
1

The Power (Savings) of Optimized
Multi-Grid Solvers
Evan Weinberg, Senior Developer Technology Compute Engineer

NGT Algorithm Workshop, December 9-11, 2024

2

Credit and Appreciation

• Thank you to the organizing committee for having me!

• Slides and Content:

• Kate Clark

• Balint Joo

• Vishal Mehta

• Jiqun Tu

• Mathias Wagner

• Infinite Conversations and Collaborations

• See above, and…

• Peter Boyle

• Rich Brower

• Dean Howarth

3

• Overview

• Multigrid in Theory

• Multigrid as Engineered

• Multigrid on Modern Systems

• Discussion

Agenda

4

Multigrid: A class of algorithms that
mitigate critical slowing down

5

Reality: Time (and energy) to solution
is the only thing that matters

6

Energy Efficiency: Move fewer
electrons a shorter distance (and

accomplish the same goal)

7

Multigrid in Theory

8

Why Focus on Multigrid

• LQCD is more than just solving the Dirac linear
system over and over again

• The diversity of topics at this workshop drives this
home

9

Why Focus on Multigrid

• LQCD is more than just solving the Dirac linear
system over and over again

• The diversity of topics at this workshop drives this
home

• But solving the Dirac matrix linear system is still
“the” key workflow

• The diversity of topics just within linear system
solvers at this workshop also drives this home

10

Why Focus on Multigrid

• LQCD is more than just solving the Dirac linear
system over and over again

• The diversity of topics at this workshop drives this
home

• But solving the Dirac matrix linear system is still
“the” key workflow

• The diversity of topics just within linear system
solvers at this workshop also drives this home

• And multi-grid solvers are a critical accelerator
thereof

• …The diversity of topics within multi-grid solvers
also-also drives this home

11

Why Focus on Multigrid

• LQCD is more than just solving the Dirac linear
system over and over again

• The diversity of topics at this workshop drives this
home

• But solving the Dirac matrix linear system is still
“the” key workflow

• The diversity of topics just within linear system
solvers at this workshop also drives this home

• And multi-grid solvers are a critical accelerator
thereof

• …The diversity of topics within multi-grid solvers
also-also drives this home

• Multi-grid solvers in LQCD are the ideal place to
discuss the future present challenges and
opportunities in high performance computing

Multigrid
for LQCD

MathPhysics

Power BillsHardware

Software Algorithms

12

Why Focus on Multigrid

• LQCD is more than just solving the Dirac linear
system over and over again

• The diversity of topics at this workshop drives this
home

• But solving the Dirac matrix linear system is still
“the” key workflow

• The diversity of topics just within linear system
solvers at this workshop also drives this home

• And multi-grid solvers are a critical accelerator
thereof

• …The diversity of topics within multi-grid solvers
also-also drives this home

• Multi-grid solvers in LQCD are the ideal place to
discuss the future present challenges and
opportunities in high performance computing

• MG will be the vehicle of my talk, but I want to
prompt thinking and discussions outside this one
class of algorithms

Multigrid
for LQCD

MathPhysics

Power BillsHardware

Software Algorithms

13

Why Multigrid in Lattice QCD?

• As we take the continuum limit at constant physics, the cost of solving the Dirac linear system increases super-linearly
in the lattice spacing 𝑎.

• This is critical slowing down

14

Why Multigrid in Lattice QCD?

• As we take the continuum limit at constant physics, the cost of solving the Dirac linear system increases super-linearly
in the lattice spacing 𝑎.

• This is critical slowing down

• Methods such as deflation mitigate this issue, but…

• …deflation has quadratic scaling

• …memory/storage is a killer as each eigenvector takes O(V) space

• …the required number of eigenvectors for constant “benefit” also scales with the volume

15

Why Multigrid in Lattice QCD?

• As we take the continuum limit at constant physics, the cost of solving the Dirac linear system increases super-linearly
in the lattice spacing 𝑎.

• This is critical slowing down

• Methods such as deflation mitigate this issue, but…

• …deflation has quadratic scaling

• …memory/storage is a killer as each eigenvector takes O(V) space

• …the required number of eigenvectors for constant “benefit” also scales with the volume

• Multi-grid methods are a class of algorithms that also mitigate or eliminate critical slowing down

• …ideally with the naïve cost scaling: O(V)

• …and if you want to store the setup state, only O(V) storage

16

What Operator Should We Look At?
Alternative title: we can’t talk about everything

• We could take this discussion in a few directions…

17

What Operator Should We Look At?
Alternative title: we can’t talk about everything

• We could take this discussion in a few directions…

• MG on the normal, Hermitian positive-definite (HPD) operator

• Strong theoretical justifications, but has its own conditioning and engineering challenges

• Instead, we’re going to discuss the “direct” operators (with all of their spectral challenges)

18

What Operator Should We Look At?
Alternative title: we can’t talk about everything

• We could take this discussion in a few directions…

• MG on the normal, Hermitian positive-definite (HPD) operator

• Strong theoretical justifications, but has its own conditioning and engineering challenges

• Instead, we’re going to discuss the “direct” operators (with all of their spectral challenges)

19

What Operator Should We Look At?
Alternative title: we can’t talk about everything

• We could take this discussion in a few directions…

• MG on the normal, Hermitian positive-definite (HPD) operator

• Strong theoretical justifications, but has its own conditioning and engineering challenges

• Instead, we’re going to discuss the “direct” operators (with all of their spectral challenges)

20

What Operator Should We Look At?
Alternative title: we can’t talk about everything

• We could take this discussion in a few directions…

• MG on the normal, Hermitian positive-definite (HPD) operator

• Strong theoretical justifications, but has its own conditioning and engineering challenges

• Instead, we’re going to discuss the “direct” operators (with all of their spectral challenges)

21

What Operator Should We Look At?
Alternative title: we can’t talk about everything

• We could take this discussion in a few directions…

• MG on the normal, Hermitian positive-definite (HPD) operator

• Strong theoretical justifications, but has its own conditioning and engineering challenges

• Instead, we’re going to discuss the “direct” operators (with all of their spectral challenges)

• Much of what I’m going to discuss is still agnostic of this choice

22

Multiple Grids
A Discretization-Agnostic Discussion

• Goal: successfully and efficiently capture the challenging (“low”, “near-null”) modes of our linear operator 𝐷 and deal
with them in a reduced subspace

23

Multiple Grids
A Discretization-Agnostic Discussion

• Goal: successfully and efficiently capture the challenging (“low”, “near-null”) modes of our linear operator 𝐷 and deal
with them in a reduced subspace

• We need three things, and we need to do it well

• A map from the fine space to the coarser space: 𝑅 for restrictor

• A map from the coarse space to the finer space: 𝑃 for prolongator

• An operator that acts on the coarsened space: ෡𝐷, where the “hat” corresponds to the “coarsened” operator

24

Multiple Grids
A Discretization-Agnostic Discussion

• Goal: successfully and efficiently capture the challenging (“low”, “near-null”) modes of our linear operator 𝐷 and deal
with them in a reduced subspace

• We need three things, and we need to do it well

• A map from the fine space to the coarser space: 𝑅 for restrictor

• A map from the coarse space to the finer space: 𝑃 for prolongator

• An operator that acts on the coarsened space: ෡𝐷, where the “hat” corresponds to the “coarsened” operator

• Focus: adaptive geometric multi-grid methods

25

Adaptive Geometric Multigrid
The Near-Null Space

• “Let the operator speak”

26

Adaptive Geometric Multigrid
The Near-Null Space

• “Let the operator speak”

• Adaptively find candidate null-space vectors

• Dynamically learn the null space and use this to
define the prolongator

• Algorithm is self learning

27

Adaptive Geometric Multigrid
The Near-Null Space

• “Let the operator speak”

• Adaptively find candidate null-space vectors

• Dynamically learn the null space and use this to
define the prolongator

• Algorithm is self learning

• There are many approaches

• Inverse iterations

• “Solve” 𝐷𝑣𝑘 = 0 with random initial guess 𝑣𝑘,0

• The exact answer is zero but Krylov solvers don’t know that---after ?? iterations 𝑣𝑘 should be rich in low modes

• Chebyshev Filters (P. Boyle)

