National Laboratory

k? Brookhaven

Computational and algorithmic advances using Grid

Peter Boyle, Brookhaven National Laboratory

~RBC-UKQCD simulation plans
_Field Transformation HMC implementation and status
~Multiple RHS multigrid for MDWF

~Grid and GPU portability
~Data layout: SIMD vs SIMT
_Offload primitives
~Data motion: O(1) software managed cache
_Performance on Exascale systems

SciDAC-5 personnel

https://scidach-fastmath.Ibl.gov/
https://petsc.org/release/

SPETSc MuTAO FacrMAT

SciDAC:
m MIT - Youssef Marzouk (FastMath Uncertainty Quantification), Jan Glaubitz
m LBNL - Mark Adams (FastMath PETSc)

m SUNY Buffalo - Matt Knepley (PETSc), Joe Pusztay, Duncan Clayton
USQCD:
m ANL - James Osborne, Xiaoyong Jin

m BNL - Peter Boyle, Taku Izubuchi, Chulwoo Jung, Christopher Kelly, Shuhei Yamamoto,
Patrick Oare

m FNAL - Andreas Kronfeld

m Boston University - Rich Brower, Nobu Matsumoto
m Columbia - Norman Christ, Yikai Huo

m Indiana - Steve Gottlieb, Leon Hostetler

m MSU - Alexei Bazavov

m UIUC - Aida El-Khadra, Michael Lynch

m Utah - Carleton Detar, David Clarke k? BrDUkhaven

National Laboratory

Future of RBC-UKQCD simulation program?

-~ How can we go beyond present lattice spacings and lattice sizes and exploit available GPU opportunities?
o FTHMC: 1/a = 3.5 GeV, 128"3x288 lattice volumes, high GPU efficiency

~ Accomplished because Grid provided access to GPU performance for algorithm development
_ Topological sampling is now adequate with FTHMC and longer trajectories on this lattice

= Large volumes challenge eigenmode deflation in valence analysis
~ Problem is solved by multiple right hand side multigrid

~ Entire physics work flow (valence and HMC) runs fast at scale because of a portable, highly efficient GPU
implementation

- Will enable 4 lattice spacing continuum limit for many quantities at physical quark mass with MDWF.

Field Transformation HMC (SciDAC-5)

oUnpublished quenched implementation and demonstration in Qlat, by Luchang Jin
oDecorrelates DBW2 more efficiently
oFollows Luscher’s Wilson flow approach, but does NOT take continuous flow limit
~Just take one big, cheap step

oarXiv:2212.11387 Nobu Matsumoto, Taku lzubuchi Lattice 2022

~arXiv:2401.16620 Peter Boyle (Grid implementation), Lattice 2023
~Reimplemented FTHMC for plaquette flow
~Runs with 2+1f dynamical DWF
~Store intermediate gauge fields to avoid inverse flow (as with stout implementation)

~Shuhei Yamamoto, Lattice 2024 (proceedings soon!)
~Effect on autocorrelation with large rho near bound
~Code optimisation

~Christoph Lehner, 2024
~GPT implementation
~Broad algorithm optimisation study
~Combine with long trajectories

https://arxiv.org/abs/2401.16620

® Much activity based on Luscher’s Wilson flowed HMC (arXiv:1009.5877)
Two possible directions to address critical slowing down:
m Complex IR flow: learned generative/trivialising maps;
m Simple UV flow: retain momentum based local update with field transformation FT-HMC
® Might be substantially easier to map QCD to QCD than trivialising to strong coupling
limit
UV smearing function U(V') brings tunable Fourier acceleration with incomplete trivialisation

dU
-S[u] _ avl _s[u(v)]
/dUe _/dV'dV e

m FTHMC :

Gaussian momentum distribution
Covariant smearing = wavelength dependent transformation to physical gauge field

Computable exact log det Jacobian

® Quenched FT-HMC; general Wilson loops (Matsumoto, Jin, lzubuchi, Tomiya et al)

0532 F

Grid implementation and demonstration, Lattice 2023 (PB)

(masked) stout plaquette smeared FT-HMC in Grid: enables Fermion simulations (PB, Jin)
® Reimplements Luchang Jin's Qlat FT-HMC; adds many options for fermions

L = 16 Domain wall fermions + Iwasaki gauge action
163 x 48, B =2.13, m,y =0.01, m; = 0.04 2+1 flavour
® TWQCD'’s exact one flavor algorithm for strange (arXiv:1403.1683)

2 X Nd subsets for plaquette stout smearing, p =0.1
® Developed under SciDAC-5 WP?2 ; single node of 4xAMD GPUs (Lumi-G)

® Field transformation overhead significant but sub-dominant

® Reproduces reference plaquette in smeared links
® Plan to investigate critical slowing down on 323 at 3 GeV

Exascale consideration: the Jacobian force parallelises; Fermion solvers do not.

® FT-HMC overhead is scalable.

Stout piaquatte FT-HMC ——
eference ensemble T

o © o o
E & & &8 £ §

Force smearing Fermion action + force
166s 900s

Trajectory | Jacobian
1530s 295s

Improved autocorrelation times (Shuhei Yamamoto, Lattice 2024); 4x code speedup.
Look at the master-field / stochastic locality site-wise autocorrelation of Wilson flowed energy densities

Autocorrelation) = > (6,(x) = 6,)0,,.x) - 0,,,)
\/zx (@n(x) _ @n)z\/ Zy (@n+r(y) - @n+r)2

Master-Field ACC for 24-Blocked E Density

6T = 1/48 576=1/96

— E4HMC
E4: p=0.100

x107' 1 —f~ E4HMC
E4:p=0.100 —— E4: p=0.124

—— E4:p=0.112 —— E4:p=0.112

—F E4:p=0.124

10° q
6x1071
4x1071 =
3x10-1 —— E8HMC — E8HMC -
E8: p=0.100 E8: p=0.100

2x1071 | - E8: p=0.112 —— E8: p=0.112

oo |[Feews] » Field transformation

o XQ[B reduces autocorrelation

E12: p=0.100 E12: p=0.100
2x1071 | - E12:p=0.112 —— E12:p=0.112

Foeem |Feees > The effect of smearing

e % s step size is not resolved

E16: p=0.100 E16: p=0.100 . . .
2x1071 | = E16: p=0.112 —— E16:p=0.112
—— E16:p=0.124 —— El6:p=0.124 I n IS Igu re

T T T T T T T T T T T T T T T T
0.0 25 5.0 7.5 10.0 125 15.0 175 0.0 25 5.0 7.5 10.0 125 15.0 175

Figure: Plots of local ACC. Blue line
is for HMC, and orange, greed, and
red lines for FTHMC with
p=0.1,0.12,0.124, respectively

Christoph Lehner (2024):
GPT implementation

Algorithm survey at scale on 64”3 x 96 (left) and final 12873 x 288 (right) physical point DWF 3.5 GeV 2+1f Lattice

tau=1 + tau=4, FT rho=0.05 2
tau=2 (stream 1) x tau=4, FT rho=0.12, FHB v
tau=2 (stream 2) tau=8 v 10 — ‘ ‘ ‘ ‘ ‘ ‘ ‘
tau=2, FT rho=0.12 tau=8, FT rho=0.12 _ _
tau=2, FT rh0o=0.05 tau=8, FT rho=0.05 FTHMC tau=8, tho=0.12
tau=4 © e N
tau=4, FT rho=0.12 °
1@:’+_L,+\+/\+ T 5 | i
¢ '
©
Ko}
e B S + + +
o 2 5 E 0+ + + .
Z ® A Al +
w v & Z
o . e + +
< o +
\ + +
0.1 5 7] -5 | + —
| | | | N
0 5 10 15 20 25
. . . _10 | | | | | | | |
configuration MD time (appx. same cost) 0 20 40 60 80 100 120 140

configuration MD time (appx. same cost)

