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Credit and Appreciation

• Thank you to the organizing committee for having me!

• Slides and Content:

• Kate Clark

• Balint Joo

• Vishal Mehta

• Jiqun Tu

• Mathias Wagner

• Infinite Conversations and Collaborations

• See above, and…

• Peter Boyle

• Rich Brower

• Dean Howarth
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• Overview

• Multigrid in Theory

• Multigrid as Engineered

• Multigrid on Modern Systems

• Discussion

Agenda



4

Multigrid: A class of algorithms that 
mitigate critical slowing down
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Reality: Time (and energy) to solution 
is the only thing that matters
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Energy Efficiency: Move fewer 
electrons a shorter distance (and 

accomplish the same goal)
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Multigrid in Theory
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Why Focus on Multigrid

• LQCD is more than just solving the Dirac linear 
system over and over again

• The diversity of topics at this workshop drives this 
home

• But solving the Dirac matrix linear system is still 
“the” key workflow

• The diversity of topics just within linear system 
solvers at this workshop also drives this home

• And multi-grid solvers are a critical accelerator 
thereof

• …The diversity of topics within multi-grid solvers 
also-also drives this home

• Multi-grid solvers in LQCD are the ideal place to 
discuss the future present challenges and 
opportunities in high performance computing

• MG will be the vehicle of my talk, but I want to 
prompt thinking and discussions outside this one 
class of algorithms

Multigrid 
for LQCD

MathPhysics

Power BillsHardware

Software Algorithms
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Why Multigrid in Lattice QCD?

• As we take the continuum limit at constant physics, the cost of solving the Dirac linear system increases super-linearly 
in the lattice spacing 𝑎.

• This is critical slowing down

• Methods such as deflation mitigate this issue, but…

• …deflation has quadratic scaling

• …memory/storage is a killer as each eigenvector takes O(V) space

• …the required number of eigenvectors for constant “benefit” also scales with the volume

• Multi-grid methods are a class of algorithms that also mitigate or eliminate critical slowing down

• …ideally with the naïve cost scaling: O(V)

• …and if you want to store the setup state, only O(V) storage
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What Operator Should We Look At?
Alternative title: we can’t talk about everything

• We could take this discussion in a few directions…

• MG on the normal, Hermitian positive-definite (HPD) operator

• Strong theoretical justifications, but has its own conditioning and engineering challenges

• Instead, we’re going to discuss the “direct” operators (with all of their spectral challenges)

• Much of what I’m going to discuss is still agnostic of this choice
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• Goal: successfully and efficiently capture the challenging (“low”, “near-null”) modes of our linear operator 𝐷 and deal 
with them in a reduced subspace
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Multiple Grids
A Discretization-Agnostic Discussion

• Goal: successfully and efficiently capture the challenging (“low”, “near-null”) modes of our linear operator 𝐷 and deal 
with them in a reduced subspace

• We need three things, and we need to do it well

• A map from the fine space to the coarser space: 𝑅 for restrictor

• A map from the coarse space to the finer space: 𝑃 for prolongator

• An operator that acts on the coarsened space: 𝐷, where the “hat” corresponds to the “coarsened” operator

• Focus: adaptive geometric multi-grid methods
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Adaptive Geometric Multigrid
The Near-Null Space

• “Let the operator speak”

• Adaptively find candidate null-space vectors

• Dynamically learn the null space and use this to 
define the prolongator

• Algorithm is self learning

• There are many approaches

• Inverse iterations

• “Solve” 𝐷𝑣𝑘 = 0 with random initial guess 𝑣𝑘,0

• The exact answer is zero but Krylov solvers don’t know that---after ?? iterations 𝑣𝑘 should be rich in low modes

• Chebyshev Filters (P. Boyle)

• Low Eigenvectors
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Adaptive Geometric Multigrid
The Setup

• Block-orthonormalize the near-null vectors to form the prolongator

• 1 − 𝑃 𝑅 𝑣𝑘 = 0

• Typically use O(44) geometric blocks

• LQCD-specific: Preserve “chirality” when coarsening

• Wilson-type: 𝑅 = 𝛾5𝑃†𝛾5 = 𝑃† -- preserve instanton modes

• Staggered-type: 𝑅 = 𝜀 𝑥 𝑃†𝜀 𝑥 = 𝑃†

• Note: this is 𝛾5 ۪ 𝜏5, not 𝛾5 ۪ 1…

• Domain-wall-type: more complicated; the general Mobius Γ5 is non-local

• Form the coarse operator via a Galerkin projection

• 𝐷 = 𝑃†𝐷 𝑃

• Recurse on coarse problem
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Adaptive Geometric Multigrid
The Solver

• Perform an MG-preconditioned iterative Krylov solve (via GCR, FGMRES…); on a given iteration:

• 𝑟 is the current iterated residual; 𝑥 is the current iterated solution

• (Optional) pre-smoother: relax on the current residual with 𝐷

• Restrict the smoothed residual: Ƹ𝑟 = 𝑃† 𝑟

• Approximately solve the coarse system to get a coarse error correction: 𝐷 Ƹ𝑒 = Ƹ𝑟

• Prolong the error: 𝑒 = 𝑃 Ƹ𝑒

• Correct the solution: 𝑥 ⇐ 𝑥 + 𝑒

• (Optional) post-smooth on the accumulated solution with 𝐷

Falgout

Credit: Robert Falgout
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• Perform an MG-preconditioned iterative Krylov solve (via GCR, FGMRES…); on a given iteration:

• 𝑟 is the current iterated residual; 𝑥 is the current iterated solution

• (Optional) pre-smoother: relax on the current residual with 𝐷

• Restrict the smoothed residual: Ƹ𝑟 = 𝑃† 𝑟

• Approximately solve the coarse system to get a coarse error correction: 𝐷 Ƹ𝑒 = Ƹ𝑟

• Prolong the error: 𝑒 = 𝑃 Ƹ𝑒

• Correct the solution: 𝑥 ⇐ 𝑥 + 𝑒

• (Optional) post-smooth on the accumulated solution with 𝐷

• Notably, for the coarsest level:

• Solve 𝐷 መƸ𝑒 = መƸ𝑟 (or more hats) to a fixed tolerance, or

• Perform an SVD deflation (Howarth) plus a fixed-iteration solve

• If you did everything right, it’ll efficiently converge

This can be done 

recursively

Falgout

Credit: Robert Falgout
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A Zoo of Questions
Math, Physics, Software, Hardware, Algorithms, 
Power Bills…

Fine grid

First coarse 

grid

Coarsest grid
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A Zoo of Questions

• Is the operator amenable to a Galerkin (𝐷 = 𝑃†𝐷 𝑃) 
projection?

• What’s the ideal way to generate near-null vectors?

• What’s the ideal smoother?

• What’s an optimal number of levels?

• How “accurately” do we solve on each level?

• How do I deal with remnant ill-conditioning on the 
coarsest level?

• How do we make it fast enough to include in HMC?

• How do these answers change depending on the 
implementation and the hardware?

• How do we take advantage of AI-driven hardware 
features?

• Where does this live in an energy-constrained 
world?

Math, Physics, Software, Hardware, Algorithms, 
Power Bills…
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Multigrid in Practice
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Vehicle for discussion: QUDA
“QCD on CUDA”… and many more these days

• “QCD on CUDA” – http://lattice.github.com/quda (open source, BSD license)

• Effort started at Boston University in 2008, now in wide use as the GPU backend for BQCD, Chroma, CPS, MILC, 
openQ*D**, TIFR, etc. Provides solvers for all major fermionic discretizations, with multi-GPU support

• Maximize performance

• Optimized implementations of major fermionic discretizations

• Mixed-precision methods before they were cool

• Eigensolvers, pure gauge algorithms, and more

• Autotune and maximize performance

• Batched solvers, deflation, and multi-grid acceleration

• Tensor core acceleration

• NVSHMEM for improving strong scaling

• A performant algorithmic playground for exascale++

• Portable: HIP (merged), SYCL (in review) and OpenMP (in development)

• A research tool for the exascale (and beyond)

• Optimally mapping the problem to hierarchical processors and node topologies

** See next talk by Roman Gruber, Tim Harris 
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QUDA Contributors
10+ Years, Lots of Contributors

• Buck Babich (NVIDIA)

• Simone Bacchio (Cyprus)

• Michael Baldfauf (Regensburg)

• Kip Barros (LANL)

• Rich Brower (Boston University)

• Nuno Cardoso (NCSA)

• Kate Clark (NVIDIA)

• Michael Cheng (Boston 
University)

• Carleton DeTar (Utah University)

• Justin Foley (NIH)

• Arjun Gambhir (William and Mary)

• Marco Garofalo (Bonn)

• Joel Giedt (Rensselaer 
Polytechnic Institute)

• Steve Gottlieb (Indiana University)

• Anthony Grebe (Fermilab)

• Kyriakos Hadjiyiannakou (Cyprus)

• Ben Hoerz (Intel)

• Dean Howarth (LBL)

• Hwancheol Jeong (Indiana 
University)

• Xiangyu Jiang (ITP, Chinese 
Academy of Sciences)

• Xiao-Yong Jin (ANL)

• Bálint Joó (NVIDIA)

• Hyung-Jin Kim (BNL -> Samsung)

• Bartek Kostrzewa (Bonn)

• Damon McDougall (AMD)

• Colin Morningstar (CMU)

• James Osborn (ANL)

• Ferenc Pittler (Cyprus)