• Low Eigenvectors

28

Adaptive Geometric Multigrid
The Setup

• Block-orthonormalize the near-null vectors to form the prolongator

• 1 − 𝑃 𝑅 𝑣𝑘 = 0

• Typically use O(44) geometric blocks

29

Adaptive Geometric Multigrid
The Setup

• Block-orthonormalize the near-null vectors to form the prolongator

• 1 − 𝑃 𝑅 𝑣𝑘 = 0

• Typically use O(44) geometric blocks

• LQCD-specific: Preserve “chirality” when coarsening

• Wilson-type: 𝑅 = 𝛾5𝑃†𝛾5 = 𝑃† -- preserve instanton modes

• Staggered-type: 𝑅 = 𝜀 𝑥 𝑃†𝜀 𝑥 = 𝑃†

• Note: this is 𝛾5 ۪ 𝜏5, not 𝛾5 ۪ 1…

• Domain-wall-type: more complicated; the general Mobius Γ5 is non-local

30

Adaptive Geometric Multigrid
The Setup

• Block-orthonormalize the near-null vectors to form the prolongator

• 1 − 𝑃 𝑅 𝑣𝑘 = 0

• Typically use O(44) geometric blocks

• LQCD-specific: Preserve “chirality” when coarsening

• Wilson-type: 𝑅 = 𝛾5𝑃†𝛾5 = 𝑃† -- preserve instanton modes

• Staggered-type: 𝑅 = 𝜀 𝑥 𝑃†𝜀 𝑥 = 𝑃†

• Note: this is 𝛾5 ۪ 𝜏5, not 𝛾5 ۪ 1…

• Domain-wall-type: more complicated; the general Mobius Γ5 is non-local

• Form the coarse operator via a Galerkin projection

• ෡𝐷 = 𝑃†𝐷 𝑃

31

Adaptive Geometric Multigrid
The Setup

• Block-orthonormalize the near-null vectors to form the prolongator

• 1 − 𝑃 𝑅 𝑣𝑘 = 0

• Typically use O(44) geometric blocks

• LQCD-specific: Preserve “chirality” when coarsening

• Wilson-type: 𝑅 = 𝛾5𝑃†𝛾5 = 𝑃† -- preserve instanton modes

• Staggered-type: 𝑅 = 𝜀 𝑥 𝑃†𝜀 𝑥 = 𝑃†

• Note: this is 𝛾5 ۪ 𝜏5, not 𝛾5 ۪ 1…

• Domain-wall-type: more complicated; the general Mobius Γ5 is non-local

• Form the coarse operator via a Galerkin projection

• ෡𝐷 = 𝑃†𝐷 𝑃

• Recurse on coarse problem

32

Adaptive Geometric Multigrid
The Solver

• Perform an MG-preconditioned iterative Krylov solve (via GCR, FGMRES…); on a given iteration:

• 𝑟 is the current iterated residual; 𝑥 is the current iterated solution

• (Optional) pre-smoother: relax on the current residual with 𝐷

• Restrict the smoothed residual: Ƹ𝑟 = 𝑃† 𝑟

• Approximately solve the coarse system to get a coarse error correction: ෡𝐷 Ƹ𝑒 = Ƹ𝑟

• Prolong the error: 𝑒 = 𝑃 Ƹ𝑒

• Correct the solution: 𝑥 ⇐ 𝑥 + 𝑒

• (Optional) post-smooth on the accumulated solution with 𝐷

Falgout

Credit: Robert Falgout

33

Adaptive Geometric Multigrid
The Solver

• Perform an MG-preconditioned iterative Krylov solve (via GCR, FGMRES…); on a given iteration:

• 𝑟 is the current iterated residual; 𝑥 is the current iterated solution

• (Optional) pre-smoother: relax on the current residual with 𝐷

• Restrict the smoothed residual: Ƹ𝑟 = 𝑃† 𝑟

• Approximately solve the coarse system to get a coarse error correction: ෡𝐷 Ƹ𝑒 = Ƹ𝑟

• Prolong the error: 𝑒 = 𝑃 Ƹ𝑒

• Correct the solution: 𝑥 ⇐ 𝑥 + 𝑒

• (Optional) post-smooth on the accumulated solution with 𝐷

This can be done

recursively

Falgout

Credit: Robert Falgout

34

Adaptive Geometric Multigrid
The Solver

• Perform an MG-preconditioned iterative Krylov solve (via GCR, FGMRES…); on a given iteration:

• 𝑟 is the current iterated residual; 𝑥 is the current iterated solution

• (Optional) pre-smoother: relax on the current residual with 𝐷

• Restrict the smoothed residual: Ƹ𝑟 = 𝑃† 𝑟

• Approximately solve the coarse system to get a coarse error correction: ෡𝐷 Ƹ𝑒 = Ƹ𝑟

• Prolong the error: 𝑒 = 𝑃 Ƹ𝑒

• Correct the solution: 𝑥 ⇐ 𝑥 + 𝑒

• (Optional) post-smooth on the accumulated solution with 𝐷

• Notably, for the coarsest level:

• Solve ෡෡𝐷 መƸ𝑒 = መƸ𝑟 (or more hats) to a fixed tolerance, or

• Perform an SVD deflation (Howarth) plus a fixed-iteration solve

This can be done

recursively

Falgout

Credit: Robert Falgout

35

Adaptive Geometric Multigrid
The Solver

• Perform an MG-preconditioned iterative Krylov solve (via GCR, FGMRES…); on a given iteration:

• 𝑟 is the current iterated residual; 𝑥 is the current iterated solution

• (Optional) pre-smoother: relax on the current residual with 𝐷

• Restrict the smoothed residual: Ƹ𝑟 = 𝑃† 𝑟

• Approximately solve the coarse system to get a coarse error correction: ෡𝐷 Ƹ𝑒 = Ƹ𝑟

• Prolong the error: 𝑒 = 𝑃 Ƹ𝑒

• Correct the solution: 𝑥 ⇐ 𝑥 + 𝑒

• (Optional) post-smooth on the accumulated solution with 𝐷

• Notably, for the coarsest level:

• Solve ෡෡𝐷 መƸ𝑒 = መƸ𝑟 (or more hats) to a fixed tolerance, or

• Perform an SVD deflation (Howarth) plus a fixed-iteration solve

• If you did everything right, it’ll efficiently converge

This can be done

recursively

Falgout

Credit: Robert Falgout

36

A Zoo of Questions
Math, Physics, Software, Hardware, Algorithms,
Power Bills…

Fine grid

First coarse

grid

Coarsest grid

37

A Zoo of Questions

• Is the operator amenable to a Galerkin (෡𝐷 = 𝑃†𝐷 𝑃)
projection?

Math, Physics, Software, Hardware, Algorithms,
Power Bills…

Fine grid

First coarse

grid

Coarsest grid

38

A Zoo of Questions

• Is the operator amenable to a Galerkin (෡𝐷 = 𝑃†𝐷 𝑃)
projection?

• What’s the ideal way to generate near-null vectors?

Math, Physics, Software, Hardware, Algorithms,
Power Bills…

Fine grid

First coarse

grid

Coarsest grid

39

A Zoo of Questions

• Is the operator amenable to a Galerkin (෡𝐷 = 𝑃†𝐷 𝑃)
projection?

• What’s the ideal way to generate near-null vectors?

• What’s the ideal smoother?

Math, Physics, Software, Hardware, Algorithms,
Power Bills…

Fine grid

First coarse

grid

Coarsest grid

40

A Zoo of Questions

• Is the operator amenable to a Galerkin (෡𝐷 = 𝑃†𝐷 𝑃)
projection?

• What’s the ideal way to generate near-null vectors?

• What’s the ideal smoother?

• What’s an optimal number of levels?

Math, Physics, Software, Hardware, Algorithms,
Power Bills…

Fine grid

First coarse

grid

Coarsest grid

41

A Zoo of Questions

• Is the operator amenable to a Galerkin (෡𝐷 = 𝑃†𝐷 𝑃)
projection?

• What’s the ideal way to generate near-null vectors?

• What’s the ideal smoother?

• What’s an optimal number of levels?

• How “accurately” do we solve on each level?

Math, Physics, Software, Hardware, Algorithms,
Power Bills…

Fine grid

First coarse

grid

Coarsest grid

42

A Zoo of Questions

• Is the operator amenable to a Galerkin (෡𝐷 = 𝑃†𝐷 𝑃)
projection?

• What’s the ideal way to generate near-null vectors?

• What’s the ideal smoother?

• What’s an optimal number of levels?

• How “accurately” do we solve on each level?

• How do I deal with remnant ill-conditioning on the
coarsest level?

Math, Physics, Software, Hardware, Algorithms,
Power Bills…

Fine grid

First coarse

grid

Coarsest grid

43

A Zoo of Questions

• Is the operator amenable to a Galerkin (෡𝐷 = 𝑃†𝐷 𝑃)
projection?

• What’s the ideal way to generate near-null vectors?

• What’s the ideal smoother?

• What’s an optimal number of levels?

• How “accurately” do we solve on each level?

• How do I deal with remnant ill-conditioning on the
coarsest level?

• How do we make it fast enough to include in HMC?

Math, Physics, Software, Hardware, Algorithms,
Power Bills…

Fine grid

First coarse

grid

Coarsest grid

44

A Zoo of Questions

• Is the operator amenable to a Galerkin (෡𝐷 = 𝑃†𝐷 𝑃)
projection?

• What’s the ideal way to generate near-null vectors?

• What’s the ideal smoother?

• What’s an optimal number of levels?

• How “accurately” do we solve on each level?

• How do I deal with remnant ill-conditioning on the
coarsest level?

• How do we make it fast enough to include in HMC?

• How do these answers change depending on the
implementation and the hardware?

Math, Physics, Software, Hardware, Algorithms,
Power Bills…

Fine grid

First coarse

grid

Coarsest grid

45

A Zoo of Questions

• Is the operator amenable to a Galerkin (෡𝐷 = 𝑃†𝐷 𝑃)
projection?

• What’s the ideal way to generate near-null vectors?

• What’s the ideal smoother?

• What’s an optimal number of levels?

• How “accurately” do we solve on each level?