3.5x speed up in decorrelation of subvolumes after second last doubling; consistent with observed thermalization on final volume
Topological sampling is restored

Combination of tau=8 trajectories AND field transformation is additive ¢

Domain Wall Multigrid (SciDAC-5)

MDWEF Multigrid: principally discuss: arXiv:2409.03904

- Multiple right hand side multigrid for domain wall fermions
_ Uses GPU matrix hardware efficiently
o Introduces multigrid preconditioned block CG for increased algorithm efficiency
~ Over 20x speed up on test system at physical quark masses c.f. red-black CGNE

Edinburgh-2014/03

Multiple right hand side multigrid for domain wall fermions with a Hierarchically deflated conjugate gradient
multigrid preconditioned block conjugate gradient algorithm. P. A Boyle!
(RBC and UKQCD Collaborations)

Peter Boyle
ISUPA, School of Physics and Astronomy,

aPhysics Department, Brookhaven National Laboratory, Upton, 11777, NY, USA The University of Edinburgh, Edinburgh EH9 3JZ, UK

(Dated: February 12, 2014)

Abstract PACS numbers: 11.15.Ha, 11.30.Rd, 12.15.Ff, 12.38.Gc 12.39.Fe

We introduce a class of efficient multiple right-hand side multigrid algorithm for domain wall
fermions. The simultaneous solution for a modest number of right hand sides allows for a
significant reduction in the time spent solving the coarse grid operator in a multigrid precon-
ditioner. We use a preconditioned block conjuate gradient with a multigrid preconditioner,
giving additional algorithmic benefit from the multiple right hand sides. There is also a very
significant computational rate gain from multiple right hand sides. This both increases the
arithmetic intensity in the coarse space and increases the amount of work being performed
in each subroutine call, leading to excellent performance on modern GPU architectures. The
software implementation makes use of vendor linear algebra routines (batched GEMM) that
can make use of high throughput tensor hardware on recent Nvidia, AMD and Intel GPUs.
The cost of the coarse space is made sub-dominant in this algorithm, and benchmarks from
the Frontier supercomputer system show up to a factor of twenty speed up over the standard
red-black preconditioned conjugate gradient algorithm on a large system with physical quark
masses.

Keywords: Multigrid, Linear Solver, Lattice QCD, Algorithms, BlockCG

Abstract

We present a multi-level algorithm for the solution of five dimensional chiral fermion formu-
lations, including domain wall and Mobius Fermions. The algorithm operates on the red-black
preconditioned Hermitian operator, and directly accelerates conjugate gradients on the normal
equations. The coarse grid representation of this matrix is next-to-next-to-next-to-nearest neigh-
bour and multiple algorithmic advances are introduced, which help minimise the overhead of the
coarse grid. The treatment of the coarse grids is purely four dimensional, and the bulk of the coarse
grid operations are nearest neighbour. The intrinsic cost of most of the coarse grid operations is
therefore comparable to those for the Wilson case. We also document the implementation of this
algorithm in the BAGEL/Bfm software package and report on the measured performance gains the
algorithm brings to simulations at the physical point on IBM BlueGene/Q hardware.

arXiv:1402.2585v1 [hep-lat] 11 Feb 2014

DWF: multigrid enfant terrible

m Spectrum of DWF presents problems to non-Hermitian Krylov solvers

m Why? Krylov space is the span of polynomials of matrix M.
Let |i) be the set of right eigenvectors, &(x) = c,x" a polynomial

Mli) =
T’ =
Krylov

Il/ =

True

ll/ =

Aili)
nili)
Z(M)n = (A)nili)

%I_Tlim

m There exists a contour C contained entirely within the (dense in large/infinite volume)

spectrum such that

% PRV () dz =0
C

74 Fe(2)dz = 1 dz =2mi
C cZ

Im Lambda
o

m Thus the Krylov polynomial and true solution must differ within the domain of the spectrum

m Must differ from solution between discrete eigenvalues. Low order polynomial is inadequate

m Manifests as slow convergence, perhaps of order system size

11

residual

CG (and other Krylov solvers) are a function only of the spectrum:

Changing volume 16x didn’t affect convergence.
But deflating on 16x bigger volume is a 256 times more expensive (!)

: 483 RBCG —— |
o1 b 96° RBCG —]

3 Measured convergence rate in tail: Tcg = 999451
0.01

0.001

Chebyshev bound: ¢ = % — (0.999445.
1 Amax = 89.757 Apin = 6.92238 x 106

0.0001 |
1x10°8 |
1x10°6 |

1x107 |

We are in large volume limit with dense spectrum
_ Orders of magnitude more EV’s than order of polynomial
1x10°9 (') ' ' ' ' '] Saturates worst case minimax bound

5000 10000 15000 20000 25000 30000
fine matrix multiplies

1x10°8 |]

12

Multigrid algorithms

Multigrid Dirac solvers:

elearn near null space of Dirac matrix (~60 vectors): non-trivial in gauge theory
eBreak vectors into local wavelet basis chunks

eCalculate a representation of Dirac operator within this critical subspace

eUse as an approximate near-null space multigrid preconditioner

o For DWF fine operator is M;CMPC , where M, = (Mee — MeoMo_OlMoe)

e 81 point stencil !

Algorithm Operator Iterations Full Matmuls Time (s)

} CGNR MM 9541 19082 183s
BiCGSTAB ML, M 4140 8280 79s
prec-CGNR (Mee — MeoMp,' Moe)! (Mee — Meo M, Moe) 3224 6448 62s
% prec-CGNR (1 — M ' Meo M, Moe)T (1 — M Meo Mt Moe) 3880 7760 77s
GCR(32,32) ML, M 8693 17386 A74s

(Figure “"borrowed’” from Martin Lischer’s paper)

CERN-PH-TH/2007-096
Local coherence and deflation of the low
I | I I I I I I I quark modes in lattice QCD
01 02 03 04 05 06 07 08 09 1 Martin Liischor

13
X / L CERN, Physics Department, TH Division
CH-1211 Geneva 23. Switzerland

Multigrid preconditioners

Low mode subspace vectors ¢ generated in some way

m Inverse iteration, Inverse iteration with self refinement, Chebyshev filters

ot ={ #§) X (1)
span{¢y } C span{¢;}. (2)
Ps=)loa){¢cl + Ps=1-Ps (3)
k,b
Mss Mg P<MPs PsMPs
M:(May Mo):< PiMPe PoMPs) (4)

We can represent the matrix M exactly on this subspace by computing its matrix elements, known
as the little Dirac operator (coarse grid matrix in multi-grid)

AR = (97 IMIee) i (Mss) = A%167) (97|, (5)
the subspace inverse can be solved by Krylov methods and is:
0 0 R
o=(o) i Md=(ADPlenef ©)

It is important to note that A inherits a sparse structure from M because well separated blocks do
not connect through M.

