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RBC-UKQCD simulation plans 

Field Transformation HMC implementation and status 

Multiple RHS multigrid for MDWF 

Grid and GPU portability 
Data layout: SIMD vs SIMT 
Offload primitives 
Data motion: O(1) software managed cache 
Performance on Exascale systems 



2

SciDAC-5 personnel

https://scidac5-fastmath.lbl.gov/
https://petsc.org/release/

SciDAC:

MIT - Youssef Marzouk (FastMath Uncertainty Quantification), Jan Glaubitz

LBNL - Mark Adams (FastMath PETSc)

SUNY Bu↵alo - Matt Knepley (PETSc), Joe Pusztay, Duncan Clayton

USQCD:

ANL - James Osborne, Xiaoyong Jin

BNL - Peter Boyle, Taku Izubuchi, Chulwoo Jung, Christopher Kelly, Shuhei Yamamoto,
Patrick Oare

FNAL - Andreas Kronfeld

Boston University - Rich Brower, Nobu Matsumoto

Columbia - Norman Christ, Yikai Huo

Indiana - Steve Gottlieb, Leon Hostetler

MSU - Alexei Bazavov

UIUC - Aida El-Khadra, Michael Lynch

Utah - Carleton Detar, David Clarke



3

Future of RBC-UKQCD simulation program? 

How can we go beyond present lattice spacings and lattice sizes and exploit available GPU opportunities? 

FTHMC: 1/a = 3.5 GeV, 128^3x288 lattice volumes, high GPU efficiency 

Accomplished because Grid provided access to GPU performance for algorithm development 
Topological sampling is now adequate with FTHMC and longer trajectories on this lattice 

Large volumes challenge eigenmode deflation in valence analysis 

Problem is solved by multiple right hand side multigrid  

Entire physics work flow (valence and HMC) runs fast at scale because of a portable, highly efficient GPU 
implementation 

Will enable 4 lattice spacing continuum limit for many quantities at physical quark mass with MDWF.
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Field Transformation HMC (SciDAC-5)

Unpublished quenched implementation and demonstration in Qlat, by Luchang Jin
Decorrelates DBW2 more efficiently 
Follows Luscher’s Wilson flow approach, but does NOT take continuous flow limit

Just take one big, cheap step

arXiv:2212.11387 Nobu Matsumoto, Taku Izubuchi Lattice 2022

arXiv:2401.16620 Peter Boyle (Grid implementation), Lattice 2023
Reimplemented FTHMC for plaquette flow
Runs with 2+1f dynamical DWF 
Store intermediate gauge fields to avoid inverse flow (as with stout implementation)

Shuhei Yamamoto, Lattice 2024 (proceedings soon!)
Effect on autocorrelation with large rho near bound
Code optimisation

Christoph Lehner, 2024
GPT implementation
Broad algorithm optimisation study
Combine with long trajectories

https://arxiv.org/abs/2401.16620


5



6

Grid implementation and demonstration, Lattice 2023 (PB)



Autocorrelation

Figure: Plots of local ACC. Blue line
is for HMC, and orange, greed, and
red lines for FTHMC with
⇢ = 0.1,0.12,0.124, respectively

� Field transformation
reduces autocorrelation

� The e↵ect of smearing
step size is not resolved
in this figure
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Improved autocorrelation times (Shuhei Yamamoto, Lattice 2024); 4x code speedup. 
Look at the master-field / stochastic locality site-wise autocorrelation of Wilson flowed energy densities 

 ρ(τ) =
∑x (𝒪n(x) − 𝒪̄n)(𝒪n+τ(x) − 𝒪̄n+τ)

∑x (𝒪n(x) − 𝒪̄n)2 ∑y (𝒪n+τ(y) − 𝒪̄n+τ)2
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Christoph Lehner (2024):  
GPT implementation 
Algorithm survey at scale on 64^3 x 96 (left) and final 128^3 x 288 (right) physical point DWF 3.5 GeV 2+1f Lattice
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3.5x speed up in decorrelation of subvolumes after second last doubling; consistent with observed thermalization on final volume 
Topological sampling is restored 
Combination of tau=8 trajectories AND field transformation is additive
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Domain Wall Multigrid (SciDAC-5)
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MDWF Multigrid: principally discuss: arXiv:2409.03904 