• How do I deal with remnant ill-conditioning on the
coarsest level?

• How do we make it fast enough to include in HMC?

• How do these answers change depending on the
implementation and the hardware?

• How do we take advantage of AI-driven hardware
features?

Math, Physics, Software, Hardware, Algorithms,
Power Bills…

Fine grid

First coarse

grid

Coarsest grid

46

A Zoo of Questions

• Is the operator amenable to a Galerkin (෡𝐷 = 𝑃†𝐷 𝑃)
projection?

• What’s the ideal way to generate near-null vectors?

• What’s the ideal smoother?

• What’s an optimal number of levels?

• How “accurately” do we solve on each level?

• How do I deal with remnant ill-conditioning on the
coarsest level?

• How do we make it fast enough to include in HMC?

• How do these answers change depending on the
implementation and the hardware?

• How do we take advantage of AI-driven hardware
features?

• Where does this live in an energy-constrained
world?

Math, Physics, Software, Hardware, Algorithms,
Power Bills…

Fine grid

First coarse

grid

Coarsest grid

47

Multigrid in Practice

48

Vehicle for discussion: QUDA
“QCD on CUDA”… and many more these days

• “QCD on CUDA” – http://lattice.github.com/quda (open source, BSD license)

49

Vehicle for discussion: QUDA
“QCD on CUDA”… and many more these days

• “QCD on CUDA” – http://lattice.github.com/quda (open source, BSD license)

• Effort started at Boston University in 2008, now in wide use as the GPU backend for BQCD, Chroma, CPS, MILC,
openQ*D**, TIFR, etc. Provides solvers for all major fermionic discretizations, with multi-GPU support

** See next talk by Roman Gruber, Tim Harris

50

Vehicle for discussion: QUDA
“QCD on CUDA”… and many more these days

• “QCD on CUDA” – http://lattice.github.com/quda (open source, BSD license)

• Effort started at Boston University in 2008, now in wide use as the GPU backend for BQCD, Chroma, CPS, MILC,
openQ*D**, TIFR, etc. Provides solvers for all major fermionic discretizations, with multi-GPU support

• Maximize performance

• Optimized implementations of major fermionic discretizations

• Mixed-precision methods before they were cool

• Eigensolvers, pure gauge algorithms, and more

• Autotune and maximize performance

• Batched solvers, deflation, and multi-grid acceleration

• Tensor core acceleration

• NVSHMEM for improving strong scaling

• A performant algorithmic playground for exascale++

** See next talk by Roman Gruber, Tim Harris

51

Vehicle for discussion: QUDA
“QCD on CUDA”… and many more these days

• “QCD on CUDA” – http://lattice.github.com/quda (open source, BSD license)

• Effort started at Boston University in 2008, now in wide use as the GPU backend for BQCD, Chroma, CPS, MILC,
openQ*D**, TIFR, etc. Provides solvers for all major fermionic discretizations, with multi-GPU support

• Maximize performance

• Optimized implementations of major fermionic discretizations

• Mixed-precision methods before they were cool

• Eigensolvers, pure gauge algorithms, and more

• Autotune and maximize performance

• Batched solvers, deflation, and multi-grid acceleration

• Tensor core acceleration

• NVSHMEM for improving strong scaling

• A performant algorithmic playground for exascale++

• Portable: HIP (merged), SYCL (in review) and OpenMP (in development)

** See next talk by Roman Gruber, Tim Harris

52

Vehicle for discussion: QUDA
“QCD on CUDA”… and many more these days

• “QCD on CUDA” – http://lattice.github.com/quda (open source, BSD license)

• Effort started at Boston University in 2008, now in wide use as the GPU backend for BQCD, Chroma, CPS, MILC,
openQ*D**, TIFR, etc. Provides solvers for all major fermionic discretizations, with multi-GPU support

• Maximize performance

• Optimized implementations of major fermionic discretizations

• Mixed-precision methods before they were cool

• Eigensolvers, pure gauge algorithms, and more

• Autotune and maximize performance

• Batched solvers, deflation, and multi-grid acceleration

• Tensor core acceleration

• NVSHMEM for improving strong scaling

• A performant algorithmic playground for exascale++

• Portable: HIP (merged), SYCL (in review) and OpenMP (in development)

• A research tool for the exascale (and beyond)

• Optimally mapping the problem to hierarchical processors and node topologies

** See next talk by Roman Gruber, Tim Harris

53

QUDA Contributors
10+ Years, Lots of Contributors

• Buck Babich (NVIDIA)

• Simone Bacchio (Cyprus)

• Michael Baldfauf (Regensburg)

• Kip Barros (LANL)

• Rich Brower (Boston University)

• Nuno Cardoso (NCSA)

• Kate Clark (NVIDIA)

• Michael Cheng (Boston
University)

• Carleton DeTar (Utah University)

• Justin Foley (NIH)

• Arjun Gambhir (William and Mary)

• Marco Garofalo (Bonn)

• Joel Giedt (Rensselaer
Polytechnic Institute)

• Steve Gottlieb (Indiana University)

• Anthony Grebe (Fermilab)

• Kyriakos Hadjiyiannakou (Cyprus)

• Ben Hoerz (Intel)

• Dean Howarth (LBL)

• Hwancheol Jeong (Indiana
University)

• Xiangyu Jiang (ITP, Chinese
Academy of Sciences)

• Xiao-Yong Jin (ANL)

• Bálint Joó (NVIDIA)

• Hyung-Jin Kim (BNL -> Samsung)

• Bartek Kostrzewa (Bonn)

• Damon McDougall (AMD)

• Colin Morningstar (CMU)

• James Osborn (ANL)

• Ferenc Pittler (Cyprus)

• Claudio Rebbi (Boston University)

• Eloy Romero (William and Mary)

• Hauke Sandmeyer (Bielefeld)

• Mario Schröck (INFN)

• Aniket Sen (Bonn)

• Guochun Shi (NCSA -> Google)

• James Simone (FNAL)

• Alexei Strelchenko (FNAL)

• Jiqun Tu (NVIDIA)

• Carsten Urbach (HISKP, University of
Bonn)

• Alejandro Vaquero (Utah University)

• Michael Wagman (FNAL)

• Mathias Wagner (NVIDIA)

• André Walker-Loud (LBL)

• Evan Weinberg (NVIDIA)

• Frank Winter (Jlab)

• Yi-bo Yang (CAS)

54

New(s to me): QUDA bindings for Python
So new I haven’t even tried them

• https://arxiv.org/abs/2411.08461

• I’m not kidding, I haven’t tried them yet

• If you have---I’d love to hear your experience with them

https://arxiv.org/abs/2411.08461

5555

(Fine) Discretizations on GPUs

• Assign a single space-time point to each thread

• V = XYZT threads, e.g., V = 244 => 3.3x106 threads

Parallelism, parallelism, parallelism…

5656

(Fine) Discretizations on GPUs

• Assign a single space-time point to each thread

• V = XYZT threads, e.g., V = 244 => 3.3x106 threads

• Each thread must:

• Load neighboring spinors

• Opportunity for cache re-use

• Load gauge/fat/long links (no reuse*)

• *We’ll get to multi-rhs later

Parallelism, parallelism, parallelism…

5757

(Fine) Discretizations on GPUs

• Assign a single space-time point to each thread

• V = XYZT threads, e.g., V = 244 => 3.3x106 threads

• Each thread must:

• Load neighboring spinors

• Opportunity for cache re-use

• Load gauge/fat/long links (no reuse*)

• *We’ll get to multi-rhs later

• FP32 arithmetic intensities:

• Wilson operator: ~0.92 (naïve)

• HISQ operator: ~0.73 (naïve)

Parallelism, parallelism, parallelism…

5858

(Fine) Discretizations on GPUs

• Assign a single space-time point to each thread

• V = XYZT threads, e.g., V = 244 => 3.3x106 threads

• Each thread must:

• Load neighboring spinors

• Opportunity for cache re-use

• Load gauge/fat/long links (no reuse*)

• *We’ll get to multi-rhs later

• FP32 arithmetic intensities:

• Wilson operator: ~0.92 (naïve)

• HISQ operator: ~0.73 (naïve)

• QUDA reduces memory traffic

• SU(3) matrices: 18 -> 12 or 8 reals

• HISQ U(3) long links: 18 -> 13 or 9 reals

• Mixed-precision solvers: custom 16-bit fixed point
representation

Parallelism, parallelism, parallelism…

59

Batched Wilson Dslash

• Smaller volumes see the biggest boost in
performance

• Parallelism + Locality

Parallelism, parallelism, parallelism, parallelismWilson Dslash FP32, GH200

NUMBERS ARE PRELIMINARY

AND WILL IMPROVE

60

Batched Wilson Dslash

• Smaller volumes see the biggest boost in
performance

• Parallelism + Locality

• Larger volumes on see boost due to locality

Parallelism, parallelism, parallelism, parallelismWilson Dslash FP32, GH200

NUMBERS ARE PRELIMINARY

AND WILL IMPROVE

61

Batched Wilson Dslash

• Smaller volumes see the biggest boost in
performance

• Parallelism + Locality

• Larger volumes on see boost due to locality

• QUDA lets the autotuner decide how many sources to
include in each block

• More sources per block? Reuse of gauge fields

• Fewer sources per block? Spatial/temporal reuse of
spinors

Parallelism, parallelism, parallelism, parallelismWilson Dslash FP32, GH200

NUMBERS ARE PRELIMINARY

AND WILL IMPROVE

62

• Similar story for staggered

• Larger speedups due to increased locality of staggered
operator

• 124 has L1 cache quantization effects

Batched Improved Staggered

Improved Staggered Dslash FP32, GH200

NUMBERS ARE PRELIMINARY

AND WILL IMPROVE

63

• Similar story for staggered

• Larger speedups due to increased locality of staggered
operator

• 124 has L1 cache quantization effects

• Preview: batching not only saves time, but energy

• Moving electrons takes energy (intro physics)