• Claudio Rebbi (Boston University)

• Eloy Romero (William and Mary)

• Hauke Sandmeyer (Bielefeld)

• Mario Schröck (INFN)

• Aniket Sen (Bonn)

• Guochun Shi (NCSA -> Google)

• James Simone (FNAL)

• Alexei Strelchenko (FNAL)

• Jiqun Tu (NVIDIA)

• Carsten Urbach (HISKP, University of 
Bonn)

• Alejandro Vaquero (Utah University) 

• Michael Wagman (FNAL)

• Mathias Wagner (NVIDIA)

• André Walker-Loud (LBL)

• Evan Weinberg (NVIDIA)

• Frank Winter (Jlab)

• Yi-bo Yang (CAS)
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New(s to me): QUDA bindings for Python
So new I haven’t even tried them

• https://arxiv.org/abs/2411.08461 

• I’m not kidding, I haven’t tried them yet

• If you have---I’d love to hear your experience with them

https://arxiv.org/abs/2411.08461
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Parallelism, parallelism, parallelism…
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• Assign a single space-time point to each thread

• V = XYZT threads, e.g., V = 244 => 3.3x106 threads

• Each thread must:

• Load neighboring spinors

• Opportunity for cache re-use

• Load gauge/fat/long links (no reuse*)

• *We’ll get to multi-rhs later

• FP32 arithmetic intensities:

• Wilson operator: ~0.92 (naïve) 

• HISQ operator: ~0.73 (naïve) 

• QUDA reduces memory traffic

• SU(3) matrices: 18 -> 12 or 8 reals

• HISQ U(3) long links: 18 -> 13 or 9 reals

• Mixed-precision solvers: custom 16-bit fixed point 
representation

Parallelism, parallelism, parallelism…
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Batched Wilson Dslash

• Smaller volumes see the biggest boost in 
performance

• Parallelism + Locality

Parallelism, parallelism, parallelism, parallelismWilson Dslash FP32, GH200

NUMBERS ARE PRELIMINARY

AND WILL IMPROVE
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Batched Wilson Dslash

• Smaller volumes see the biggest boost in 
performance

• Parallelism + Locality

• Larger volumes on see boost due to locality

• QUDA lets the autotuner decide how many sources to 
include in each block

• More sources per block? Reuse of gauge fields

• Fewer sources per block? Spatial/temporal reuse of 
spinors

Parallelism, parallelism, parallelism, parallelismWilson Dslash FP32, GH200

NUMBERS ARE PRELIMINARY

AND WILL IMPROVE
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• Similar story for staggered

• Larger speedups due to increased locality of staggered 
operator

• 124 has L1 cache quantization effects

Batched Improved Staggered

Improved Staggered Dslash FP32, GH200

NUMBERS ARE PRELIMINARY

AND WILL IMPROVE
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• Similar story for staggered

• Larger speedups due to increased locality of staggered 
operator

• 124 has L1 cache quantization effects

• Preview: batching not only saves time, but energy

• Moving electrons takes energy (intro physics)

• Batching increases cache locality

• Electrons don’t need to move as far

• Energy requirements go down

Batched Improved Staggered

Improved Staggered Dslash FP32, GH200

Sequential: 27.3 kJ Total

Batched: 13.2 kJ Total

NUMBERS ARE PRELIMINARY

AND WILL IMPROVE

NUMBERS ARE PRELIMINARY

AND WILL IMPROVE
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• Fine grids run very efficiently

• High parallel throughput problem

The Challenge of Multigrid on 
the GPU
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• Fine grids run very efficiently

• High parallel throughput problem

• Coarse grids are worst possible scenario

• More cores than degrees of freedom

• Increasingly serial and latency bound

• Little’s law (bytes = bandwidth * latency)

• Amdahl’s law limiter

The Challenge of Multigrid on 
the GPU
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• Fine grids run very efficiently

• High parallel throughput problem

• Coarse grids are worst possible scenario

• More cores than degrees of freedom

• Increasingly serial and latency bound

• Little’s law (bytes = bandwidth * latency)

• Amdahl’s law limiter

• Multigrid exposes many of the problems we see at 
the exascale

The Challenge of Multigrid on 
the GPU
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Ingredients for Parallel Adaptive 
Multigrid

• Multigrid setup

• Block orthogonalization of null space vectors

• Batched QR decomposition

Parallelism, parallelism, parallelism…
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Ingredients for Parallel Adaptive 
Multigrid

• Multigrid setup

• Block orthogonalization of null space vectors

• Batched QR decomposition

• Smoothing (relaxation on a given grid)

• Repurpose existing solvers

• Prolongation

• interpolation from coarse grid to fine grid

• one-to-many mapping

Parallelism, parallelism, parallelism…
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• Batched QR decomposition

• Smoothing (relaxation on a given grid)
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• interpolation from coarse grid to fine grid