2 level ADEF-2 preconditioned CG algorithm

Flexible ADEF2 Preconditioned Conjugate Gradient /

Multigrid cycle is introduced as a CG preconditioner

1. z arbitrary /

2. M—1.= (PrMirs(H,A) + Q)

3. 29=Qb+P : : : : L

1 0~ bt Pra Flexible algorithm: orthogonalise to previous search directions

. To = b— 7‘[:[:0

5. 20 =M"'ro ; po = 20 to tolerate preconditioner variability - if A is not constant, maintaining
6. for iteration k €0,1,2... . ol |

. d — Hpy / A-orthogonality is hard!

k—1

R o

9 o = (ks Ui)/ (P> i) Coarse grid correction
10. Tyl = Tk + Pk
11. Tk+1 = Tk — OpWg
12. 2kt = M Deflate this with O(200) coarse grid eigenvectors
13. Br = (k415 2k41)/ (Tk, 2k)
14. Pk+1 = Zk+1 + BkPk
15. end for Compute using block Lanczos
16. return xyq;

Figure 1: Flexible ADEF2 preconditioned conjugate gradient algorithm following Tang et al[41] for solving
a Hermitian system Hz = b, with an additonal flexible search direction orthogonalisation (step 8). We hav

implemented “inexact preconditioned CG”[43] and “flexible CG” [44] variants of the ADEF2 algorithm/4o
address the variability in the preconditioner when it is composed of Krylov processes. The matrix @Q is a

coarse grid correction, and the matrix Myrs(#,A) is a smoother in multigrid nomenclature. The Galerkin . . 1
projector Pg is defined in the text. 7 iterations of CG ~ ————
H + A

First step: reimplement HDCG in Grid to run on modern GPUs

Smoother - use CG but force it to look at high end of spectrum

- Coarse grid was expensive and difficult to optimize on GPUs as not enough work/latency dominated
= Rapidly concluded | needed multiple right hand side implementation T

Why design algorithms for multiple right hand sides?

Faster code

~ Applying the coarse operator is dominated by cost of loading n]fasiscoefficients Aij and applying to the n;,;, coarse vector g[)j

~ We can apply to several vectors at once, loading n]fasis coefficient matrices and ny ;. X 11,5,
> Whenn,,, < n,,; the additional right hand sides are free

» Promoting to matrix matrix operations increases arithmetic intensity
> Using multiple right hand sides increases the parallelism in the coarse operations: very GPU friendly

‘A \ vy [P
A ¥ _ b,
A Y3 bs BlockCGrQ
\ A)\¥3) b 1. HeCmm
"4 2. B source € C"*™rhs
Faster algorithms 3. X arbitrary € C*ri-
4. Ry= B —HX,
~ Block algorithms, such as BlockCG, can share the Krylov space between 5. QuCo = Ry
multiple solves 6. Do =Go
. . 7. for iteration k € 0,1,2...
- Known to accelerate staggered fermions; advocated as alternative to 3. 7, = HDy,
multigrid for staggered (Clark et al, 1710.09745) 9. My = [D} Zx) ™!

—
e

Xkt1 = Xg + DMy,

Qk+1Sk+1 = Qr — Zp My,
Diy1 = Qrt1 + DkS};_H 16
Crt1 = Sk+1Ck

2

“Linear algebra scales as n;

[—
N =

~ Matrix multiply scales as n_

—_
&

Preconditioned Block CG

> To combine multi-grid with block algorithms had to solve two problems

_ Introduce a preconditioned block CG
o This did not exist in the literature, despite being relatively obvious

~ Address preconditioner variability: nrzhs X m,, . orthogonalisation is expensive

~ Replace CG based smoother and coarse solver with a fixed polynomial

~ Perform CG in composite matrix M~'A and with M-inner product
© M~!A is only Hermitian in the M-inner product (x| y),, = (x| M| y)
© The M-inner products are re-written as (Z|Z),, = (Z| 2)g

Preconditioned BlockCGrQ

= TkSk‘l

1. 20 = B — HXO

2. Zo M~ 120

3. C()CO ZO 20 = <Z0|Z0>M

4. g =2Cy" ; Qo= ZoCy'

5. Do = Qo

6. for iteration k € 0,1,2...

7. R — HDk

8. Z =M1z

9. Ni = [Df - 2] ™ = (D| Z1) 3/
10. Xi+1 = X + DNy,
11. tk =qr — 2k Nk 5 Tk = Qr — Zp Ny
12. SiSpi1 =T} -ty = (T|T)n
13. Gkl =tkS; " 3 Qre1
14. Dis1 = Qi1 + DiS}
15. Cry1 = SiCy

17

Stationary coarse grid deflated Chebyshev inverter

Break source into pieces parallel and perpendicular to low mode space
Solve with deflation (parallel) and polynomial approximation (perp)

b = bl £t
b” - -) (1 b, e (S :]']‘ e e
(;h)(ﬂ) QChebytdefl _ dlag()\mm""’)\nev’]P(Ch by)\nevﬂ),”_’PCh by(/\mam))
ey Cheby+defly I Cheby /7 L
b (1—Z|z')(z‘|)b, QCheturdefly — Defi(pl) 4 PCheby (L),
=1

ol — (nz |Zi\<’|> b.

Stationary Fine grid smoother : fixed order Chebyshev inverse over spectral range

18

Defining the coarse operator: Low mode subspace setup and fidelity

Several multigrid subspace setup options:
- Recursive Chebyshev low pass filters (HDCG, HDCR)

~ Rational function lowpass via single multishift CG

1
fQ) =
A+ ADA+ M)A+ M)A+ Ay)

- Demonstrated use of Lanczos Eigenvectors is superior

19

Measure completeness of Eigenvectors in coarse basis

~ BFM Filter scheme: 64x (rational 4th order low pass + shifted CG refine)
~ Grid Filter scheme: Chebyshev low pass + shifted CG refine
= Grid: Lanczos eigenvectors (4x more costly - or more)

E;, = 1 — PPH]3)|.
_ re-expand 200 lowest modes in the Filter scheme coarse grid v \/| |()| >||
_ projectCoarse, promoteFine, take difference
_ projectCoarse, promoteFine, 7step smoother, take difference E,meOthed = \/| |M1rs(1 — PPT)|3)||.

Filter coarse space completeness with smoothing <

0.01 f

0.001

Eigenvector coarse space completeness ~ +
Eigenvector coarse space completeness with smoothing <

0.0001 ¢

1x107 ¢

1x107 k£
N e
1x10 1‘3 o
0001 1 1 1 1 1 1 1 Il 1 1X10'9 1 L 1 1 1 1 1 1 1
0 20 40 60 80 100 120 140 160 180 200 0 20 40 60 80 100 120 140 160 180 200

Figure 4: On our 48 x 96 test volume we can assess the completeness of the low mode by computing
E; = /||(1 — PP1)|i)|| and Esmeothed = | /||M;gs(1 — PP1)]i)|| for each eigenpair, here with the Filter
based subspace setup (left) and Lanczos based setup (right). Post-smoothing reduces the error and may
be indicative of a relative cheap way to improve coarse operator based low mode variance reduction. The
exact eigenvectors included in the coarse basis (right) are faithfully reproduced to numerical precision, while
higher modes have a percent scale error.