• Batching increases cache locality

• Electrons don’t need to move as far

• Energy requirements go down

Batched Improved Staggered

Improved Staggered Dslash FP32, GH200

Sequential: 27.3 kJ Total

Batched: 13.2 kJ Total

NUMBERS ARE PRELIMINARY

AND WILL IMPROVE

NUMBERS ARE PRELIMINARY

AND WILL IMPROVE

64

• Fine grids run very efficiently

• High parallel throughput problem

The Challenge of Multigrid on
the GPU

65

• Fine grids run very efficiently

• High parallel throughput problem

• Coarse grids are worst possible scenario

• More cores than degrees of freedom

• Increasingly serial and latency bound

• Little’s law (bytes = bandwidth * latency)

• Amdahl’s law limiter

The Challenge of Multigrid on
the GPU

66

• Fine grids run very efficiently

• High parallel throughput problem

• Coarse grids are worst possible scenario

• More cores than degrees of freedom

• Increasingly serial and latency bound

• Little’s law (bytes = bandwidth * latency)

• Amdahl’s law limiter

• Multigrid exposes many of the problems we see at
the exascale

The Challenge of Multigrid on
the GPU

6767

Ingredients for Parallel Adaptive
Multigrid

• Multigrid setup

• Block orthogonalization of null space vectors

• Batched QR decomposition

Parallelism, parallelism, parallelism…

6868

Ingredients for Parallel Adaptive
Multigrid

• Multigrid setup

• Block orthogonalization of null space vectors

• Batched QR decomposition

• Smoothing (relaxation on a given grid)

• Repurpose existing solvers

Parallelism, parallelism, parallelism…

6969

Ingredients for Parallel Adaptive
Multigrid

• Multigrid setup

• Block orthogonalization of null space vectors

• Batched QR decomposition

• Smoothing (relaxation on a given grid)

• Repurpose existing solvers

• Prolongation

• interpolation from coarse grid to fine grid

• one-to-many mapping

Parallelism, parallelism, parallelism…

7070

Ingredients for Parallel Adaptive
Multigrid

• Multigrid setup

• Block orthogonalization of null space vectors

• Batched QR decomposition

• Smoothing (relaxation on a given grid)

• Repurpose existing solvers

• Prolongation

• interpolation from coarse grid to fine grid

• one-to-many mapping

• Restriction

• restriction from fine grid to coarse grid

• many-to-one mapping

Parallelism, parallelism, parallelism…

7171

Ingredients for Parallel Adaptive
Multigrid

• Multigrid setup

• Block orthogonalization of null space vectors

• Batched QR decomposition

• Smoothing (relaxation on a given grid)

• Repurpose existing solvers

• Prolongation

• interpolation from coarse grid to fine grid

• one-to-many mapping

• Restriction

• restriction from fine grid to coarse grid

• many-to-one mapping

• Coarse Operator construction (setup)

• Evaluate 𝑃†𝐷 𝑃 locally

• Batched (small) dense matrix multiplication

Parallelism, parallelism, parallelism…

7272

Ingredients for Parallel Adaptive
Multigrid

• Multigrid setup

• Block orthogonalization of null space vectors

• Batched QR decomposition

• Smoothing (relaxation on a given grid)

• Repurpose existing solvers

• Prolongation

• interpolation from coarse grid to fine grid

• one-to-many mapping

• Restriction

• restriction from fine grid to coarse grid

• many-to-one mapping

• Coarse Operator construction (setup)

• Evaluate 𝑃†𝐷 𝑃 locally

• Batched (small) dense matrix multiplication

• Coarse grid solver

• Need optimal coarse-grid operator

Parallelism, parallelism, parallelism…

73

Coarse Grid Operator

• Coarse operator looks like a Dirac operator (many more colors)

• Link matrices have dimension 2Nv x 2Nv (e.g., 48 x 48)

74

Coarse Grid Operator

• Coarse operator looks like a Dirac operator (many more colors)

• Link matrices have dimension 2Nv x 2Nv (e.g., 48 x 48)

• Fine vs. Coarse grid parallelization

• Fine grid operator has plenty of grid-level parallelism

• E.g., 16x16x16x16 = 65536 lattice sites

• Coarse grid operator has diminishing grid-level parallelism

• first coarse grid 4x4x4x4 = 256 lattice sites

• second coarse grid 2x2x2x2 = 16 lattice sites

75

Coarse Grid Operator

• Coarse operator looks like a Dirac operator (many more colors)

• Link matrices have dimension 2Nv x 2Nv (e.g., 48 x 48)

• Fine vs. Coarse grid parallelization

• Fine grid operator has plenty of grid-level parallelism

• E.g., 16x16x16x16 = 65536 lattice sites

• Coarse grid operator has diminishing grid-level parallelism

• first coarse grid 4x4x4x4 = 256 lattice sites

• second coarse grid 2x2x2x2 = 16 lattice sites

• Need to consider finer-grained parallelization

• Increase parallelism to use all GPU resources

• Load balancing

76

Sources of Parallelism

• Matrix-Vector parallelism

• Splitting up the constituent dot products is a source of reuse

77

Sources of Parallelism

• Matrix-Vector parallelism

• Splitting up the constituent dot products is a source of reuse

• Direction parallelism

• Note: the input coarse spinor is a source of directional cache reuse

78

Sources of Parallelism

• Matrix-Vector parallelism

• Splitting up the constituent dot products is a source of reuse

• Direction parallelism

• Note: the input coarse spinor is a source of directional cache reuse

• Dot-product parallelism:

7979

Twisted Clover Example

• Thank you to the ETMC collaboration for this
configuration:

• 643x128 physical-point pion

• Iwasaki gauge action, 𝛽 = 1.778,

• Physical pion twisted clover fermion action, κ =
0.13947, 𝜇 = 0.000720, 𝑐𝑠𝑤 = 1.69

The March of Optimization

A modernization of https://github.com/lattice/quda/wiki/Twisted-clover-deflated-multigrid from Dean Howarth

https://github.com/lattice/quda/wiki/Twisted-clover-deflated-multigrid

8080

Twisted Clover Example

• Thank you to the ETMC collaboration for this
configuration:

• 643x128 physical-point pion

• Iwasaki gauge action, 𝛽 = 1.778,

• Physical pion twisted clover fermion action, κ =
0.13947, 𝜇 = 0.000720, 𝑐𝑠𝑤 = 1.69

• The starting point: 3-level multigrid

• Aggregate 1: 44 to 163x32 volume, 𝑁𝑐 = 24, 𝑁𝑠 = 2

• Aggregate 2: 24 to 83x16 volume, 𝑁𝑐 = 24, 𝑁𝑠 = 2

• Coarsest level “𝜇” enhancement: 70

• Preconditioned solver: GCR

• Smoother: GCR(0,4)

• Coarsest-level solver: GCR

The March of Optimization

A modernization of https://github.com/lattice/quda/wiki/Twisted-clover-deflated-multigrid from Dean Howarth

https://github.com/lattice/quda/wiki/Twisted-clover-deflated-multigrid

8181

Twisted Clover Example

https://research.nvidia.com/sites/default/files/pubs/2016-04_S-Step-and-Communication-Avoiding/nvr-2016-003.pdf

https://research.nvidia.com/sites/default/files/pubs/2016-04_S-Step-and-Communication-Avoiding/nvr-2016-003.pdf

https://research.nvidia.com/sites/default/files/pubs/2016-04_S-Step-and-Communication-Avoiding/nvr-2016-003.pdf

• We’ll switch to communication-avoiding solvers for
the smoothers and coarsest-level solver

• CA-GCR, based on CA-CG from
https://research.nvidia.com/sites/default/files/pubs/20
16-04_S-Step-and-Communication-Avoiding/nvr-2016-
003.pdf

• Generate 𝐷 Ԧ𝑥, 𝐷2 Ԧ𝑥, 𝐷3 Ԧ𝑥, … minimize the residual in one
batched go

• Gram-Schmidt instead of modified Gram-Schmidt

Communication-avoiding solvers

A modernization of https://github.com/lattice/quda/wiki/Twisted-clover-deflated-multigrid from Dean Howarth

https://research.nvidia.com/sites/default/files/pubs/2016-04_S-Step-and-Communication-Avoiding/nvr-2016-003.pdf
https://research.nvidia.com/sites/default/files/pubs/2016-04_S-Step-and-Communication-Avoiding/nvr-2016-003.pdf
https://research.nvidia.com/sites/default/files/pubs/2016-04_S-Step-and-Communication-Avoiding/nvr-2016-003.pdf
https://research.nvidia.com/sites/default/files/pubs/2016-04_S-Step-and-Communication-Avoiding/nvr-2016-003.pdf
https://research.nvidia.com/sites/default/files/pubs/2016-04_S-Step-and-Communication-Avoiding/nvr-2016-003.pdf
https://research.nvidia.com/sites/default/files/pubs/2016-04_S-Step-and-Communication-Avoiding/nvr-2016-003.pdf
https://github.com/lattice/quda/wiki/Twisted-clover-deflated-multigrid