• one-to-many mapping
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• restriction from fine grid to coarse grid

• many-to-one mapping
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Ingredients for Parallel Adaptive 
Multigrid
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• Repurpose existing solvers

• Prolongation

• interpolation from coarse grid to fine grid

• one-to-many mapping

• Restriction

• restriction from fine grid to coarse grid

• many-to-one mapping

• Coarse Operator construction (setup)

• Evaluate 𝑃†𝐷 𝑃 locally 

• Batched (small) dense matrix multiplication

Parallelism, parallelism, parallelism…
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Ingredients for Parallel Adaptive 
Multigrid

• Multigrid setup

• Block orthogonalization of null space vectors

• Batched QR decomposition

• Smoothing (relaxation on a given grid)

• Repurpose existing solvers

• Prolongation

• interpolation from coarse grid to fine grid

• one-to-many mapping

• Restriction

• restriction from fine grid to coarse grid

• many-to-one mapping

• Coarse Operator construction (setup)

• Evaluate 𝑃†𝐷 𝑃 locally 

• Batched (small) dense matrix multiplication

• Coarse grid solver

• Need optimal coarse-grid operator

Parallelism, parallelism, parallelism…



73

Coarse Grid Operator

• Coarse operator looks like a Dirac operator (many more colors)

• Link matrices have dimension 2Nv x 2Nv (e.g., 48 x 48)
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Coarse Grid Operator

• Coarse operator looks like a Dirac operator (many more colors)

• Link matrices have dimension 2Nv x 2Nv (e.g., 48 x 48)

• Fine vs. Coarse grid parallelization

• Fine grid operator has plenty of grid-level parallelism

• E.g., 16x16x16x16 = 65536 lattice sites

• Coarse grid operator has diminishing grid-level parallelism

• first coarse grid 4x4x4x4 = 256 lattice sites

• second coarse grid 2x2x2x2 = 16 lattice sites
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Coarse Grid Operator

• Coarse operator looks like a Dirac operator (many more colors)

• Link matrices have dimension 2Nv x 2Nv (e.g., 48 x 48)

• Fine vs. Coarse grid parallelization

• Fine grid operator has plenty of grid-level parallelism

• E.g., 16x16x16x16 = 65536 lattice sites

• Coarse grid operator has diminishing grid-level parallelism

• first coarse grid 4x4x4x4 = 256 lattice sites

• second coarse grid 2x2x2x2 = 16 lattice sites

• Need to consider finer-grained parallelization

• Increase parallelism to use all GPU resources

• Load balancing
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Sources of Parallelism

• Matrix-Vector parallelism

• Splitting up the constituent dot products is a source of reuse
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• Note: the input coarse spinor is a source of directional cache reuse



78

Sources of Parallelism

• Matrix-Vector parallelism

• Splitting up the constituent dot products is a source of reuse

• Direction parallelism

• Note: the input coarse spinor is a source of directional cache reuse

• Dot-product parallelism:
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Twisted Clover Example

• Thank you to the ETMC collaboration for this 
configuration:

• 643x128 physical-point pion

• Iwasaki gauge action, 𝛽 = 1.778,

• Physical pion twisted clover fermion action, κ =
0.13947, 𝜇 = 0.000720, 𝑐𝑠𝑤 = 1.69

The March of Optimization

A modernization of https://github.com/lattice/quda/wiki/Twisted-clover-deflated-multigrid from Dean Howarth 

https://github.com/lattice/quda/wiki/Twisted-clover-deflated-multigrid
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Twisted Clover Example

• Thank you to the ETMC collaboration for this 
configuration:

• 643x128 physical-point pion

• Iwasaki gauge action, 𝛽 = 1.778,

• Physical pion twisted clover fermion action, κ =
0.13947, 𝜇 = 0.000720, 𝑐𝑠𝑤 = 1.69

• The starting point: 3-level multigrid

• Aggregate 1: 44 to 163x32 volume, 𝑁𝑐 = 24, 𝑁𝑠 = 2

• Aggregate 2: 24 to 83x16 volume, 𝑁𝑐 = 24, 𝑁𝑠 = 2

• Coarsest level “𝜇” enhancement: 70

• Preconditioned solver: GCR

• Smoother: GCR(0,4)

• Coarsest-level solver: GCR

The March of Optimization

A modernization of https://github.com/lattice/quda/wiki/Twisted-clover-deflated-multigrid from Dean Howarth 

https://github.com/lattice/quda/wiki/Twisted-clover-deflated-multigrid
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Twisted Clover Example

https://research.nvidia.com/sites/default/files/pubs/2016-04_S-Step-and-Communication-Avoiding/nvr-2016-003.pdf

https://research.nvidia.com/sites/default/files/pubs/2016-04_S-Step-and-Communication-Avoiding/nvr-2016-003.pdf

https://research.nvidia.com/sites/default/files/pubs/2016-04_S-Step-and-Communication-Avoiding/nvr-2016-003.pdf