Multiple right hand side multigrid for domain wall fermions 
Uses GPU matrix hardware efficiently  
Introduces multigrid preconditioned block CG for increased algorithm efficiency 
Over 20x speed up on test system at physical quark masses c.f. red-black CGNE
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DWF: multigrid enfant terrible

Spectrum of DWF presents problems to non-Hermitian Krylov solvers

Why? Krylov space is the span of polynomials of matrix M.
Let |ii be the set of right eigenvectors, P(x) = cnx

n a polynomial

M|ii = li |ii
h = hi |ii

yKrylov = P(M)h = (cnl n

i )hi |ii

yTrue =
1

li

hi |ii

There exists a contour C contained entirely within the (dense in large/infinite volume)
spectrum such that
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Thus the Krylov polynomial and true solution must di↵er within the domain of the spectrum

Must di↵er from solution between discrete eigenvalues. Low order polynomial is inadequate

Manifests as slow convergence, perhaps of order system size

24 / 28
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CG (and other Krylov solvers) are a function only of the spectrum:  

Changing volume 16x didn’t affect convergence. 
But deflating on 16x bigger volume is a 256 times more expensive (!) 

Chebyshev bound:

Measured convergence rate in tail:

We are in large volume limit with dense spectrum 
Orders of magnitude more EV’s than order of polynomial 
Saturates worst case minimax bound
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Multigrid Dirac solvers: 
•Learn near null space of Dirac matrix (~60 vectors): non-trivial in gauge theory 
•Break vectors into local wavelet basis chunks 
•Calculate a representation of Dirac operator within this critical subspace 
•Use as an approximate near-null space multigrid preconditioner 

• For DWF fine operator is  
• 81 point stencil ! 

M†
pcMpc ; where Mpc = (Mee − MeoM−1

oo Moe)

Multigrid algorithms

(Figure ``borrowed’’ from Martin Lüscher’s paper)
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Multigrid preconditioners

Low mode subspace vectors f generated in some way

Inverse iteration, Inverse iteration with self refinement, Chebyshev filters

fb

k (x) =

⇢
fk (x) ; x 2 b

0 ; x 62 b
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span{fk}⇢ span{fb

k }. (2)

PS = Â
k,b

|fb

k ihfb

k | ; P
S̄
= 1�PS (3)

M =

✓
M

S̄S̄
M

SS̄

M
S̄S

MSS

◆
=

✓
P
S̄
MP

S̄
PSMP

S̄

P
S̄
MPS PSMPS

◆
(4)

We can represent the matrix M exactly on this subspace by computing its matrix elements, known
as the little Dirac operator (coarse grid matrix in multi-grid)

A
ab

jk = hf a

j |M|fb

k i ; (MSS ) = A
ab

ij |f a

i ihfb

j |. (5)

the subspace inverse can be solved by Krylov methods and is:

Q =

✓
0 0
0 M

�1
SS

◆
; M

�1
SS

= (A�1)abij |f a

i ihfb

j | (6)

It is important to note that A inherits a sparse structure from M because well separated blocks do

not connect through M.

23 / 28
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2 level ADEF-2 preconditioned CG algorithm

Smoother - use CG but force it to look at high end of spectrum 

7 iterations of CG ~ 
1

ℋ + λ

Coarse grid correction 

Deflate this with O(200) coarse grid eigenvectors 

Compute using block Lanczos

Multigrid cycle is introduced as a CG preconditioner

Flexible algorithm: orthogonalise to previous search directions 
to tolerate preconditioner variability - if A is not constant, maintaining 
A-orthogonality is hard!

First step: reimplement HDCG in Grid to run on modern GPUs 

Coarse grid was expensive and difficult to optimize on GPUs as not enough work/latency dominated 
Rapidly concluded I needed multiple right hand side implementation
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Why design algorithms for multiple right hand sides?

