E.g. Feyman-Hellman, continuum limit
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https://arxiv.org/abs/2401.10874

Novel uses of Flows

Feynman Hellman Example [Abbott et al., 2401.10874]
Goal: Compute % under S — S + adS J

@ ‘c-reweighting” Reweight « = 0 — o = € (very small €)
1
= (e7%0(U) - O(U))

€
Single ensemble, no lever arm
@ Independent ensembles (Feynman Hellman)

O} o p0 — (O()) ]

Two ensembles, larger lever arm Reweighting factor
© Flowed ensembles w(U) x | det %1_%_6‘55

Aia [(w(UJO(£(U)) = O(F(U))) 0]

One ensemble, larger lever arm

a=0
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https://arxiv.org/abs/2401.10874

Novel uses of Flows

Feynman-Hellman Results

Gluon momentum fraction (bare):
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https://arxiv.org/abs/2401.10874

Feynman-Hellman Results (QCD)

Gluon momentum fraction (bare):

latt
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Novel uses of Flows

Feynman-Hellman Discussion

o Fundamentally different way to apply flows
e Strict improvment on e-reweighting

@ More work needed — renormalization, quark fraction

@ Still need to scale to practical volumes

r(U) = e=5U)

1)(U) — ¢~ S+ads
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Scaling & Aurora

Scaling & Aurora
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Scaling & Aurora

Comments on Scaling

o Reference: [Abbott et al., 2211.07541]
@ Scaling depends strongly every aspect of the model

o E.g. use of flow, architecture choices, training choices
o Makes extrapolating beyond any particular choice difficult

Use of Flow
@ Direct Sampling (Independence Metropolis)
@ HMC on trivialized distribution [Lischer 0907.5491]
o Generalize proposal distribution [Foreman et al., 2112.01582]
@ Subdomain updates [Finkenrath, 2201.02216]
@ Stochastic Normalizing Flows [Wu et al. 2002.0670]
o CRAFT [Matthews et al. 2201.13117]
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https://arxiv.org/abs/2211.07541
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https://arxiv.org/abs/2112.01582
https://arxiv.org/abs/2201.02216
https://arxiv.org/abs/2002.06707
https://arxiv.org/abs/2201.13117

Scaling & Aurora

Comments on Scaling

o Reference: [Abbott et al., 2211.07541]
@ Scaling depends strongly every aspect of the model

o E.g. use of flow, architecture choices, training choices
o Makes extrapolating beyond any particular choice difficult

Architecture Choices
@ Choice of coupling layers (spectral, residual, continuous)

@ Choice of Neural networks (CNN, fully-connected, gauge-equivariant)
o Gauge-equivariant networks [Favoni et al., 2012.12901]

@ Choice of invariant context passed to networks

o Size of model (# layers, NN sizes)
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https://arxiv.org/abs/2211.07541
https://arxiv.org/abs/2012.12901

Scaling & Aurora

Comments on Scaling

o Reference: [Abbott et al., 2211.07541]
@ Scaling depends strongly every aspect of the model

o E.g. use of flow, architecture choices, training choices
o Makes extrapolating beyond any particular choice difficult

Training Choices

Optimizer (Adam, SGD, higher-order optimizers)
Choice of Loss (reverse/forward KL, MSE, ...)

Computation of gradients (path gradients/control variates)

Hyperparameter choices (batch size, learning rate)
o Hyperparameter scheduling

Volume chosen for training
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https://arxiv.org/abs/2211.07541

Scaling & Aurora

Exponential Volume Scaling

@ For L/& > 1, £ = correlation length, volume transfer
ESS(V) = ESS(\Vg)Y/Ve

e Prevents direct sampling in thermodynamic limit L/{ — oo
e Does not apply to continuum limit L/€ ~ m, L fixed, £/a — oo
o Typically 4 < m,;L <10 = no in principle issue
@ Annealing (CRAFT/SNF) == O(V?) [Bulgarelli et al, arxiv:2412.00200]

Longer correlation length

K= 0.0 025 ¥ 0263 %

82 122 167 202 247
Finite-volume L*
cffects

Ryan Abbott (MIT) Progress in Normalizing Flows December 10, 2024 21/24


https://arxiv.org/abs/2412.00200

Scaling On Aurora

101
Need model parallelism
0
el ottt
g 10° -
E Z
210 * First QCD -
2 * Schwinger s
< 106 20 U(1)* 5 —
10° — &
Z
10t4 .« Scalar o —

—

10% 10 10! 10° 10°
Physical degrees of freedom

@ Aurora is an exascale machine at Argonne
@ Significant software effort

e Porting/checking code on Intel GPUs v/
o Distributing model + fields over multiple GPUs v/

@ Note: training is very memory intensive

o Model scaling to O(10,000) GPUs v/
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Scaling & Aurora

Scaling on Aurora (continued)

e Significantly larger models, ~ 109-10° parameters
o Current models ~ 10%-107 parameters

@ Target: dynamical QCD, moderate size lattices
o Note: scaling ML models is highly nonintuitive, context-dependent
o See [Abbott et al., 2211.07541] for a full discussion

GPT-1 (117 million parameters) GPT 3.5 (~ 175 billion parameters)

Lattice QCD is on and in the bag’'s Lattice QCD is a numerical

not mine, "ben said. he was lying on approach used in theoretical physics

the couch, ... to study the strong interaction
between quarks and gluons, which
are the fundamental constituents of
protons, neutrons, and other hadrons.
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Scaling & Aurora

Conclusions

e Many improvements for 4d SU(3) flows
@ Novel applications of flows (ab)using correlations

e Upcoming/ongoing scaling on Aurora
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Scaling & Aurora

Conclusions

Many improvements for 4d SU(3) flows

Novel applications of flows (ab)using correlations
Upcoming/ongoing scaling on Aurora

Thanks! Questions?