• We’ll switch to communication-avoiding solvers for 
the smoothers and coarsest-level solver

• CA-GCR, based on CA-CG from 
https://research.nvidia.com/sites/default/files/pubs/20
16-04_S-Step-and-Communication-Avoiding/nvr-2016-
003.pdf 

• Generate 𝐷 Ԧ𝑥, 𝐷2 Ԧ𝑥, 𝐷3 Ԧ𝑥, … minimize the residual in one 
batched go

• Gram-Schmidt instead of modified Gram-Schmidt

Communication-avoiding solvers

A modernization of https://github.com/lattice/quda/wiki/Twisted-clover-deflated-multigrid from Dean Howarth 

https://research.nvidia.com/sites/default/files/pubs/2016-04_S-Step-and-Communication-Avoiding/nvr-2016-003.pdf
https://research.nvidia.com/sites/default/files/pubs/2016-04_S-Step-and-Communication-Avoiding/nvr-2016-003.pdf
https://research.nvidia.com/sites/default/files/pubs/2016-04_S-Step-and-Communication-Avoiding/nvr-2016-003.pdf
https://research.nvidia.com/sites/default/files/pubs/2016-04_S-Step-and-Communication-Avoiding/nvr-2016-003.pdf
https://research.nvidia.com/sites/default/files/pubs/2016-04_S-Step-and-Communication-Avoiding/nvr-2016-003.pdf
https://research.nvidia.com/sites/default/files/pubs/2016-04_S-Step-and-Communication-Avoiding/nvr-2016-003.pdf
https://github.com/lattice/quda/wiki/Twisted-clover-deflated-multigrid
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Twisted Clover Example

https://research.nvidia.com/sites/default/files/pubs/2016-04_S-Step-and-Communication-Avoiding/nvr-2016-003.pdf

https://research.nvidia.com/sites/default/files/pubs/2016-04_S-Step-and-Communication-Avoiding/nvr-2016-003.pdf

https://research.nvidia.com/sites/default/files/pubs/2016-04_S-Step-and-Communication-Avoiding/nvr-2016-003.pdf

• We’ll switch to communication-avoiding solvers for 
the smoothers and coarsest-level solver

• CA-GCR, based on CA-CG from 
https://research.nvidia.com/sites/default/files/pubs/20
16-04_S-Step-and-Communication-Avoiding/nvr-2016-
003.pdf 

• Generate 𝐷 Ԧ𝑥, 𝐷2 Ԧ𝑥, 𝐷3 Ԧ𝑥, … minimize the residual in one 
batched go

• Gram-Schmidt instead of modified Gram-Schmidt

• New setup:

• Aggregate 1: 44 to 163x32 volume, 𝑁𝑐 = 24, 𝑁𝑠 = 2

• Aggregate 2: 24 to 83x16 volume, 𝑁𝑐 = 24, 𝑁𝑠 = 2

• Coarsest level “𝜇” enhancement: 70

• Preconditioned solver: GCR

• Smoother: CA-GCR(0,4)

• Coarsest-level solver: CA-GCR

Communication-avoiding solvers

A modernization of https://github.com/lattice/quda/wiki/Twisted-clover-deflated-multigrid from Dean Howarth 

1.26x

https://research.nvidia.com/sites/default/files/pubs/2016-04_S-Step-and-Communication-Avoiding/nvr-2016-003.pdf
https://research.nvidia.com/sites/default/files/pubs/2016-04_S-Step-and-Communication-Avoiding/nvr-2016-003.pdf
https://research.nvidia.com/sites/default/files/pubs/2016-04_S-Step-and-Communication-Avoiding/nvr-2016-003.pdf
https://research.nvidia.com/sites/default/files/pubs/2016-04_S-Step-and-Communication-Avoiding/nvr-2016-003.pdf
https://research.nvidia.com/sites/default/files/pubs/2016-04_S-Step-and-Communication-Avoiding/nvr-2016-003.pdf
https://research.nvidia.com/sites/default/files/pubs/2016-04_S-Step-and-Communication-Avoiding/nvr-2016-003.pdf
https://github.com/lattice/quda/wiki/Twisted-clover-deflated-multigrid
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Twisted Clover Example

• Last, we’ll deflate the coarsest level instead of using a 
“mu” enhancement

• Singular value deflation---a generalization of 
eigenvalue deflation

• Work by Dean Howarth

Coarsest-level SVD deflation

A modernization of https://github.com/lattice/quda/wiki/Twisted-clover-deflated-multigrid from Dean Howarth 

1.26x

https://github.com/lattice/quda/wiki/Twisted-clover-deflated-multigrid
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Twisted Clover Example