8282

Twisted Clover Example

https://research.nvidia.com/sites/default/files/pubs/2016-04_S-Step-and-Communication-Avoiding/nvr-2016-003.pdf

https://research.nvidia.com/sites/default/files/pubs/2016-04_S-Step-and-Communication-Avoiding/nvr-2016-003.pdf

https://research.nvidia.com/sites/default/files/pubs/2016-04_S-Step-and-Communication-Avoiding/nvr-2016-003.pdf

• We’ll switch to communication-avoiding solvers for
the smoothers and coarsest-level solver

• CA-GCR, based on CA-CG from
https://research.nvidia.com/sites/default/files/pubs/20
16-04_S-Step-and-Communication-Avoiding/nvr-2016-
003.pdf

• Generate 𝐷 Ԧ𝑥, 𝐷2 Ԧ𝑥, 𝐷3 Ԧ𝑥, … minimize the residual in one
batched go

• Gram-Schmidt instead of modified Gram-Schmidt

• New setup:

• Aggregate 1: 44 to 163x32 volume, 𝑁𝑐 = 24, 𝑁𝑠 = 2

• Aggregate 2: 24 to 83x16 volume, 𝑁𝑐 = 24, 𝑁𝑠 = 2

• Coarsest level “𝜇” enhancement: 70

• Preconditioned solver: GCR

• Smoother: CA-GCR(0,4)

• Coarsest-level solver: CA-GCR

Communication-avoiding solvers

A modernization of https://github.com/lattice/quda/wiki/Twisted-clover-deflated-multigrid from Dean Howarth

1.26x

https://research.nvidia.com/sites/default/files/pubs/2016-04_S-Step-and-Communication-Avoiding/nvr-2016-003.pdf
https://research.nvidia.com/sites/default/files/pubs/2016-04_S-Step-and-Communication-Avoiding/nvr-2016-003.pdf
https://research.nvidia.com/sites/default/files/pubs/2016-04_S-Step-and-Communication-Avoiding/nvr-2016-003.pdf
https://research.nvidia.com/sites/default/files/pubs/2016-04_S-Step-and-Communication-Avoiding/nvr-2016-003.pdf
https://research.nvidia.com/sites/default/files/pubs/2016-04_S-Step-and-Communication-Avoiding/nvr-2016-003.pdf
https://research.nvidia.com/sites/default/files/pubs/2016-04_S-Step-and-Communication-Avoiding/nvr-2016-003.pdf
https://github.com/lattice/quda/wiki/Twisted-clover-deflated-multigrid

8383

Twisted Clover Example

• Last, we’ll deflate the coarsest level instead of using a
“mu” enhancement

• Singular value deflation---a generalization of
eigenvalue deflation

• Work by Dean Howarth

Coarsest-level SVD deflation

A modernization of https://github.com/lattice/quda/wiki/Twisted-clover-deflated-multigrid from Dean Howarth

1.26x

https://github.com/lattice/quda/wiki/Twisted-clover-deflated-multigrid

8484

Twisted Clover Example

• Last, we’ll deflate the coarsest level instead of using a
“mu” enhancement

• Singular value deflation---a generalization of
eigenvalue deflation

• Work by Dean Howarth

• New setup:

• Aggregate 1: 44 to 163x32 volume, 𝑁𝑐 = 24, 𝑁𝑠 = 2

• Aggregate 2: 24 to 83x16 volume, 𝑁𝑐 = 24, 𝑁𝑠 = 2

• No “𝜇” enhancement

• Preconditioned solver: GCR

• Smoother: CA-GCR(0,4)

• Coarsest-level solver: SVD-deflated CA-GCR

• 1,024 deflation vectors

Coarsest-level SVD deflation

A modernization of https://github.com/lattice/quda/wiki/Twisted-clover-deflated-multigrid from Dean Howarth

1.26x

5.31x

https://github.com/lattice/quda/wiki/Twisted-clover-deflated-multigrid

85

Multigrid on Modern Systems

86

NVIDIA Grace Hopper Superchip

• NVIDIA Grace CPU

• 72 Arm-v9 Neoverse V2 CPU cores with SVE2.

→ Throughput: 3.6 TFLOP/s

• Memory:

→High capacity: ≤ 480 GB LPDDR5X

→High System Memory bandwidth: ≤ 500 GB/s

• NVIDIA Hopper GPU

→High throughput: 60 TFLOP/s

• Memory:

→ Capacity: 96 GB HBM3 / 144 GB HBM3e

→ Extreme bandwidth ≤ 4000 GB/s / 5000 GB/s

• ≤ 18x NVLink 4 → 900 GB/s

→ Threads are threads

“super” - more than a “chip”

NVIDIA CPU + NVIDIA GPU w/o compromises

87

NVIDIA Grace Hopper Superchip

• Memory consistency: ease of use

→All threads – GPU and CPU – access system memory:
C++ new, malloc, mmap’ed files, atomics, …

→ Fast automatic page migrations

→ Threads cache peer memory → Less migrations

• High-bandwidth: 900 GB/s (same as peer NVLink 4)

→ GPU reads or writes local/peer LPDDR5X at ~peak BW

• Low-latency: GPU→HBM latency

→GPU reads or writes LPDDR5X at ~HBM3 latency

For all threads in the system
memory tastes like memory

expected behavior + latency + bandwidth.

Soul is the new NVLink-C2C CPU → GPU interconnect

NVLink–C2C

88

Building up a Modern Node
4 x Grace-Hopper Superchips

Understanding Data Movement in Tightly Coupled Heterogeneous Systems: A Case Study with the Grace Hopper Superchip [2408.11556 (arxiv.org)]

https://arxiv.org/pdf/2408.11556

89

Assemble it Into a Killer System: ALPS @ CSCS
A completely un-biased choice of a modern system totally not hand-picked for this workshop

https://www.cscs.ch/computers/alps

https://www.cscs.ch/computers/alps

90

Hopper GPU Architecture
A hierarchically-organized beast

132 SMs

4th Gen Tensor Core

Larger 60 MB L2

4th Gen NVLink

900 GB/s total bandwidth

2nd Gen Multi-Instance GPU

Confidential Computing

PCIe Gen5

GPU Processing

Clusters (GPC)

“Thread Block

Clusters”

96GB HBM3, 4 TB/s

bandwidth

91

If you can’t beat them, join them
Tensor Cores

• An increasing proportion of GPU die area is spent on AI

92

If you can’t beat them, join them
Tensor Cores

• An increasing proportion of GPU die area is spent on AI

• There is a plethora of tensor cores of various precisions for AI

93

If you can’t beat them, join them
Tensor Cores

• An increasing proportion of GPU die area is spent on AI

• There is a plethora of tensor cores of various precisions for AI

• Tensor cores accelerate matrix-matrix multiplication (GEMMs)

94

If you can’t beat them, join them
Tensor Cores

• An increasing proportion of GPU die area is spent on AI

• There is a plethora of tensor cores of various precisions for AI

• Tensor cores accelerate matrix-matrix multiplication (GEMMs)

• Combine multiple low-precision tensor-core operations to emulate
higher precision

• FP32 ~ 3xTF32

• QUDA half ~ 3x BF16

𝐶 = 𝐴𝐵 = (𝐴ℎ𝑖 + 𝐴𝑙𝑜)(𝐵ℎ𝑖 + 𝐵𝑙𝑜)
∼ (𝐴ℎ𝑖𝐵ℎ𝑖 + 𝐴ℎ𝑖𝐵𝑙𝑜 + 𝐴𝑙𝑜𝐵ℎ𝑖)

95

If you can’t beat them, join them
Tensor Cores

• An increasing proportion of GPU die area is spent on AI

• There is a plethora of tensor cores of various precisions for AI

• Tensor cores accelerate matrix-matrix multiplication (GEMMs)

• Combine multiple low-precision tensor-core operations to emulate
higher precision

• FP32 ~ 3xTF32

• QUDA half ~ 3x BF16

• If you have a big enough GEMM, tensor cores rock

𝐶 = 𝐴𝐵 = (𝐴ℎ𝑖 + 𝐴𝑙𝑜)(𝐵ℎ𝑖 + 𝐵𝑙𝑜)
∼ (𝐴ℎ𝑖𝐵ℎ𝑖 + 𝐴ℎ𝑖𝐵𝑙𝑜 + 𝐴𝑙𝑜𝐵ℎ𝑖)

96

If you can’t beat them, join them
Tensor Cores

• An increasing proportion of GPU die area is spent on AI

• There is a plethora of tensor cores of various precisions for AI

• Tensor cores accelerate matrix-matrix multiplication (GEMMs)

• Combine multiple low-precision tensor-core operations to emulate
higher precision

• FP32 ~ 3xTF32

• QUDA half ~ 3x BF16

• If you have a big enough GEMM, tensor cores rock

• QUDA’s MG for LQCD has many tensor-core-friendly factors: 24,
32, 64…

𝐶 = 𝐴𝐵 = (𝐴ℎ𝑖 + 𝐴𝑙𝑜)(𝐵ℎ𝑖 + 𝐵𝑙𝑜)
∼ (𝐴ℎ𝑖𝐵ℎ𝑖 + 𝐴ℎ𝑖𝐵𝑙𝑜 + 𝐴𝑙𝑜𝐵ℎ𝑖)

97

If you can’t beat them, join them
Tensor Cores

• An increasing proportion of GPU die area is spent on AI

• There is a plethora of tensor cores of various precisions for AI

• Tensor cores accelerate matrix-matrix multiplication (GEMMs)

• Combine multiple low-precision tensor-core operations to emulate
higher precision

• FP32 ~ 3xTF32

• QUDA half ~ 3x BF16

• If you have a big enough GEMM, tensor cores rock

• QUDA’s MG for LQCD has many tensor-core-friendly factors: 24,
32, 64…

• We just need to find the GEMMs!