20

Compare coarse eigenspectrum to fine eigenspectrum

0.0100000

0.000010

T T T
-+ T
‘ - .
» T %
+ X
+ X
0.0010000 + X
" Fineevals + i >>§
Coarse evals, Lanczos setup <
Coarse evals Chebyshev setup - ¥
Fine evals +
0.0001000 ¢ T % Coarse evals, Lanczos setup X
+ % Coarse evals Chebyshev setup
] + X
‘ + X
0.0000100 | + X
0.0000010
0 1 2 3 4 5 6 0 1 2 3 4 5 6

Figure 5: Spectrum of the lowest 200 eigenmodes of the fine operator and the coarse operator with both
Lanczos (green) and Chebyshev filter (blue) setup schemes with 62 near null basis vectors on the 483 lattice.
A cluster of exactly npqsis = 62 very low eigenvalues are seen in the coarse operator, corresponding to
the maximal diagonalisation of the fine operator within this set of near null vectors, whereas directions that
involve a non-trivial coarse coordinate dependence in the coarse eigenvector necessarily incur spectral leakage
at the boundaries between blocks and this lifts the coarse eigenvalue by an order of magnitude. The upper

There are exactly n ;. very low modes. Could probably avoid coarse Lanczos

Many more approximate low modes with eigenvalues 10~ or higher
Diagonalising within the original vectors preserves near null property
Moving out this pace raises eigenvalue due to sharp edges!

Very lowest modes exactly preserved in Lanczos subspace coarsening (60 vecs)
Fairly rapidly loses accuracy, and gap in spectrum present in both

21

96”3 coarse spectral density

70

(%)
)
©
(@)
S
2
i)
o
O
©
x
(]
| -
©
()
C
()
=
eT0]
()]
| -
(@]
e}
(&
()
>
2
(%)
©
O
o
(o}

And higher approximate modes

|
(o]
I
o
(=]
|
i
|
()]
I
(9]
<
©
<
Lo
<
(2]
N

Number density scales with volume

28
26
25
19
13
0 "

60

50
40
30
20
10

0

48”3 coarse spectral density

96”3 coarse spectral density

== DHINslnlnenls . snenl b s B ssll _sem.mmmn .m0 L sen B smnlin.nl.
0 o
R

Figure 6: Spectral density (modes per bin, bin width 5 x 10°) for the coarse operator on the 483 volume
(left) and 96° volume (right). There is a peak of ny,s;s = 62 modes in the correct physical low mode region,
corresponding to the dimension of the input set of near null vectors, with the eigenvectors in practice found
by diagonalising mainly within this basis. Directions outside this sub-space necessarily induce upwards
spectral leakage leaving this cluster clearly detached from the bulk spectrum with about 2 or 3 modes per
bin. If we compare these, we see that the detached cluster again corresponds to the number of basis vectors
defining the coarsening, but the density of modes in the higher, bulk spectrum grows linearly in the volume
by exactly the expected factor of 16.

Multigrid solver performance

All tests run on Frontier@ORNL, 18 or 288 nodes
AMD GPU supercomputer, similar to Lumi-G
Mobius DWF with Ls=24 and physical quark mass and 1.78GeV lattice spacing

483 x 96 483 x 96 96° x 192
Algorithm Flex-ADEF2 PrecBlockCGrQ Flex-ADEF?2
Npasis 62 62,64 60
Nyhs 12 12 12
block 4.4.6.4 4.4.6.4 44
Smoother M;rs(2.0,7) Pcheby (2.0, 92.0, 8) Mirs(2.0,7)
Coarse solve | Defl CG tol 0.04 | Pcheby+defl(0,02,40,120) | Defl CG tol 0.04
Coarse EVs 192 192 1000
Setup Lanczos/Cheby Lanczos Cheby
Speedup 12x - 15x 20x 10.5x

24

Factor of > twenty speed up

- N-lowest eigenvectors was the best setup
~ BlockCGrQ for 12 RHS was best (20% gain)

_ Flexible ADEF2 with multiple RHS was still good

 Filter setup was competitive and substantially cheaper

Setup Npasis | Algorithm Outer Fine 12 solves (s) | Speed up
Iters matrix
multiplies
963 x 192 x 24
Filter 60 FlexADEF2 | 187 1683 1060 10.5
- - RedBlackCG | 25984 25984 12720 1

Setup Npasis | Algorithm Outer Fine 12 Speed up
Iters matrix solves
multiplies | (s)

483 x 96 x 24

EV 64 PrecBlockCGrQ | 108 1080 460 20.2
EV 62 PrecBlockCGrQ | 113 1130 480 19.3
EV 62 FlexADEF2* 131 1300 570 16.3
EV 62 FlexADEF2 141 1269 602 15.4
Filter 62 PrecBlockCGrQ | 123 1230 499 18.6
Filter 62 FlexADEF2 167 1503 720 12.9
EV (sum-2) 62 FlexADEF2 213 1917 934 9.9
EV (i2=0) |62 FlexADEF2 255 2295 1090 8.5
EV (il3=0) |62 FlexADEF2 268 2412 1182 7.8
- - RedBlackCG 26075 26075 9288 1

25

1 F T T T T T 3

483 mrhs HDCG ——] 1 T T T T T T 3 T T
ot b , 489RBCG ——] f 56° mme HDGG
: 96 mrh‘s3 HDCG 0.1 ¢ 3
96° RBCG : : 5
0.01 F— 0.01 | 1
0.001 | ~— 0.001 |
T 0.0001 | ™~ = i]
2 5 [3 1 :
e 1x10° ® 1x10° }
1x10°6 | 1x10°8 |
1x107 | 1x107 | 1
1x10°® | 1x10° |
1x1 0-9 L 1 1 1 1 1 1X10-9 i ! 1 1 1 1 1 1 1 |

0 5000 10000 15000 20000 25000 30000 0 200 400 600 800 1000 1200 1400 1600 1800

fine matrix multiplies fine matrix multiplies

Figure 7: (Left) Convergence of mrhs-HDCG and red-black preconditioned Conjugate Gradient on sample

483 x 96 and 96° x 192 configurations. (Right) Zoomed comparison between the two volumes on the HDCG
convergence history.

26

483 mrhs HDCG Filter
962 mrhs HDCG Filter

0.1 483 mrhs PrecBlockCG Filter

' 483 mrhs PrecBlockCG Lanczos

0.01 483 mrhs PrecBlockCG Filter (24 rhs)

residual

1x1 0-9 |]] | |]] |
0 200 400 600 800 1000 1200 1400 1600 1800

fine matrix multiplies

Figure 8: Convergence of Flexible ADEF2 and preconditioned BlockCGrQ on the 483 configurations with
12 right hand sides and 62 basis vectors (either eigenvectors or filtered noise vectors). The Block algorithm
substantially reduces the difference between the eigenvector and filtered vector basis creation choices. The
Block algorithm appears to better tolerate an imperfect setup than preconditioned CG alone. With 24 right
hand sides and the Filter setup there is clearer evidence of the superlinear convergence property of BlockCG,

however with the current software implementation the linear algebra overhead is too large to make this
beneficial.