• Last, we’ll deflate the coarsest level instead of using a 
“mu” enhancement

• Singular value deflation---a generalization of 
eigenvalue deflation

• Work by Dean Howarth

• New setup:

• Aggregate 1: 44 to 163x32 volume, 𝑁𝑐 = 24, 𝑁𝑠 = 2

• Aggregate 2: 24 to 83x16 volume, 𝑁𝑐 = 24, 𝑁𝑠 = 2

• No “𝜇” enhancement

• Preconditioned solver: GCR

• Smoother: CA-GCR(0,4)

• Coarsest-level solver: SVD-deflated CA-GCR

• 1,024 deflation vectors

Coarsest-level SVD deflation

A modernization of https://github.com/lattice/quda/wiki/Twisted-clover-deflated-multigrid from Dean Howarth 

1.26x

5.31x

https://github.com/lattice/quda/wiki/Twisted-clover-deflated-multigrid
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Multigrid on Modern Systems
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NVIDIA Grace Hopper Superchip

• NVIDIA Grace CPU

• 72 Arm-v9 Neoverse V2 CPU cores with SVE2.

→ Throughput: 3.6 TFLOP/s 

• Memory:

→High capacity: ≤ 480 GB LPDDR5X 

→High System Memory bandwidth: ≤ 500 GB/s

• NVIDIA Hopper GPU 

→High throughput: 60 TFLOP/s

• Memory:

→ Capacity: 96 GB HBM3 / 144 GB HBM3e

→ Extreme bandwidth ≤ 4000 GB/s  / 5000 GB/s

• ≤ 18x NVLink 4 → 900 GB/s

→ Threads are threads

“super” - more than a “chip”

NVIDIA CPU + NVIDIA GPU w/o compromises
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NVIDIA Grace Hopper Superchip

• Memory consistency: ease of use

→All threads – GPU and CPU – access system memory:
C++ new, malloc, mmap’ed files, atomics, …

→ Fast automatic page migrations

→ Threads cache peer memory → Less migrations

• High-bandwidth: 900 GB/s (same as peer NVLink 4)

→ GPU reads or writes local/peer LPDDR5X at ~peak BW

• Low-latency: GPU→HBM latency

→GPU reads or writes LPDDR5X at ~HBM3 latency

For all threads in the system
memory tastes like memory 

expected behavior + latency + bandwidth.

Soul is the new NVLink-C2C CPU → GPU interconnect

NVLink–C2C
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Building up a Modern Node
4 x Grace-Hopper Superchips

Understanding Data Movement in Tightly Coupled Heterogeneous Systems: A Case Study with the Grace Hopper Superchip [ 2408.11556 (arxiv.org) ]

https://arxiv.org/pdf/2408.11556
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Assemble it Into a Killer System: ALPS @ CSCS
A completely un-biased choice of a modern system totally not hand-picked for this workshop

https://www.cscs.ch/computers/alps 

https://www.cscs.ch/computers/alps
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Hopper GPU Architecture
A hierarchically-organized beast

132 SMs

4th Gen Tensor Core

Larger 60 MB L2

4th Gen NVLink

900 GB/s total bandwidth

2nd Gen Multi-Instance GPU

Confidential Computing

PCIe Gen5

GPU Processing 

Clusters (GPC)

“Thread Block 

Clusters”

96GB HBM3, 4 TB/s 

bandwidth
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If you can’t beat them, join them
Tensor Cores

• An increasing proportion of GPU die area is spent on AI
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If you can’t beat them, join them
Tensor Cores

• An increasing proportion of GPU die area is spent on AI

• There is a plethora of tensor cores of various precisions for AI

• Tensor cores accelerate matrix-matrix multiplication (GEMMs)

• Combine multiple low-precision tensor-core operations to emulate 
higher precision

• FP32 ~ 3xTF32

• QUDA half ~ 3x BF16

𝐶 = 𝐴𝐵 = (𝐴ℎ𝑖 + 𝐴𝑙𝑜)(𝐵ℎ𝑖 + 𝐵𝑙𝑜)
∼ (𝐴ℎ𝑖𝐵ℎ𝑖 + 𝐴ℎ𝑖𝐵𝑙𝑜 + 𝐴𝑙𝑜𝐵ℎ𝑖)
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If you can’t beat them, join them
Tensor Cores

• An increasing proportion of GPU die area is spent on AI

• There is a plethora of tensor cores of various precisions for AI

• Tensor cores accelerate matrix-matrix multiplication (GEMMs)

• Combine multiple low-precision tensor-core operations to emulate 
higher precision

• FP32 ~ 3xTF32

• QUDA half ~ 3x BF16

• If you have a big enough GEMM, tensor cores rock
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If you can’t beat them, join them
Tensor Cores