𝐶 = 𝐴𝐵 = (𝐴ℎ𝑖 + 𝐴𝑙𝑜)(𝐵ℎ𝑖 + 𝐵𝑙𝑜)
∼ (𝐴ℎ𝑖𝐵ℎ𝑖 + 𝐴ℎ𝑖𝐵𝑙𝑜 + 𝐴𝑙𝑜𝐵ℎ𝑖)

9898

GEMMs in Multigrid

• There are a lot of linear operations that act on a
single vector

• These can also be batched: matrix-vector becomes
matrix-matrix

• Multigrid has perhaps the greatest to benefit from
MRHS

• Coarse operator has more “colours” so more
locality

• Coarse grids are extremely parallelism challenged

Tensor Cores

9

8

Tensor-core accelerated multi-RHS

coarse single-precision Dslash (A100)

5 TFLOPS ->

15 TFLOPS

9999

Multigrid + Multiple Right-Hand
Sides

• There is always scope for batched operations during
MG setup:

• Batched generation of near-null vectors: coarse dslash

• Batched generation of lowest-level singular vectors

• Batched block orthogonalization

• Batched link coarsening

Setup

9

9

100100

Multigrid + Multiple Right-Hand
Sides

• There is always scope for batched operations during
MG setup:

• Batched generation of near-null vectors: coarse dslash

• Batched generation of lowest-level singular vectors

• Batched block orthogonalization

• Batched link coarsening

• On the right

• Batched and tensor-core accelerated near-null vector
generation

• Batched and, for coarse operator coarsening, tensor-
core accelerated link coarsening

Setup

1

0

0

3.4x faster
and

3.8x less energy

NUMBERS ARE PRELIMINARY

AND WILL IMPROVE

101101

Multigrid + Multiple Right-Hand
Sides

• There is always scope for batched operations during
MG setup:

• Batched generation of near-null vectors: coarse dslash

• Batched generation of lowest-level singular vectors

• Batched block orthogonalization

• Batched link coarsening

• On the right

• Batched and tensor-core accelerated near-null vector
generation

• Batched and, for coarse operator coarsening, tensor-
core accelerated link coarsening

• Speedups will only increase as optimization
progresses

Setup

1

0

1

3.4x faster
and

3.8x less energy

NUMBERS ARE PRELIMINARY

AND WILL IMPROVE

102102

Multigrid + Multiple Right-Hand
Sides

• During MG solves… if they’re batched (multiple
sources)

• Batched coarse dslash

• Batched prolongator, restrictor

• Batched SVD deflation

Solver

1

0

2

103103

Multigrid + Multiple Right-Hand
Sides

• During MG solves… if they’re batched (multiple
sources)

• Batched coarse dslash

• Batched prolongator, restrictor

• Batched SVD deflation

• On the right

• Batched and tensor-core accelerated coarse dslash

• Batched but not (yet) tensor-core accelerated
prolongator and restrictor

• Batched SVD deflation

Solver

1

0

3

2.1x faster
and

2.2x less energy

NUMBERS ARE PRELIMINARY

AND WILL IMPROVE

104104

Multigrid + Multiple Right-Hand
Sides

• During MG solves… if they’re batched (multiple
sources)

• Batched coarse dslash

• Batched prolongator, restrictor

• Batched SVD deflation

• On the right

• Batched and tensor-core accelerated coarse dslash

• Batched but not (yet) tensor-core accelerated
prolongator and restrictor

• Batched SVD deflation

• Again, speedups will only increase as optimization
progresses

Solver

1

0

4

2.1x faster
and

2.2x less energy

NUMBERS ARE PRELIMINARY

AND WILL IMPROVE

105

• Multi-RHS motivates a retuning of algorithmic
parameters

• Significant cost reduction for setup provides
scope to improve preconditioner quality

• As we increase RHS, we can get a better solver at
constant iteration cost

Improvements beget
Improvements

106

• Multi-RHS motivates a retuning of algorithmic
parameters

• Significant cost reduction for setup provides
scope to improve preconditioner quality

• As we increase RHS, we can get a better solver at
constant iteration cost

• This calculus can change with each improvement…

Improvements beget
Improvements

107

• Multi-RHS motivates a retuning of algorithmic
parameters

• Significant cost reduction for setup provides
scope to improve preconditioner quality

• As we increase RHS, we can get a better solver at
constant iteration cost

• This calculus can change with each improvement…

• …and algorithmic improvements can keep coming

• Preliminary: tensor-core-accelerated prolongator
and restrictor…

• …Among other TC-accelerated portions of MG

Improvements beget
Improvements

108108

Revisiting the
Twisted Clover Example

• “Optimization” doesn’t necessarily (just) refer to time
to solution

• It can also refer to energy to solution

• Which doesn’t always correlate, but often does

Energy Consumption

A modernization of https://github.com/lattice/quda/wiki/Twisted-clover-deflated-multigrid from Dean Howarth

1.26x

5.31x

1.12x

4.81x

https://github.com/lattice/quda/wiki/Twisted-clover-deflated-multigrid

109109

Twisted Clover Example

• Our next step isn’t necessarily a novel idea, but it
keys in on energy efficiency

• Here we begin batching operations

• Without tensor cores… for now

• There are always operations to batch in setup

• I’m not showing the setup because I’m still fighting
with the block Lanczos

• There are not always operations to batch in the solver
phase

• You may only need one solve (HMC)

• …but take the results on the right as a proxy for
improvements

Batching Solves

A modernization of https://github.com/lattice/quda/wiki/Twisted-clover-deflated-multigrid from Dean Howarth

1.26x

5.31x

1.12x

4.81x

2.42x

1.81x

https://github.com/lattice/quda/wiki/Twisted-clover-deflated-multigrid

110110

Twisted Clover Example

• Last, we include the tensor core acceleration

• Energy savings outpace time-to-solution improvements

• Tensor cores by construction promote matrix-multiply
ultra-locality

• Aggregate benefits:

• Time to solution: 17.55x

• Energy to solution: 11.62x

• Each step contributed

Tensor Cores

A modernization of https://github.com/lattice/quda/wiki/Twisted-clover-deflated-multigrid from Dean Howarth

1.26x

5.31x

1.12x

4.81x

2.42x

1.81x

1.09x

1.20x

https://github.com/lattice/quda/wiki/Twisted-clover-deflated-multigrid

111111

A History of Algorithms and
Machines

• There is a storied history of MG-accelerated Wilson-
clover HMC driven by Chroma

• HMC typically dominated by solving the Dirac
equation, but

• Few solves per linear system

• Can be bound by heavy solves (c.f. Hasenbusch mass
preconditioning)

• Multigrid setup must run at speed of light

• Reuse and evolve multigrid setup where possible

• Use the same null space for all

• Evolve null space as the gauge field evolves (Lüscher
2007)

• Update null space when the preconditioner degrades
too much on lightest mass

• Machines plus algorithms has made this faster

Chroma + QDP-JIT + QUDA

Chroma w/ QDP-JIT and QUDA

V=643x128 sites, mπ ~172 MeV

(QDP-JIT by F. Winter, Jefferson Lab)

Benchmark Time to Solution

~40x

112112

The Intersection of Algorithms
and Machines

• There is a storied history of MG-accelerated Wilson-
clover HMC driven by Chroma

• HMC typically dominated by solving the Dirac
equation, but

• Few solves per linear system

• Can be bound by heavy solves (c.f. Hasenbusch mass
preconditioning)

• Multigrid setup must run at speed of light

• Reuse and evolve multigrid setup where possible

• Use the same null space for all

• Evolve null space as the gauge field evolves (Lüscher
2007)

• Update null space when the preconditioner degrades
too much on lightest mass

• Machines plus algorithms has made this faster

• And makes fixed allocations go further

Chroma + QDP-JIT + QUDA

Chroma w/ QDP-JIT and QUDA

V=643x128 sites, mπ ~172 MeV

(QDP-JIT by F. Winter, Jefferson Lab)

Benchmark GPU-Hours

~320x

113113

Staggered Fermions: Kahler-
Dirac preconditioning

• 2-d paper: arXiv:1801.07823

• Core idea: spectral deformation by Kahler-Dirac
structure

• Each 2d hypercube of staggered dof = one lattice
Kahler-Dirac fermion

• Block-precondition by this 2d structure

• Deforms anti-Hermitian indefinite spectrum into
(roughly) circular spectrum

• Carries similar spectral properties as Wilson-clover
after coarsening

• Implemented in QUDA, exposed in MILC

Spectral deformations

114114

Batched HISQ Multigrid

• The “gotchas” of Staggered/HISQ

• Four Dirac fermions means 4x the zero modes

• The “fundamental” unit of degrees of freedom is the 24
hypercube

Setup and Solve

115115

Batched HISQ Multigrid

• The “gotchas” of Staggered/HISQ

• Four Dirac fermions means 4x the zero modes

• The “fundamental” unit of degrees of freedom is the 24
hypercube

• Consequences:

• Aggregates can be larger, ~O(64)…

• …but there needs to be more coarse d.o.f.

