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• Partition functions 

• Unfreezing topology 

• First order phase transitions



Nested sampling (John Skilling, 2004)
Nested sampling is a Monte Carlo method to estimate the 
likelihood vs phase space curve of a theory: 

- Gives access to density-of-states / partition function


- Estimates of observables at arbitrary couplings


- Cheaper/easier Monte Carlo steps


- May alleviate topological freezing 

- Easily parallelized 

good for phase transitions

constrained uniform instead of weighted sampling

benefits of the specific sampling schedule 
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Bayesian evidence integral:

Z = ∫ ℒ(θ)π(θ)dθ
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Nested sampling (John Skilling, 2004)
 Estimate phase space  within contours of constant likelihood ⇒ X ℒ

- Initialisation: sample  random points  from 

- Step : record smallest likelihood , drop the point, resample uniformly within  

- Analysis: compression factor  follows Beta distribution 
-

N θ π(θ)dθ
i ℒi ℒ > ℒi

ti = Xi/Xi−1 p(t) ∝ tN−1



Nested sampling (John Skilling, 2004)

Result from simulation  ordered list of ⇒ {Xi, ℒi}



Nested sampling (John Skilling, 2004)
 Estimate phase space  within contours of constant likelihood ⇒ X ℒ

- Partition function and observables for any value of , e.g., with  : 
         
 
 
                                              a posteriori ! 

- Density of states    universal function independent of :  
 
                                                                             
 
 

- Possible to restrict sampling to important regions in phase space (or energy)

β ℒ = e−S

⇒

⇒ β

Z(β) = ∫
1

0
dX ℒ(X)β ⟨O⟩β =

1
Z(β) ∫

1

0
dX ℒ(X)β ⟨O⟩ℒ(X)

ρ(S) =
dX
dS

= −
dX

d ln ℒ
Z(β) = ∫ dS ρ(S) e−βS



Application to gauge field theories
Parameters         gauge fields      

 

Likelihood         


Prior               Haar measure on gauge group

θ ⇒ U

ℒ ⇒ L = exp(−S[U])

π(θ) ⇒

                                       2d quenched U(1)  (Schwinger model)

                                 topological freezing  
                         
                  4d quenched SU(3)  
                                 first order phase transition

⇒

⇒

Example applications:  



Likelihood  vs. prior volume  and density of statesL X
 …or better  and  vs :−ln L = S ln S −ln X    …or  and :ρ(E) = dX/dE ln ρ(E) = − X d ln X/d ln L



Partition function  with weights at Z β = 5.0



Free energy density, continuum limit 



Plaquette value vs  β



Topological charge with weights at β = 5.0



Topological charge distribution



Topological charge with weights at β = 10.0



Topological charge with weights at β = 10.0



Topological susceptibility continuum limit



Summary

• Nested sampling has the potential to unfreeze topology 


• Nested sampling parallelizes trivially 


• Scaling with  needs to be investigated in detail


• Application to 1st order phase transitions

V



















Improvement achieved using:

• modified prior  

with 

• Savitsky-Golay filtering

π(U) ∼ exp{−βS[U]}
β ∼ βc



Conclusions
Nested sampling is a promising alternative Month Carlo method:

• very different sampling strategy (uniform within contours)


• it has the potential to unfreeze topology 


• it can alleviate the suppression of  
              tunnelling in 1st order PT


• it parallelizes trivially 

Challenges and outlook:

• Scaling with  needs to be investigated


• inclusion of fermions

V



{c1, c2, …}

c0

1
β

fixed 
point

critical 
surface ξ/a = ∞ quantum perfect: 

    no lattice artefacts⇒

classically perfect: 
   no lattice artefacts 
       on classical configurations
⇒

FP action
RT

Alternative approach [ Ipp, Müller, Holland, Wenger, 2401.06481 & 2501.XXXXX ]

to avoid critical slowing and topological freezing

Use highly improved actions and simulate at coarse lattice spacing 

 physics informed flow (based on RG)⇒
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