Solution error is low mode dominated

Power spectrum analysis (with Chebyshev filters)

Residual is high mode dominated
Smoother and coarse grid correction act in the spectral bans you expect
Multigrid V-cycle is active in low modes and below smoother edge

)

I Bandpasls [0,0.001 '

Bandpass [0.001,0.01
Bandpass [0.01,0.1
Bandpass [0.1,1
Bandpass [1,10
Bandpass [1,92

1
1e-06

1
1e-05

1
1e-04

1e-03

1
1e-02

1 Il Il
1e-01 1e+00 1e+01

1e+02

Eigenvalue | Solution Residual | r Migrsr Qr z =
range Error M—1r

[0, 0.001] 9.98E-01 3.95E-05 | 1.54E-06 | 3.71E-05 ||8.19E-01 5.08E-01
[0.001,0.01] | 1.32E-03 1.59E-04 | 1.25E-05 | 3.01E-04 ||1.04E-01 6.81E-02
[0.01,0.1] 2.03E-04 2.55E-03 | 3.62E-04 | 8.57TE-03 | 3.98E-02 3.84E-02
[0.1,1] 2.24E-05 2.14E-02 | 1.27E-02 | 2.50E-01 | 1.11E-02 1.15E-01
[1,10] 1.03E-06 5.35E-02 | 1.11E-01 |L6.19E-01 || 2.44E-03 2.13E-01
[10, 100] 5.98E-08 9.20E-01 | 8.71E-01 | | 9.36E-02 | 1.74E-03 3.06E-02
Total 0.99943 0.99761 0.99545 0.97072 0.97797 0.97413

Table 5: To illustrate the spectral behaviour of the multigrid preconditioner, we take the power spectrum of
six different vectors with respect to the red-black preconditioned Dirac operator. These vectors are (left to
right) the error on the solution vector when the solver is only converged to 10~* accuracy and the residual at
this 10~ iteration. The error in the solution vector is predomninantly in the lowest bin, while the residual
is dominated by the highest few bins. The final four vectors are the final residual, the smoother applied to
this final residual (reduces power in the highest mode bin), the coarse grid inverse applied to the residual
(dominated by lowest spectral bin) and the composite multigrid preconditioner applied to this residual, with
quite an interesting spectral shape.

28

Multigrid software performance

29

MultiRHS coarse operator implemented using Batched BLAS calls

Coarse operations implemented using “Batched GEMM” APIs in HIP, CUDA and OneAPI (and Eigen for CPU)

Using machine learning tensor hardware in GPUs to speed up multi-right-hand side solvers in QCD

Grid / Grid / algorithms / blas /| (&

paboyle Batched blas, but not working yet on OneAPI

Name

[BatchedBlas.cc

[BatchedBlas.h

G G G G
€ Cu Cu €

Cu G €0

" A Cu G Cu G
FP16 or FP32 0 P16 FP16.or FP32

Batched complex GEMM performance on modern GPU nodes (TeraFlop/s)

Perimutter node

Nvidia A100

Aurora Node

Intel PVC GPU

Intel PVC tile

Frontier Node

AMD MI250X GPU

AMD MI250X GCD

o
-
=]
-
=)
=]

100.0

=}

GEMM performancen TeraFlop/s

mCoarseToFine (fp32) ~ WFineToCoarse (fp32) ~ m Coarse Operator (fp32) ~ mCoarseToFine ~ mFineToCoarse W Coarse Operator W BlockCG ThinQR (fp32) m BlockCG ThinQR

Figure 11: Performance of batched GEMM operations in TF/s as used in mrhs-HDCG across a variety of
modern GPUs and some of the most significant current supercomputing platforms. The Matrix dimensions
correspond to the application of the coarse grid operator, the projection of data from the fine grid to the
coarse grid, the promotion from the coarse grid to the fine grid and the QR rotation that enters the Block
conjugate gradient algorithms. These include the Frontier supercomputer at ORNL (four AMD MI250X
GPUs and eight logical GCD’s), the Sunspot/Aurora supercomputer at ANL (six Intel Pontevecchio GPUs
and 12 logical tiles) and the Perlmutter supercomputer at NERSC. Multiple TF/s per logical GPU is easily
obtained on most of the relevant matrix ranks, with the exception of the ThinQR factorisation in BlockCG
on the fine grid on AMD and Intel libraries. This is relatively easily addressed in our implementation by
using a batched call to execute many shorter K matrix multiplications and then summing manually the
resulting 12 x 12 matrices, and then yields several TF/s per GPU, but the vendor library delivers less than
10 GF /s performance without this approach.

30

Project (fine to coarse) Vee 0 CONpoioxNop, (26) = ijbasisvalock (2°) X Fyyyp i x Ny (2°)

PromOte (Coarse to flne) Vwc : FVblockXN'rhs (wc) — BVblockXNbasis (xC)CNbasiSXN'rhs (xc)
Coarse Operator vxc : CNbasisXths (wc) = CNbasisXths (xc) + Ag)vbasis XNbasis (.’EC) X BNbasisXN'rhs (xc + 61’)'
Frontier Aurora Perlmutter
AMD MI250X Intel PVC Nvidia A100

M N K | Batch | GCD GPU Node | Tile GPU Node | GPU Node

FP64
CoarseOp | 64 12 64 | 4096 3.4 6.7 26.9 | 3.7 7.3 43.8 4.5 18.1
Project | 64 12 256 | 4096 4.6 9.3 371 | 4.3 8.7 92.0 6.0 24.1
Promote | 12 256 64 | 4096 4.6 9.1 36.4 | 4.1 8.1 48.9 9.2 21.0
ThinQR | 12 12 1M 1 0.0 0.0 0.1 0.1 0.1 0.7 2.6 10.4
FP32
CoarseOp | 64 12 64 | 4096 5.9 117 469 | 10.1 20.2 121.2 | 4.5 17.9
Project | 64 12 256 | 4096 7.4 149 595 | 85 17.0 101.7 | 5.1 20.4
Promote | 12 256 64 | 4096 5.3 10.6 425 | 82 165 98.9 4.8 19.3
ThinQR | 12 12 1M 1 0.0 0.0 0.0 0.5 1.0 5.9 1.7 7.0

Conjugate Gradient is: H
1. Matrix
2. norm
3. linalg
4. Goto 1. Thread 19031 T |

A GPUOG

Tvead 1903 R0 i | o | 1 vo- | vl | o | o vi- | vo- N | vi- | - |

7 Perfetto

mrhs-Multigrid has

Navigation

1. 12xCG smoothers

2. BatchedGemm blockProject o msrecs | s

3. BatchedGemm deflate |

4. MultiRHS coarse CG solve “ e o

5. BatchGemm blockPromote S
6_ Linalg A“ "‘m » 31235120 GEMM kernels O 1] \|||H||I|H||J|||\(|:\(|)J|:ElleU|g||:\|!\|c\|!\rlwg\(lli||'|£\||||||]|||\|| THTTTT

7. Goto 1. > g

Figure 12: AMD Rocprof obtained profile from Frontier of the multigrid iteration on 18 nodes on the 483
test problem after careful optimisation. The general Grid software kernels are shown executing along side
GEMM kernels, used by projection to coarse, deflation, coarse Chebyshev solver, promotion to fine and then
a thinQR rotation. Broadly it is possible to perform almost the entire multigrid preconditioner in BLAS
routines using optimised hardware, except for the relatively modest overhead of data layout changes and of
course halo-exchange routines.

I Perfetto 7]

Navigation

[5 Open trace file

IC] Open with legacy UI v
A

O) Record new trace A 232256

678778 32259
Current Trace

rocprof-trace.json (480 MB) A 135364

Show timeline 232256

LELEERREEREREEREEEEEEERE LR EEEEEEEL

Download 093611
Query (SQL) A 1035360

Viz 135364

Grid kernels i e
31235120 GEMM kernels EEEEREEE et el
Coarse s

Metrics
Dimension ordered

) D B 0 [«

enci 1s)

t | batched GEMM calls (81 point
face exhcange

-
- Ll

-
-

Info and stats >

O)

Figure 13: AMD Rocprof obtained profile from Frontier of the Coarse Grid operator on 18 nodes on the
483 test problem after careful optimisation. The general Grid software kernels are shown executing along
side GEMM kernels. There remains some scope for further optimisation in the coarse space operator as
GPU synchronisation overhead remains a 50% overhead in that routine by fusing together larger batched
operations, perhaps an estimated 10% effect on the overall solver performance.