Applying the coarse operator is dominated by cost of loading coefficients  and applying to the  coarse vector   

We can apply to several vectors at once, loading  coefficient matrices and  
When  the additional right hand sides are free 
Promoting to matrix matrix operations increases arithmetic intensity 
Using multiple right hand sides increases the parallelism in the coarse operations: very GPU friendly

n 2
basis Aij nbasis ϕj

n 2
basis nbasis × nrhs

nrhs ≪ nbasis

Faster code

Faster algorithms
Block algorithms, such as BlockCG, can share the Krylov space between 
multiple solves 

Known to accelerate staggered fermions; advocated as alternative to 
multigrid for staggered (Clark et al,  1710.09745) 

Linear algebra scales as  
Matrix multiply scales as  

n2
rhs
nrhs

A
A

A
A

ψ1
ψ2
ψ3
ψ3

=

b1

b2

b3

b4
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Preconditioned Block CG

To combine multi-grid with block algorithms had to solve two problems 

Introduce a preconditioned block CG 
This did not exist in the literature, despite being relatively obvious 

Address preconditioner variability:  orthogonalisation is expensive 
Replace CG based smoother and coarse solver with a fixed polynomial  

Perform CG in composite matrix  and with M-inner product 
 is only Hermitian in the M-inner product  

The M-inner products are re-written as 

n2
rhs × mmax

M−1A
M−1A ⟨x |y⟩M = ⟨x |M |y⟩E

⟨Z |Z⟩M = ⟨Z |z⟩E
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Stationary coarse grid deflated Chebyshev inverter

Break source into pieces parallel and perpendicular to low mode space 
Solve with deflation (parallel) and polynomial approximation (perp)

Stationary Fine grid smoother : fixed order Chebyshev inverse over spectral range
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Several multigrid subspace setup options:
Recursive Chebyshev low pass filters (HDCG, HDCR) 

Rational function lowpass via single multishift CG 

 

Demonstrated use of Lanczos Eigenvectors is superior

f (λ) =
1

(λ + Λ1)(λ + Λ2)(λ + Λ3)(λ + Λ4)

Defining the coarse operator:  Low mode subspace setup and fidelity
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BFM Filter scheme: 64x (rational 4th order low pass + shifted CG refine) 
Grid Filter scheme: Chebyshev low pass + shifted CG refine 
Grid: Lanczos eigenvectors (4x more costly  - or more)

re-expand 200 lowest modes in the Filter scheme coarse grid  
projectCoarse, promoteFine, take difference 
projectCoarse, promoteFine, 7step smoother, take difference

Measure completeness of Eigenvectors in coarse basis 
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There are exactly  very low modes. Could probably avoid coarse Lanczos 

Many more approximate low modes with eigenvalues  or higher  
Diagonalising within the original vectors preserves near null property 
Moving out this pace raises eigenvalue due to sharp edges! 

Very lowest modes exactly preserved in Lanczos subspace coarsening (60 vecs) 
Fairly rapidly loses accuracy, and gap in spectrum present in both 

nbasis

10−4

Compare coarse eigenspectrum to fine eigenspectrum 
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Multigrid solver performance

All tests run on Frontier@ORNL, 18 or 288 nodes 
AMD GPU supercomputer, similar to Lumi-G 
Mobius DWF with Ls=24 and physical quark mass and 1.78GeV lattice spacing
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N-lowest eigenvectors was the best setup 
BlockCGrQ for 12 RHS was best (20% gain) 
Flexible ADEF2 with multiple RHS was still good 
Filter setup was competitive and substantially cheaper

Factor of > twenty speed up
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Power spectrum analysis (with Chebyshev filters)

Solution error is low mode dominated 
Residual is high mode dominated 
Smoother and coarse grid correction act in the spectral bans you expect 
Multigrid V-cycle is active in low modes and below smoother edge
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Multigrid software performance



Coarse operations implemented using “Batched GEMM” APIs in HIP, CUDA and OneAPI (and Eigen for CPU) 

Using machine learning tensor hardware in GPUs to speed up multi-right-hand side solvers in QCD 

30

MultiRHS coarse operator implemented using Batched BLAS calls
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Project (fine to coarse)

Promote (coarse to fine)

Coarse operator
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Conjugate Gradient is: 
1. Matrix 
2. norm 
3. linalg  
4. Goto 1.

mrhs-Multigrid has 
1. 12xCG smoothers 
2. BatchedGemm blockProject 
3. BatchedGemm deflate 
4. MultiRHS coarse CG solve 
5. BatchGemm blockPromote 
6. Linalg 
7. Goto 1.
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As was anticipated in paper, further improved the coarse operator with bigger GEMM batches since 
81 point stencil as 9 batches of ( coarse-vol x 9 stencil terms) 