• …more benefit from multi-RHS

Setup and Solve

116116

Batched HISQ Multigrid

• The “gotchas” of Staggered/HISQ

• Four Dirac fermions means 4x the zero modes

• The “fundamental” unit of degrees of freedom is the 24
hypercube

• Consequences:

• Aggregates can be larger, ~O(64)…

• …but there needs to be more coarse d.o.f.

• …more benefit from multi-RHS

• Example:

• Fine level: 243x48

• Intermediate level: 63x8, 𝑁𝑐 = 64, 𝑁𝑠 = 2

• Coarsest level 23x4, 𝑁𝑐 = 96, 𝑁𝑠 = 2

Setup and Solve

NUMBERS ARE PRELIMINARY

AND WILL IMPROVE

Setup: 12.6 sec, 4.58 Tflops to 5.46 sec, 10.6 Tflops

Solve throughput: 0.24 sec/solve to 0.15 sec/solve

117117

Batched HISQ Multigrid

• The “gotchas” of Staggered/HISQ

• Four Dirac fermions means 4x the zero modes

• The “fundamental” unit of degrees of freedom is the 24
hypercube

• Consequences:

• Aggregates can be larger, ~O(64)…

• …but there needs to be more coarse d.o.f.

• …more benefit from multi-RHS

• Example:

• Fine level: 243x48

• Intermediate level: 63x8, 𝑁𝑐 = 64, 𝑁𝑠 = 2

• Coarsest level 23x4, 𝑁𝑐 = 96, 𝑁𝑠 = 2

• More degrees of freedom means more wins from
multi-RHS

Setup and Solve

NUMBERS ARE PRELIMINARY

AND WILL IMPROVE

Setup: 12.6 sec, 4.58 Tflops to 5.46 sec, 10.6 Tflops

Solve throughput: 0.24 sec/solve to 0.15 sec/solve

118118

Batched HISQ Multigrid

• The “gotchas” of Staggered/HISQ

• Four Dirac fermions means 4x the zero modes

• The “fundamental” unit of degrees of freedom is the 24
hypercube

• Consequences:

• Aggregates can be larger, ~O(64)…

• …but there needs to be more coarse d.o.f.

• …more benefit from multi-RHS

• Example:

• Fine level: 243x48

• Intermediate level: 63x8, 𝑁𝑐 = 64, 𝑁𝑠 = 2

• Coarsest level 23x4, 𝑁𝑐 = 96, 𝑁𝑠 = 2

• More degrees of freedom means more wins from
multi-RHS

• Multi-RHS saves power and time

Setup and Solve

NUMBERS ARE PRELIMINARY

AND WILL IMPROVE

Setup: 12.6 sec, 4.58 Tflops to 5.46 sec, 10.6 Tflops

Solve throughput: 0.24 sec/solve to 0.15 sec/solve

119

There’s More? Other Thoughts
and Questions

120

What We Haven’t Covered
We’ve come so far and have so far to go

• In CUDA:

• (Even better) asynchronous SIMT: overlapping memory transactions and compute in a kernel

• Tensor Memory Accelerator (TMA): Automatic stride & address generation up to tensors of rank 5

• Coarse gauge links have a parity, checker-board coordinate, direction, row, column… we need all 5

• Ex, for the coarse dslash: Overlap computing one direction with fetching the next

• In QUDA:

• The depths of HISQ multigrid

• Future work on domain-wall/Mobius multigrid

• …and countless more

121

And Don’t Forget…
Where we started

• Multigrid: A class of algorithms that mitigate critical slowing down

• And that’s nice, but the devil’s really in the details

122

And Don’t Forget…
Where we started

• Multigrid: A class of algorithms that mitigate critical slowing down

• And that’s nice, but the devil’s really in the details

• Reality: Time (and energy) to solution is the only thing that matters

• And that’s what must inform the algorithmic and implementation decisions that get made

123

And Don’t Forget…
Where we started

• Multigrid: A class of algorithms that mitigate critical slowing down

• And that’s nice, but the devil’s really in the details

• Reality: Time (and energy) to solution is the only thing that matters

• And that’s what must inform the algorithmic and implementation decisions that get made

• Energy Efficiency: Move fewer electrons a shorter distance (and accomplish the same goal)

• And it’s not just feel-good, time-to-solution often comes along for the ride

124

125

Backup

126

Preliminary TMA Coarse Dslash Numbers
Work by Jiqun Tu

• Current state (December 11, 2024) is available at https://github.com/lattice/quda/pull/1497

https://github.com/lattice/quda/pull/1497

127

Grace Architecture
The CPU building block of the Grace-Hopper superchip

• High Performance Power Efficient Cores

• 72 flagship Arm Neoverse V2 Cores (Armv9-A)

• 4x128b SVE2 SIMD units per core (SVE2 / NEON)

• 3.16 GHz Base Clock / 2.7 GHz Vector Clock

• 3.6 FP64 TFLOP/s

• Scalable Coherency Fabric

• 3.2 TB/s of bisection bandwidth connects CPU

cores, NVLink-C2C, memory, and system IO

• High-Bandwidth Low-Power Memory

• Up to 480 GB of LPDDR5X memory that delivers up

to 500 GB/s of memory bandwidth

• Coherent Chip-to-Chip Connections

• NVLink-C2C with 900 GB/s raw bidirectional

bandwidth for coherent connection to CPU or GPU

• ~7x BW that can be delivered by PCIe Gen 5 link

• Supports up to 4 chip coherency over coherent

NVLink

Example possible fabric topology for illustrative purposes

128

Hopper GPU Architecture
The GPU building block of the Grace-Hopper superchip

132 SMs

4th Gen Tensor Core

Larger 60 MB L2

4th Gen NVLink

900 GB/s total bandwidth

2nd Gen Multi-Instance GPU

Confidential Computing

PCIe Gen5

GPU Processing

Clusters (GPC)

“Thread Block

Clusters”

96GB HBM3, 4 TB/s

bandwidth

129

Grace Hopper Superchip
GPU can access CPU memory at CPU memory speeds

HOPPER
GPU

GRACE
CPU

N
V
L
IN

K
 C

2
C

9
0
0
 G

B
/
s

CPU LPDDR5X
120GB

500GB/s

CPU LPDDR5X

NVIDIA Grace Hopper Superchip

N
V
L
IN

K
 N

E
T
W

O
R
K

H
IG

H
-S

P
E
E
D

I/
O

GPU HBM3
96 GB HBM3

4000 GB/s

GPU HBM3

18x NVLINK 4

900 GB/s

Hardware Consistency

4x

16x PCIe-5

512 GB/s

https://resources.nvidia.com/en-us-grace-cpu/nvidia-grace-hopper

130

Node Architecture of Jupiter (Jedi) Supercomputer
4 x Grace-Hopper Superchips

200 Gbit/s

IB

200 Gbit/s

IB

200 Gbit/s

IB

200 Gbit/s

IB

131131

Wilson-Clover: the Standard
Bearer

• Brannick et al 2008, Babich et al 2010

• Multiple implementations (QUDA, Grid, DD-𝛼AMG,
apologies for others I’ve missed)

• The Wilson operator is a “model” operator

• Low modes near complex origin

• High modes gapped from origin in the real direction

• Has been successfully extended to twisted mass,
twisted clover

• Well-documented issue of severely ill-conditioned
eigenvalues in coarse operator

• State-of-the-art Solution: SVD deflation of coarsest
level

Optional subtitle

132132

Staggered Fermions: Kahler-
Dirac preconditioning

• 2-d paper: arXiv:1801.07823

• Core idea: spectral deformation by Kahler-Dirac
structure

• Each 2d hypercube of staggered dof = one lattice
Kahler-Dirac fermion

• Block-precondition by this 2d structure

• Deforms anti-Hermitian indefinite spectrum into
(roughly) circular spectrum

• Carries similar spectral properties as Wilson-clover
after coarsening

• Implemented in QUDA, exposed in MILC

Spectral deformations

133133

Five-level Algorithm

• Fine level: outer staggered/HISQ solver

• Second level: “pseudo-fine” block preconditioned
level

• Unitary transformation for staggered operator (before
block preconditioning)

• HISQ operator: drop Naik term, corrected on fine level
by smoother

• Traditional MG aggregation from there:

• Third level: Nc = 64 x Nspin = 2

• Fourth level: Nc = 96 x Nspin = 2

• Fifth level: Deflation

Spectral deformations

Kahler-Dirac

“Pseudo-fine”

grid

First coarse

grid

Coarsest grid

Deflation

Fine grid

134

HISQ MG Algorithm on Summit
FIXME

Physical pion mass configuration courtesy of Carleton DeTar (MILC collaboration)

135135

Chiral Fermions: Domain Wall

• The challenge: maximally indefinite spectrum

• (Heavily) violates half-plane condition, subverts rates
of convergence proofs

• Methods on the normal operator:

• Cohen et al 2011, Boyle 2014

• Latest & Greatest from Peter: MG-Preconditioned
Block CG, arXiv:2409.03904 + previous talk!