33

As was anticipated in paper, further improved the coarse operator with bigger GEMM batches since

= 81 point stencil as 9 batches of (coarse-vol x 9 stencil terms)
=~ Sum 9 temporaries at end
= Significant additional speed up (4.4ms -> 2.5ms)

| 00:00:02 | | 00:00:04 ‘ | 00:00:06 ' | 00:00:08

00:00:09 00:00:09 00:00:09
100 234000000 236 000 000 238 000 000

MWHMIP FII 1]} IIFFIIII\IIIIIIIII‘IIIIIIIII!“IMIHII

Halo Exchange ! ! ! n n n n !

I I I | | | I " "I | " I"I BatchGemm and linear combinations

Chebysh
AXPY X3 cclclchclclclclclclff

4x Avoidable | |
Lattice copy

(2 ID’d, not sure of where H H I
other 2 are)

34

Operation Time for component
Linear Algebra 16s
Fine residual 30s
Multigrid preconditioner 368s
Total 417s
Restriction 3.5s
Prolongation 2.9s
Coarse deflation 0s
Coarse solve 100s
Smoother 223s

Table 4: In the fastest Preconditioned BlockCGrQ run from the 483 ensemble we give the breakdown of the
total time into the component operations. The operations that are accelerated using the (batched) GEMM
interfaces are colored red, and consume around 30% of the run time, illustrating how machine learning and
artificial intelligence focussed matrix and tensor hardware can be used directly in multi-rhs multigrid solvers.
Of this overhead, the coarse grid deflation is around 1.5% but is the only element of the algorithm that scales

as O(volume?)

Only the coarse deflation is volume”2

Will declare problem successfully deferred for my lifetime (!)

Further gains in the coarse operator remain possible, but are 10% level

35

Software and Exascale machines

(Finally! The novel computing doo-dah bit)

36

o All major US supercomputers are GPU accelerated
~ There are multiple, software incompatible platforms
- Majority of recent EU supercomputers are GPU accelerated

~ Code must be highly parallel, regular (lots work items executing same software paths)

~ Data must be structured and laid out to create locality of access between work items
~ Used to be called vectorization, but the software interfaces complicate this a little.

~ Huge factors of computer performance will be lost if algorithms/software do not face these facts.

~ Not all algorithms will naturally suit GPUs. Life is tough.

If the internal abstraction is defined right, porting is easy !

e Performed the HIP and SYCL ports on the SAME DAY

37

Portability 101: Use an internal abstraction

e Grid contains a data parallel API, expression template engine, general QFT data types
e D-dimensional Lattice<T> containers have opaque layout and partial vector layout transformation

e Internal offload APl in ““Accelerator.h”
e accelerator_for() macro captures a loop body in a C++11 Lambda function and executes it.
e acceleratorCopyToDevice etc....
e deviceVector<T>

e Software managed cache of Lattice objects is maintained on device.
e Lookup in cache is O(1) overhead (hash table - cost does NOT grow with volume of data)
e True LRU Q (least recently used) eviction algorithm when a high-watermark is exceeded
e Transient / discard next facility
e Entries are “CpuDirty”, “AccDirty”, “Consistent” ; “Views” can be open for CPU or GPU but not both
e Opening views updates state and triggers data motion

e APl covers OpenMP, HIP, SYCL and CUDA: vector intrinsics for most CPUs and most major GPUs.
e Most users do not see this API because the Lattice ET engine sits above it.

e APl has also been used directly by C. Lehner (GPT), C. Kelly (CPS), Luchang Jin (Qlat)
e It’s open source and can be mined for ideas

38

#define accelerator_for2dNB(iterl, numl, iter2, num2, nsimd,

{

int nt=acceleratorThreads();

typedef uinté4_t Iterator;

auto lambda = [=] accelerator
(Iterator iterl,Iterator iter2,Iterator lane) mutable {
__VA_ARGS__;

Y

dim3 cu_threads(nsimd,acceleratorThreads(),1);

dim3 cu_blocks ((numl+nt-1)/nt,num2,1);

LambdaApply<<<cu_blocks, cu_threads, 9, computeStream>>>(numl,num2,nsimd, lambda);

template<typename lambda> __global__

void LambdaApply(uinté4_t numl, uinté4_t num2, uinté4_t num3, lambda Lambda)

{

// Weird permute is to make lane coalesce for large blocks
uinté4_t x = threadIdx.y + blockDim.y*xblockIdx.x;
uinté4_t y = threadIdx.z + blockDim.z*blockIdx.y;
uinté4_t z threadIdx.x;
if ((x < numl) && (y<num2) && (z<num3)) {
Lambda(x,y,z);

CUDA/Nvidia

)

~ s T T s s s

\

accelerator_inline int acceleratorSIMTlane(int Nsimd) {
#ifdef GRID_SIMT

return

#else

return 0;

#endif

} // SYCL specific

spirv::initlLocalInvocationId<3, cl::sycl::id<3>>()[2];

#define accelerator_for2dNB(iterl, numl, iter2, num2, nsimd, ...)
theGridAccelerator->submit([&](cl::sycl::handler &cgh) {
unsigned long nt=acceleratorThreads();
if(nt < 8)nt=8;

unsigned
unsigned
unsigned
cl::sycl
cl::sycl

long unuml = numl;
long unum2 = num2;

long unuml_divisible_by_nt = ((unuml + nt - 1) / nt) * nt;

::range<3> local {nt,1,nsimd};

::range<3> global{unuml_divisible_|

cgh.parallel_for(

1}

cl::sycl::nd_range<3>(glo
[=] (cl::sycl::nd_item<3>
[[intel::reqd_sub_group_s
{
auto iterl = item.ge
auto iter2 = item.ge
auto lane = item.ge
{ if (iterl < unuml){ _
i

by_nt,unum2,nsimd};

bal,local),
item) /*mutablex/
ize(16)1]

t_global_id(@);
t_global_id(1);
t_global_id(2);
_VA_ARGS__ } };

#define accelerator_barrier(dummy) { theGridAccelerator->wait(); }

inline
inline
inline
inline

inline
inline
inline
inline
inline

void
void
void
void

void
void
void
void
void

P N

xacceleratorAllocShared(size_t bytes){ return malloc_shared(bytes,*theGridAccelerator);};

kacceleratorAllocDevice(size_t bytes){ return malloc_device(bytes,*theGridAccelerator);};

acceleratorFreeShared(void *ptr){free(ptr,*theGridAccelerator);};
acceleratorFreeDevice(void #ptr){free(ptr,*theGridAccelerator);};

acceleratorCopySynchronise(void) {

theCopyAccelerator->wait(); }

acceleratorCopyDeviceToDeviceAsynch(void xfrom,void xto,size_t bytes) { theCopyAccelerator->memcpy(to,from,bytes);}

acceleratorCopyToDevice(void *from,void *to,size_t bytes)

{ theCopyAccelerator->memcpy(to,from,bytes); theCopyAccelerator->wait();}

acceleratorCopyFromDevice(void *from,void *to,size_t bytes){ theCopyAccelerator->memcpy(to,from,bytes); theCopyAccelerator->wait();}

acceleratorMemSet(void *base,int value,size_t bytes) { theCopyAccelerator->memset(base,value,bytes); theCopyAccelerator->wait();}