Sum 9 temporaries at end 
Significant additional speed up (4.4ms -> 2.5ms)
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Only the coarse deflation is volume^2 
Will declare problem successfully deferred for my lifetime (!) 
Further gains in the coarse operator remain possible, but are 10% level
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Software and Exascale machines 

(Finally! The novel computing doo-dah bit)
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All major US supercomputers are GPU accelerated 
There are multiple, software incompatible platforms 

Majority of recent EU supercomputers are GPU accelerated 

Code must be highly parallel, regular (lots work items executing same software paths) 

Data must be structured and laid out to create locality of access between work items 
Used to be called vectorization, but the software interfaces complicate this a little. 

Huge factors of computer performance will be lost if algorithms/software do not face these facts. 

Not all algorithms will naturally suit GPUs. Life is tough.

If the internal abstraction is defined right, porting is easy ! 

• Performed the HIP and SYCL ports on the SAME DAY
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Portability 101: Use an internal abstraction
• Grid contains a data parallel API, expression template engine, general QFT data types 

• D-dimensional Lattice<T> containers have opaque layout and partial vector layout transformation 

• Internal offload API in ``Accelerator.h’’  
• accelerator_for() macro captures a loop body in a C++11 Lambda function and executes it. 
• acceleratorCopyToDevice etc…. 
• deviceVector<T> 

• Software managed cache of Lattice objects is maintained on device. 
• Lookup in cache is O(1) overhead (hash table - cost does NOT grow with volume of data) 
• True LRU Q (least recently used) eviction algorithm when a high-watermark is exceeded  
• Transient / discard next facility 
• Entries are “CpuDirty”, “AccDirty”, “Consistent” ; “Views” can be open for CPU or GPU but not both 

• Opening views updates state and triggers data motion 

• API covers OpenMP, HIP, SYCL and CUDA: vector intrinsics for most CPUs and most major GPUs. 

• Most users do not see this API because the Lattice ET engine sits above it. 
• API has also been used directly by C. Lehner (GPT), C. Kelly (CPS), Luchang Jin (Qlat) 
• It’s open source and can be mined for ideas 
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CUDA/Nvidia SYCL/Intel

Device lambda (same as Kokkos): Capture loop body in … and inject it into offloaded code as __VA_ARGS__
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HIP/AMD OpenMP

Low level code can differentiate “on the device” or “on the host” with GRID_SIMT macro
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SIMD = Single Instruction Multiple Data = CPU vectorization 

SIMT = Single Instruction Multiple Thread = GPU hidden vectorization 

SIMT in many ways makes vectorization easier and more automatic 
but you need to get your head around what is happening and penetrate some jargon

SIMD vs SIMT is the main programming model difference

The GPU premise is to provide hardware for executing 3D  (6D) loops 

Each loop iteration appears as a distinct ‘software thread’ 
Each thread is told which 3D iteration tuple it must work on. 

Loop iterations that are ‘close by’ other can communicate with each other and MUST coordinate 
memory accesses for efficiency.
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Local “physical” memory address  
= (relative address<<shift)|threadID 

Automatically interleaves local memory  
if the threads are doing the same thing
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Capturing SIMT and SIMD under a single Kernel

The struct-of-array (SoA) portability problem:

• Scalar code: CPU needs struct memory accesses struct calculation

• SIMD vectorisation: CPU needs SoA memory accesses and SoA calculation

• SIMT coalesced reading: GPU needs SoA memory accesses struct calculation

• GPU data structures in memory and data structures in thread local calculations di↵er

Model Memory Thread
Scalar Complex Spinor[4][3] Complex Spinor[4][3]
SIMD Complex Spinor[4][3][N] Complex Spinor[4][3][N]
SIMT Complex Spinor[4][3][N] Complex Spinor[4][3]
Hybrid? Complex Spinor[4][3][Nm][Nt] Complex Spinor[4][3][Nt]

How to program portably?

• Use operator() to transform memory layout to per-thread layout.

• Two ways to access for read

• operator[] returns whole vector
• operator() returns SIMD lane threadIdx.y in GPU code
• operator() is a trivial identity map in CPU code

• Use coalescedWrite to insert thread data in lane threadIdx.y of memory layout.
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Wilson Kernels

Multiplying by gauge link is provided by a 
“policy” template class. 