Institute of

I I I BBl Massachusetts
Technology

EARLY SCIENCE
PROGRAM FOR
DATA & LEARNI

Ryan Abbott (MIT) Progress in Normalizing Flows December 10, 2024 24 /24



________________ xw

Backup

Ryan Abbott (MIT) Progress in Normalizing Flows December 10, 2024 1/9



Unbiased sampling

@ Independence Metropolis: accept ¢ — ¢’ ~ g(¢') with probability

p(¢') q(¢)>
" p(0) a(¢)

Paccept(Qb — QZ)/) = min <1

@ Hybrid methods

Alternate HMC/flow updates

HMC on trivialized distribution [Liischer 0907.5491]

Subdomain updates [Finkenrath, 2201.02216]

CRAFT /Annealed Importance Sampling [Matthews et al. 2201.13117]
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Residual Flows

Inspired by Lischer's trivializing map [Liischer 0907.5491]

Transform active links via Lie-algebra-valued derivative

ieBL/qS(U)
Up(x) = "2, (x)

e Gauge-invariant “potential” ¢(U)
e Example: ¢(U) o Swiison(U) = Wilson flow/stout smearing
e More complex:

¢(U) = Z Z C,uu(X; Ul"rozen)lae Tr(P[LV)

X pFv

@ Small but finite e for invertibility (¢ < 1/8)
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Spectral vs Residual Flows

Spectral flows Residual flows
Update links

@ Transform plaquettes

o Limited by passive plaquettes Denser active mask

°
' ' ' o Limited by step size
@ Harder to invert

e Require fixed-point iteration
“ P Continuous Flows
el A - [Bacchio et al. 2212.08469]
@ p @ Continuous time
. . o Unmasked

' ' : @ Requires ODE integration
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https://arxiv.org/abs/2212.08469

Pseudofermion Models

Fermions

Fermion target:
p(U) x el det M[U]

Methods:
o Compute det M directly
o Simple, but not scalable
o Estimate det M
o E.g. pseudofermions

Ryan Abbott (MIT)
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[Albergo et al. 2202.11712]

December 10, 2024 5/9


https://arxiv.org/abs/2202.11712

Pseudofermion Models

Autoregressive Pseudofermion modeling

Target Distributions: Models:
e Marginal:
pm(U) = e 56(U) det M[U] —
(i - U ——— .9}
roposed
e Conditional: X — (7 - ¢ configuration
1 Fap—1 “conditional”
—¢'M~1¢
pe(¢ | U) o det M[u]e Prior:
. @ Gauge z ~ Haar, heatbath, ...
o Joint: . oyt
@ Pseudofermion y ~ e™X'X
Pioint(U, @) = pc(é | U)pm(U)

_ —otTm—1
=e S6(U)=¢"M™"¢ [Albergo et al., 2106.05934]
[Abbott et al., 2207.0945]
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https://arxiv.org/abs/2106.05934
https://arxiv.org/abs/2207.0945

Conditional Model (2 Flavor Theory)

[Albergo et al., 2106.05934]
[Abbott et al., arxiv:2207.0945]

“marginal”

(v —— )

/ proposed
configuration
X —| £&i0) | ¢

“conditional”
. A
Prior xy ~ e™X'X
1
Target ¢ ~ det(DDT)

e Optimal model: ¢ = f(x | U) = D[U]x
o But det J = det DDT not tractable

—¢1(DDT) 1

e

e Estimate optimal model with tractable (gauge-equivariant) layers
¢a(x) = A[U](x)¢a(x) + B[U](x, y)d¢(y)
or(x) = or(x)

e A[U], B[U]: (learned) linear operators
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Example: Scalar Field Theory

Fields ¢(x) € R, target p(¢) oc e~ (%)

Split z — z,, zf active/frozen

e Typically: even/odd checkerboard

Inverse:

zf

Z

b = zf

Arbitrary
functions

$a = %) © z, + t(zf)

= of

=) & (¢, — t(or))

Tractable Jacobian: detJ =[]; es(@r)i
Compose alternating transforms (¢a, ¢r) <> (¢, ¢a)

Ryan Abbott (MIT)
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[Dinh et al, 1605.08803] [Albergo e
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https://arxiv.org/abs/1605.08803
https://arxiv.org/abs/1904.12072

Reverse KL Training

o Model density q(¢), target p(¢) = +e=5(¢)

o Reverse Kullback Leibler (KL) loss L: Key facts
Drki(qllp) = 0
£ = Lialdlle) Dre(gllp) =0 q = p
q(¢)
=/d lo
/ ¢ q(¢) log o(0)

= Egq[log q(¢) + S(¢)] + log Z

Constant
Model samples (= can ignore)
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