SYCL/Intel

Device lambda (same as Kokkos): Capture loop body in ... and inject it into offloaded code as _VA_ARGS_39

extern hipStream_t copyStream;
extern hipStream_t computeStream;
/*These routines define mapping from thread grid to loop & vector lane indexing */
accelerator_inline int acceleratorSIMTlane(int Nsimd) {
#ifdef GRID_SIMT
return hipThreadIdx_x;
#else

return 0;
#endif #define accelerator
#define accelerator_inline strong_inline

} // HIP specific

#define accelerator_for(iterator,num,nsimd, ...) thread_for(iterator, num, { __VA_ARGS__ });
#define accelerator_forNB(iterator,num,nsimd, ...) thread_for(iterator, num, { __VA_ARGS__ });
#define accelerator_for2dNB(iterl, numl, iter2, num2, nsimd, ...) \ #define accelerator_barrier(dummy)
c \ #define accelerator_for2d(iterl, numl, iter2, num2, nsimd, ...) thread_for2d(iterl,numl,iter2,num2,{ __VA_ARGS__ });
typedef uinté4_t Iterator; \ accelerator_inline int acceleratorSIMTlane(int Nsimd) { return @; } // CUDA specific
auto lambda = [=] accelerator \
(Iterator iterl,Iterator iter2,Iterator lane) mutable { \ . .) . L .
#define thread_for(i, num, ...) DO_PRAGMA (omp parallel for schedule(static)) for (uinté4_t i=0;i<num;i++) { __VA_ARGS__ } ;
{ __VA_ARGS__;} \ #define thread_for2d(i1, ni,i2,n2, ...) \
}; \ DO_PRAGMA(omp parallel for collapse(2)) \
. for (uinté4_t i1=0;il<nl;il++) { \
int nt=acceleratorThreads(); \ for (uinté4_t i2=0;i2<n2;i2++) { \
dim3 hip_threads(nsimd, nt, 1); \ { __VAARGS__ } ; \
dim3 hip_blocks ((numl+nt-1)/nt,num2,1); \ B
if(hip_threads.x x hip_threads.y % hip_threads.z <= 64){ \
hipLaunchKernelGGL (LambdaApplyé4, hip_blocks,hip_threads, \
0,computeStream,
numl, num2,nsimd, lambda); \
} else {\
hipLaunchKernelGGL (LambdaApply,hip_blocks, hip_threads, \
0,computeStream, \
numl, num2,nsimd, lambda);
A\
}

HIP/AMD OpenMP

Low level code can differentiate “on the device” or “on the host” with GRID_SIMT macro 40

SIMD vs SIMT is the main programming model difference

The GPU premise is to provide hardware for executing 3D (6D) loops

Each loop iteration appears as a distinct ‘software thread’
Each thread is told which 3D iteration tuple it must work on.

Loop iterations that are ‘close by’ other can communicate with each other and MUST coordinate
memory accesses for efficiency.

SIMD = Single Instruction Multiple Data = CPU vectorization
SIMT = Single Instruction Multiple Thread = GPU hidden vectorization

SIMT in many ways makes vectorization easier and more automatic
but you need to get your head around what is happening and penetrate some jargon

41

(.

Single
Instruction
\ J
-

Single
address/
integer
variables

—____
~ ™
o

4)
Vector
Floating
point

N variables
_ J
~ ~

K

Vector
Floating

¥ point

SIMD / CPU model

X Arithmetic
N\ J

< »
< »

CPU
p ", |memory

<
<

Aligned contiguous load/store

Aligned vector operations
are cumbersome.

Grid uses translational
symmetry to ENSURE this

Single Instruction

SIMT / GPU model

=
f\/;(, N “Global” GPU memory
d \(Vector e > > All threads can address
i i c address/ e >, (any word
VERLIP
NAH Int(?gslr Fast load store to ‘global’ memory
Warla €5) IF addresses contiguous (coalesced read)
AV ‘ - D
i Vector — » | “Local” GPU memory
e F Floating “- >, | Threads live in parallel
\\ N point universes
\& variables _ J
- \ _/ Fast load store to ‘local’ memory
V\f N IF same location on respective stack
i F W\/ector
[|F Floating Local “physical” memory address
/ E ¢ point = (relative address<<shift) | threadlD
\
\< Arithmetic
\) Automatically interleaves local memory

if the threads are doing the same thiﬁg

Covariant programming : capturing the variation between SIMD and SIMT in a single code

The struct-of-array (SoA) portability problem:
® Scalar code: CPU needs struct memory accesses struct calculation
® SIMD vectorisation: CPU needs SoA memory accesses and SoA calculation
® SIMT coalesced reading: GPU needs SoA memory accesses struct calculation

® GPU data structures in memory and data structures in thread local calculations differ

Model Memory Thread

Scalar Complex Spinor[4][3] Complex Spinor[4][3]
SIMD Complex Spinor[4][3][N] Complex Spinor[4][3][N]
SIMT Complex Spinor[4][3][N] Complex Spinor[4][3]
Hybrid? Complex Spinor[4][3][Nm][Nt] Complex Spinor[4][3][Nt]

How to program portably?
® Use operator() to transform memory layout to per-thread layout.
® Two ways to access for read

® operator|] returns whole vector

® operator() returns SIMD lane threadldx.y in GPU code
® operator() is a trivial identity map in CPU code

® Use coalescedWrite to insert thread data in lane threadldx.y of memory layout.

43

Wilson Kernels

#define GENERIC_STENCIL_LEG(Dir,spProj,Recon) \
SE = st.GetEntry(ptype, Dir, sF); \
i (SE->_is_local) { \ in if/else for boundary / interior link.
int perm= SE->_permute; \

template <class Impl> a

auto tmp = coalescedReadPermute(in[SE->_offset], ptype,perm,lane);
spProj(chi, tmp);

} else {
chi = coalescedRead(buf[SE->_offset],lane);

}
acceleratorSynchronise(); \
Impl::multlink(Uchi, ULsU], chi, Dir, SE, st); < 5 |V|u|t|p|y|ng by gauge link is prOVIded by d

Recon(result, Uchi);

“policy” template class.

Share kernel source for BOTH flavored

ator_inline

void WilsonKernels<Impl>::GenericDhopSiteDag(StencilView &st, DoubledGaugeFieldView &U,

SiteHalfSpinor *buf, int sF, G'parity / C* and periOdIC

int sU, const FermionFieldView &in, FermionFieldView &out)

typedef decltype(coalescedRead(buf[@])) calcHalfSpinor;
typedef decltype(coalescedRead(in[@])) calcSpinor;
calcHalfSpinor chi;

// calcHalfSpinor *chi_p;

calcHalfSpinor Uchi;

calcSpinor result;

StencilEntry *SE;

int ptype;
const int Nsimd = SiteHalfSpinor::Nsimd();
const int lane=acceleratorSIMTlane(Nsimd);

GENERIC_STENCIL_LEG(Xp, spProjXp, spReconXp); These datatypes Change Ccova I"Ia ntly

GENERIC_STENCIL_LEG(Yp, spProjYp, accumReconYp); . N

GENERIC_STENCIL_LEG(Zp, spProjZp, accumReconZp); Wlth the arChItectU re for SIMD VS SIMT
GENERIC_STENCIL_LEG(Tp, spProjTp,accumReconTp);

GENERIC_STENCIL_LEG(Xm, spProjXm, accumReconXm) ;

GENERIC_STENCIL_LEG(Ym, spProjYm, accumReconYm) ;

Recovers parallel execution after thread divergence

GENERIC_STENCIL_LEG(Zn, spProjZn, accunReconzn) Contrast to most portability approaches where software is invariant