• An increasing proportion of GPU die area is spent on AI

• There is a plethora of tensor cores of various precisions for AI

• Tensor cores accelerate matrix-matrix multiplication (GEMMs)

• Combine multiple low-precision tensor-core operations to emulate 
higher precision

• FP32 ~ 3xTF32

• QUDA half ~ 3x BF16

• If you have a big enough GEMM, tensor cores rock

• QUDA’s MG for LQCD has many tensor-core-friendly factors: 24, 
32, 64…

𝐶 = 𝐴𝐵 = (𝐴ℎ𝑖 + 𝐴𝑙𝑜)(𝐵ℎ𝑖 + 𝐵𝑙𝑜)
∼ (𝐴ℎ𝑖𝐵ℎ𝑖 + 𝐴ℎ𝑖𝐵𝑙𝑜 + 𝐴𝑙𝑜𝐵ℎ𝑖)
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If you can’t beat them, join them
Tensor Cores

• An increasing proportion of GPU die area is spent on AI

• There is a plethora of tensor cores of various precisions for AI

• Tensor cores accelerate matrix-matrix multiplication (GEMMs)

• Combine multiple low-precision tensor-core operations to emulate 
higher precision

• FP32 ~ 3xTF32

• QUDA half ~ 3x BF16

• If you have a big enough GEMM, tensor cores rock

• QUDA’s MG for LQCD has many tensor-core-friendly factors: 24, 
32, 64…

• We just need to find the GEMMs!

𝐶 = 𝐴𝐵 = (𝐴ℎ𝑖 + 𝐴𝑙𝑜)(𝐵ℎ𝑖 + 𝐵𝑙𝑜)
∼ (𝐴ℎ𝑖𝐵ℎ𝑖 + 𝐴ℎ𝑖𝐵𝑙𝑜 + 𝐴𝑙𝑜𝐵ℎ𝑖)
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GEMMs in Multigrid

• There are a lot of linear operations that act on a 
single vector

• These can also be batched: matrix-vector becomes 
matrix-matrix

• Multigrid has perhaps the greatest to benefit from 
MRHS

• Coarse operator has more “colours” so more 
locality

• Coarse grids are extremely parallelism challenged 

Tensor Cores

9

8

Tensor-core accelerated multi-RHS

coarse single-precision Dslash (A100)

5 TFLOPS ->

15 TFLOPS
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Multigrid + Multiple Right-Hand 
Sides

• There is always scope for batched operations during 
MG setup:

• Batched generation of near-null vectors: coarse dslash

• Batched generation of lowest-level singular vectors

• Batched block orthogonalization

• Batched link coarsening

Setup

9

9
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Multigrid + Multiple Right-Hand 
Sides

• There is always scope for batched operations during 
MG setup:

• Batched generation of near-null vectors: coarse dslash

• Batched generation of lowest-level singular vectors

• Batched block orthogonalization

• Batched link coarsening

• On the right

• Batched and tensor-core accelerated near-null vector 
generation

• Batched and, for coarse operator coarsening, tensor-
core accelerated link coarsening

Setup

1

0

0

3.4x faster
and

3.8x less energy

NUMBERS ARE PRELIMINARY

AND WILL IMPROVE
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Multigrid + Multiple Right-Hand 
Sides

• There is always scope for batched operations during 
MG setup:

• Batched generation of near-null vectors: coarse dslash

• Batched generation of lowest-level singular vectors

• Batched block orthogonalization

• Batched link coarsening

• On the right

• Batched and tensor-core accelerated near-null vector 
generation

• Batched and, for coarse operator coarsening, tensor-
core accelerated link coarsening

• Speedups will only increase as optimization 
progresses

Setup

1

0

1

3.4x faster
and

3.8x less energy

NUMBERS ARE PRELIMINARY

AND WILL IMPROVE
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Multigrid + Multiple Right-Hand 
Sides

• During MG solves… if they’re batched (multiple 
sources)

• Batched coarse dslash

• Batched prolongator, restrictor

• Batched SVD deflation

Solver

1

0

2
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Multigrid + Multiple Right-Hand 
Sides

• During MG solves… if they’re batched (multiple 
sources)

• Batched coarse dslash

• Batched prolongator, restrictor

• Batched SVD deflation

• On the right

• Batched and tensor-core accelerated coarse dslash

• Batched but not (yet) tensor-core accelerated 
prolongator and restrictor

• Batched SVD deflation

Solver

1

0

3

2.1x faster
and

2.2x less energy

NUMBERS ARE PRELIMINARY

AND WILL IMPROVE
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Multigrid + Multiple Right-Hand 
Sides

• During MG solves… if they’re batched (multiple 
sources)