• Other recent work:

• Comparison of Domain Wall Fermion Multigrid
Methods (Boyle & Yamaguchi, 2021, arXiv: 2103.05034)

• Approximate Pauli-Villars preconditioned operator in 2-
d in Brower et al, arXiv:2004.07732 (demonstrated in
4-d by Boyle)

• Four-level hierarchically deflated conjugate residual
(HDCR) on Hermitian indefinite operator in Grid, (Boyle,
arXiv:1611.06944)

Spectral deformations

Note: Spectrum for 2-d Schwinger model;

4-d QCD has 5 “eyes” in the burger plot

136136

Approximate Pauli-Villars
Preconditioning

• Demonstrated in 2-d: arXiv:2004.07732, 4-d by Boyle
in 29 hours

• Motivator is multigrid on DPV-1 Ddwf (effective
overlap)

• Three steps:

• Replace DPV-1 with DPV † --- still obeys half-plane
condition

• Perform a Galerkin coarsening of the 4-d operator on
each slice, separately preconditioning Ddwf and DPV

• Only prolong/restrict on chiral boundaries

• Idea of coarsening Wilson kernel (equiv. Hermitian
kernel) applies to all formulations, overlap

• Implemented in Grid in 29 hours, Implementation in
QUDA a WIP

Spectral deformations

	Default Section
	Slide 1: The Power (Savings) of Optimized Multi-Grid Solvers
	Slide 2: Credit and Appreciation
	Slide 3

	Overview
	Slide 4
	Slide 5
	Slide 6

	Multigrid in Theory
	Slide 7
	Slide 8: Why Focus on Multigrid
	Slide 9: Why Focus on Multigrid
	Slide 10: Why Focus on Multigrid
	Slide 11: Why Focus on Multigrid
	Slide 12: Why Focus on Multigrid
	Slide 13: Why Multigrid in Lattice QCD?
	Slide 14: Why Multigrid in Lattice QCD?
	Slide 15: Why Multigrid in Lattice QCD?
	Slide 16: What Operator Should We Look At?
	Slide 17: What Operator Should We Look At?
	Slide 18: What Operator Should We Look At?
	Slide 19: What Operator Should We Look At?
	Slide 20: What Operator Should We Look At?
	Slide 21: What Operator Should We Look At?
	Slide 22: Multiple Grids
	Slide 23: Multiple Grids
	Slide 24: Multiple Grids
	Slide 25: Adaptive Geometric Multigrid
	Slide 26: Adaptive Geometric Multigrid
	Slide 27: Adaptive Geometric Multigrid
	Slide 28: Adaptive Geometric Multigrid
	Slide 29: Adaptive Geometric Multigrid
	Slide 30: Adaptive Geometric Multigrid
	Slide 31: Adaptive Geometric Multigrid
	Slide 32: Adaptive Geometric Multigrid
	Slide 33: Adaptive Geometric Multigrid
	Slide 34: Adaptive Geometric Multigrid
	Slide 35: Adaptive Geometric Multigrid
	Slide 36: A Zoo of Questions
	Slide 37: A Zoo of Questions
	Slide 38: A Zoo of Questions
	Slide 39: A Zoo of Questions
	Slide 40: A Zoo of Questions
	Slide 41: A Zoo of Questions
	Slide 42: A Zoo of Questions
	Slide 43: A Zoo of Questions
	Slide 44: A Zoo of Questions
	Slide 45: A Zoo of Questions
	Slide 46: A Zoo of Questions

	Multigrid in Practice
	Slide 47
	Slide 48: Vehicle for discussion: QUDA
	Slide 49: Vehicle for discussion: QUDA
	Slide 50: Vehicle for discussion: QUDA
	Slide 51: Vehicle for discussion: QUDA
	Slide 52: Vehicle for discussion: QUDA
	Slide 53: QUDA Contributors
	Slide 54: New(s to me): QUDA bindings for Python
	Slide 55: (Fine) Discretizations on GPUs
	Slide 56: (Fine) Discretizations on GPUs
	Slide 57: (Fine) Discretizations on GPUs
	Slide 58: (Fine) Discretizations on GPUs
	Slide 59: Batched Wilson Dslash
	Slide 60: Batched Wilson Dslash
	Slide 61: Batched Wilson Dslash
	Slide 62: Batched Improved Staggered
	Slide 63: Batched Improved Staggered
	Slide 64: The Challenge of Multigrid on the GPU
	Slide 65: The Challenge of Multigrid on the GPU
	Slide 66: The Challenge of Multigrid on the GPU
	Slide 67: Ingredients for Parallel Adaptive Multigrid
	Slide 68: Ingredients for Parallel Adaptive Multigrid
	Slide 69: Ingredients for Parallel Adaptive Multigrid
	Slide 70: Ingredients for Parallel Adaptive Multigrid
	Slide 71: Ingredients for Parallel Adaptive Multigrid
	Slide 72: Ingredients for Parallel Adaptive Multigrid
	Slide 73: Coarse Grid Operator
	Slide 74: Coarse Grid Operator
	Slide 75: Coarse Grid Operator
	Slide 76: Sources of Parallelism
	Slide 77: Sources of Parallelism
	Slide 78: Sources of Parallelism
	Slide 79: Twisted Clover Example
	Slide 80: Twisted Clover Example
	Slide 81: Twisted Clover Example
	Slide 82: Twisted Clover Example
	Slide 83: Twisted Clover Example
	Slide 84: Twisted Clover Example

	Multigrid on Modern Systems
	Slide 85
	Slide 86: NVIDIA Grace Hopper Superchip
	Slide 87: NVIDIA Grace Hopper Superchip
	Slide 88: Building up a Modern Node
	Slide 89: Assemble it Into a Killer System: ALPS @ CSCS
	Slide 90: Hopper GPU Architecture
	Slide 91: If you can’t beat them, join them
	Slide 92: If you can’t beat them, join them
	Slide 93: If you can’t beat them, join them
	Slide 94: If you can’t beat them, join them
	Slide 95: If you can’t beat them, join them
	Slide 96: If you can’t beat them, join them
	Slide 97: If you can’t beat them, join them
	Slide 98: GEMMs in Multigrid
	Slide 99: Multigrid + Multiple Right-Hand Sides
	Slide 100: Multigrid + Multiple Right-Hand Sides
	Slide 101: Multigrid + Multiple Right-Hand Sides
	Slide 102: Multigrid + Multiple Right-Hand Sides
	Slide 103: Multigrid + Multiple Right-Hand Sides
	Slide 104: Multigrid + Multiple Right-Hand Sides
	Slide 105: Improvements beget Improvements
	Slide 106: Improvements beget Improvements
	Slide 107: Improvements beget Improvements
	Slide 108: Revisiting the Twisted Clover Example
	Slide 109: Twisted Clover Example
	Slide 110: Twisted Clover Example
	Slide 111: A History of Algorithms and Machines
	Slide 112: The Intersection of Algorithms and Machines
	Slide 113: Staggered Fermions: Kahler-Dirac preconditioning
	Slide 114: Batched HISQ Multigrid
	Slide 115: Batched HISQ Multigrid
	Slide 116: Batched HISQ Multigrid
	Slide 117: Batched HISQ Multigrid
	Slide 118: Batched HISQ Multigrid

	Conclusion
	Slide 119
	Slide 120: What We Haven’t Covered
	Slide 121: And Don’t Forget…
	Slide 122: And Don’t Forget…
	Slide 123: And Don’t Forget…
	Slide 124

	Backup
	Slide 125
	Slide 126: Preliminary TMA Coarse Dslash Numbers

	Architecture of Grace Hopper Superchip
	Slide 127: Grace Architecture
	Slide 128: Hopper GPU Architecture
	Slide 129: Grace Hopper Superchip
	Slide 130: Node Architecture of Jupiter (Jedi) Supercomputer

	MG
	Slide 131: Wilson-Clover: the Standard Bearer
	Slide 132: Staggered Fermions: Kahler-Dirac preconditioning
	Slide 133: Five-level Algorithm
	Slide 134: HISQ MG Algorithm on Summit
	Slide 135: Chiral Fermions: Domain Wall
	Slide 136: Approximate Pauli-Villars Preconditioning