Share kernel source for BOTH flavored  
G-parity / C* and periodic

Recovers parallel execution after thread divergence 
in if/else  for boundary / interior link.

These datatypes change covariantly 
With the architecture for SIMD vs SIMT 

Contrast to most portability approaches where software is invariant
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The thread enable mask is important! 

If some threads say “IF” and others say “ELSE” then both IF and ELSE are computed with enable masks set accordingly 

Parallel execution rapidly becomes serial execution in branchy code 
A program can be thought of as a binary tree of branch decisions 

Highly divergent code will have to execute down to ALL leaves of the b-tree 
Bad news for a lot of HEP event processing code, GEANT etc…  

(Added to problem of object orientation and virtual pointers do not work in GPU memory systems)

Thread Divergence - GPU’s HATE branchy code

GPU register files are huge. 
Allows to schedule loads earlier and cover latency 
Many threads sharing same execution pipes increases latency tolerance 

Reminder / humble-brag : I designed the adaptive prefetch engine on IBM BlueGene/Q - this also covers latency 
Register files are multi-banked (unlike CPU) with access combination rules that only the compiler really handles well
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Performance
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Benchmark_usqcd - produces a CSV spreadsheet of results 
• Dslash DWF/ Wilson/ Staggered for various local volumes per MPI rank 
• Communication bandwidth (intranode and internode) 
• Memory bandwidth 
• Batched CGEMM/ZGEMM performance (c.f. multiRHS multigrid, later) 

Nvidia Hopper 8x H100 @ SDCC
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Multi-GPU nodes give between 11TF/s and 40TF/s on AMD, Nvidia and Intel GPU nodes 
Intel PVC: Aurora@ANL 
AMD MI250: Frontier@ORNL, Lumi-G@CSC 
A100: Perlmutter@NERSC, Booster@Juelich, Tursa@Edinburgh, Leonard@Cineca
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AMD MI250X GPU
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Aurora Node

Nvidia A100

Perlmutter node

(batched) GEMM performance for Multigrid operations on modern GPU nodes (TF/s)

BlockCG ThinQR (fp32) CoarseToFine (fp32) FineToCoarse (fp32) Coarse Operator (fp32) BlockCG ThinQR CoarseToFine FineToCoarse Coarse Operator

Computation part of Coarse grid operators for multiple RHS can perform VERY well



Communications performance is key to scalability
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Overlap communication and computation efficiently from 16^4 - 24^4 per GPU with 200GBit/s HFI per GPU 
180GB/s bidirectional HaloExchange on 4x HPE Slingshot-11-200 OR 4x HDR-200  

Booster, Tursa, Perlmutter, Frontier all scale very well  
Aurora scales very well with up to 270GB/s bidirectional BW when placed in CPU’s HBM (6 HFI’s Slingshot-11) 

Aurora is preproduction, has early software, and results are subject to change. 
Systems that under provision network rapidly hit scaling problems 

Systems with lower provisioning have communication limit scaling

Tursa & Booster 32^4 per GPU 
A100 x 4 + HDR-200 x 4 
11TF/s per node fp32

Aurora, 16^3 x 32  per tile 
A100 x 4 + HDR-200 x 4 
16-22 TF/s per node fp32 (preliminary)
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Preliminary scaling on Aurora.  
The system is preproduction, has early software and results are subject to change.
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Summary
• Grid Software is portable and performant on a broad range of architectures 

• Software design is important 
• After a lot of work, we run efficiently on many different high end computers around the world 

• Multiple right hand side multigrid can use tensor core hardware very efficiently. Up to 100 TF/s per node ! 
• > 20x speed up on MDWF propagator compared to red-black CG baseline 
• Alternative to Volume^2 eigenvector deflation. Makes largest volumes practical. 
• Will now looks at HMC appropriate multigrid algorithms:  

• direct coarsen PVdagM, use spectral improvement noted by Weinberg, Brower; avoid squaring condition number! 

• Jacobian computable stout-like field transformation HMC is running in production on 128^3 x 288 3.5 GeV lattice 
• Combined with long trajectories obtain 3.5x autocorrelation improvement 
• Topological sampling is restored (for now) 
• Need to investigate how and why it works in more detail (may lead to further gains) 

• The level of optimization required to accompany algorithm development to make practical is genuinely distressing