GENERIC_STENCIL_LEG(Tm, spProjTm, accumReconTm);
coalescedWrite(out[sF], result,lane);

44

Thread Divergence - GPU’s HATE branchy code

The thread enable mask is important!
If some threads say “IF” and others say “ELSE” then both IF and ELSE are computed with enable masks set accordingly

~ Parallel execution rapidly becomes serial execution in branchy code
> A program can be thought of as a binary tree of branch decisions
> Highly divergent code will have to execute down to ALL leaves of the b-tree
» Bad news for a lot of HEP event processing code, GEANT etc...
(Added to problem of object orientation and virtual pointers do not work in GPU memory systems)

GPU register files are huge.
> Allows to schedule loads earlier and cover latency
> Many threads sharing same execution pipes increases latency tolerance
' Reminder / humble-brag : | designed the adaptive prefetch engine on IBM BlueGene/Q - this also covers latency
Register files are multi-banked (unlike CPU) with access combination rules that only the compiler really handles well

Performance

46

Benchmark_usqcd - produces a CSV spreadsheet of results

A B
Memory Bandwidth

Bytes GB/s per node
6291456 254.227647

100663296 3500.053754

509607936 10351.75926

1610612736 14353.04629

Communications

Packet bytes direction
4718592
4718592
4718592
4718592

15925248
15925248
15925248
15925248
37748736
37748736
37748736
37748736

Per node summary table

L Wilson

Frontier MI250X4

NOWNNOWNNOWN

192
974
2959
9732
17661

GB/s per node
207
208
190
204
308
288
296
301
332
339
333
336

DWF4

2295
8668
17458
28906
34400

SDCC-A100x4

ZGEMM

Staggered GF/s per node

64
323
910

3605
7477

SDCC-H100x4

SDCC-H100x8

Aurora PVCx6

BATCH
16 256
16 256
16 256
32 256
32 256
32 256
64 256
64 256
64 256
256 256
256 256
256 256
256 256
256 256
256 256
256 256
256 256
256 256
16 256
16 256
16 256
32 256
32 256
32 256
64 256
64 256
64 256

SPR Xeon+HBM

GF/s per rank
5.787642
275.941053
256.925207
652.809961
180.69161
2346.463776
2338.287944
4660.337778
6563.214083
1950.83907
3647.22087
5604.080501
2874.041285
5651.272758
9905.36738
4444.295629
8589.934592
14851.20089
1928.415632
3717.942604
4652.260936
2995.931429
5122.814046
8310.695232
4350.655689
8146.75132
12874.60221

SPR+DDR

AMD CPU Genoa - 32x2

Dslash DWF/ Wilson/ Staggered for various local volumes per MPI rank
Communication bandwidth (intranode and internode)
Memory bandwidth
Batched CGEMM/ZGEMM performance (c.f. multiRHS multigrid, later)

Nvidia Hopper 8x H100 @ SDCC

47

Multi-GPU nodes give between 11TF/s and 40TF/s on AMD, Nvidia and Intel GPU nodes

Intel PVC: Aurora@ANL
AMD MI250: Frontier@ORNL, Lumi-G@CSC
A100: Perlmutter@NERSC, Booster@Juelich, Tursa@Edinburgh, Leonard@Cineca

Grid Dslash perfomance on single nodes @ fp32 and 3274

10000
| | ‘ ‘ i ||| | ||
100 I III

Nvidia A100x4 Nvidia H100x4 Nvidia H100x8 AMD MI250x4 Intel PVCx6 Xeon SPR+HBM Xeon SPR+DDR

mWilson GF/s mDWFGF/s mHISQGF/s

AMD Genoa

48

Perlmutter node

Nvidia A100

Aurora Node

Intel PVC GPU

Intel PVC tile

Frontier Node

AMD MI250X GPU

AMD MI250X GCD

Computation part of Coarse grid operators for multiple RHS can perform VERY well

(batched) GEMM performance for Multigrid operations on modern GPU nodes (TF/s)

““qqqqnu

o

20 40 60 80 100 120

M BlockCG ThinQR (fp32) W CoarseToFine (fp32) M FineToCoarse (fp32) | Coarse Operator (fp32) W BlockCG ThinQR m CoarseToFine M FineToCoarse m Coarse Operator

140

19

Communications performance is key to scalability

= Overlap communication and computation efficiently from 1674 - 2474 per GPU with 200GBit/s HFI per GPU
- 180GB/s bidirectional HaloExchange on 4x HPE Slingshot-11-200 OR 4x HDR-200
~ Booster, Tursa, Perlmutter, Frontier all scale very well
~ Aurora scales very well with up to 270GB/s bidirectional BW when placed in CPU’s HBM (6 HFI’s Slingshot-11)
< Aurora is preproduction, has early software, and results are subject to change.
o Systems that under provision network rapidly hit scaling problems

~ 1 |
mbde \
mbda
- pY p s p piQueueFinish
- Thread 12874 O A piqueuefi.. | | |p
e Addextorior 0 ARTRRARMA AR A B T o A\ AN
tbda faces] A RANK 0 DEVICE<x1921005200n [
— (] . 0>0:18:0:0 #0 4294967295
ibda# ™ = o eog
ju—] 1 g1 &AM Grid: WilsonKernels<Grid::Wilsonlmpl<Grid: Grid_simdstd::complex<f...
o . Thiead 12874 L0 Engine<00> 42949 [
el | 7295
:::: Halo Communication
and interior
bda/ Gather 8 computation overlap perfectity| Th;eqad 12874 LO Engine<2,4> 429496 O A A A A
ey faces 178 12874 L0 Engine<2,3> 429496 O A A A A
bda/ 90 WYY
- ;2;311 12874 L0 Engine<2,2> 429496 O A A A A
bda/ ;ﬁd 12874 L0 Engine<2,1> 429496 O A A A A
bda/ %gread 12874 L0 Engine<2,0> 429496
bd: 72 o A A A A
= fiead 1274 LoEnginec 0420496 [T Comman s\ ppesibamonyCany A A A A
N GPU A 1673 x 32 til
Tursa & Booster 3274 per urora, X per tile

11TF/s per node fp32 16-22 TF/s per node fp32 (preliminary)

TF/s

10000

1000

100

10

Preliminary scaling on Aurora.

The system is preproduction, has early software and results are subject to change.

Aurora@ANL Domain Wall Fermion operator scaling

10 100
Aurora Nodes

1000

TF/s per node

18

16

14

12

N
15

©

Aurora@ANL Domain Wall Fermion operator scaling

8 16

Aurora Nodes

32

64

128

256

51

512

Summary

e Grid Software is portable and performant on a broad range of architectures
e Software design is important
e After a lot of work, we run efficiently on many different high end computers around the world

e Multiple right hand side multigrid can use tensor core hardware very efficiently. Up to 100 TF/s per node !
e > 20x speed up on MDWF propagator compared to red-black CG baseline
e Alternative to Volume”2 eigenvector deflation. Makes largest volumes practical.
e Will now looks at HMC appropriate multigrid algorithms:
e direct coarsen PVdagM, use spectral improvement noted by Weinberg, Brower; avoid squaring condition number!

e Jacobian computable stout-like field transformation HMC is running in production on 128”3 x 288 3.5 GeV lattice
e Combined with long trajectories obtain 3.5x autocorrelation improvement
e Topological sampling is restored (for now)
e Need to investigate how and why it works in more detail (may lead to further gains)

¢ The level of optimization required to accompany algorithm development to make practical is genuinely distressing

52