• Batched coarse dslash

• Batched prolongator, restrictor

• Batched SVD deflation

• On the right

• Batched and tensor-core accelerated coarse dslash

• Batched but not (yet) tensor-core accelerated 
prolongator and restrictor

• Batched SVD deflation

• Again, speedups will only increase as optimization 
progresses

Solver

1

0

4

2.1x faster
and

2.2x less energy

NUMBERS ARE PRELIMINARY

AND WILL IMPROVE
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• Multi-RHS motivates a retuning of algorithmic 
parameters

• Significant cost reduction for setup provides 
scope to improve preconditioner quality

• As we increase RHS, we can get a better solver at 
constant iteration cost 

Improvements beget 
Improvements
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• Multi-RHS motivates a retuning of algorithmic 
parameters

• Significant cost reduction for setup provides 
scope to improve preconditioner quality

• As we increase RHS, we can get a better solver at 
constant iteration cost 

• This calculus can change with each improvement…

Improvements beget 
Improvements
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• Multi-RHS motivates a retuning of algorithmic 
parameters

• Significant cost reduction for setup provides 
scope to improve preconditioner quality

• As we increase RHS, we can get a better solver at 
constant iteration cost 

• This calculus can change with each improvement…

• …and algorithmic improvements can keep coming

• Preliminary: tensor-core-accelerated prolongator 
and restrictor…

• …Among other TC-accelerated portions of MG

Improvements beget 
Improvements



108108

Revisiting the
Twisted Clover Example

• “Optimization” doesn’t necessarily (just) refer to time 
to solution

• It can also refer to energy to solution

• Which doesn’t always correlate, but often does

Energy Consumption

A modernization of https://github.com/lattice/quda/wiki/Twisted-clover-deflated-multigrid from Dean Howarth 

1.26x

5.31x

1.12x

4.81x

https://github.com/lattice/quda/wiki/Twisted-clover-deflated-multigrid
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Twisted Clover Example

• Our next step isn’t necessarily a novel idea, but it 
keys in on energy efficiency

• Here we begin batching operations

• Without tensor cores… for now

• There are always operations to batch in setup

• I’m not showing the setup because I’m still fighting 
with the block Lanczos

• There are not always operations to batch in the solver 
phase

• You may only need one solve (HMC)

• …but take the results on the right as a proxy for 
improvements

Batching Solves

A modernization of https://github.com/lattice/quda/wiki/Twisted-clover-deflated-multigrid from Dean Howarth 

1.26x

5.31x

1.12x

4.81x

2.42x

1.81x

https://github.com/lattice/quda/wiki/Twisted-clover-deflated-multigrid
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Twisted Clover Example

• Last, we include the tensor core acceleration

• Energy savings outpace time-to-solution improvements

• Tensor cores by construction promote matrix-multiply 
ultra-locality

• Aggregate benefits:

• Time to solution: 17.55x

• Energy to solution: 11.62x

• Each step contributed

Tensor Cores

A modernization of https://github.com/lattice/quda/wiki/Twisted-clover-deflated-multigrid from Dean Howarth 

1.26x

5.31x

1.12x

4.81x

2.42x

1.81x

1.09x

1.20x

https://github.com/lattice/quda/wiki/Twisted-clover-deflated-multigrid
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A History of Algorithms and 
Machines

• There is a storied history of MG-accelerated Wilson-
clover HMC driven by Chroma

• HMC typically dominated by solving the Dirac 
equation, but

• Few solves per linear system

• Can be bound by heavy solves (c.f. Hasenbusch mass 
preconditioning)

• Multigrid setup must run at speed of light

• Reuse and evolve multigrid setup where possible

• Use the same null space for all

• Evolve null space as the gauge field evolves (Lüscher 
2007)

• Update null space when the preconditioner degrades 
too much on lightest mass

• Machines plus algorithms has made this faster

Chroma + QDP-JIT + QUDA

Chroma w/ QDP-JIT and QUDA

V=643x128 sites, mπ ~172 MeV

(QDP-JIT by F. Winter, Jefferson Lab)

Benchmark Time to Solution

~40x
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The Intersection of Algorithms 
and Machines

• There is a storied history of MG-accelerated Wilson-
clover HMC driven by Chroma

• HMC typically dominated by solving the Dirac 
equation, but

• Few solves per linear system

• Can be bound by heavy solves (c.f. Hasenbusch mass 
preconditioning)

• Multigrid setup must run at speed of light

• Reuse and evolve multigrid setup where possible

• Use the same null space for all

• Evolve null space as the gauge field evolves (Lüscher 
2007)

• Update null space when the preconditioner degrades 
too much on lightest mass

• Machines plus algorithms has made this faster

• And makes fixed allocations go further

Chroma + QDP-JIT + QUDA

Chroma w/ QDP-JIT and QUDA

V=643x128 sites, mπ ~172 MeV

(QDP-JIT by F. Winter, Jefferson Lab)

Benchmark GPU-Hours

~320x
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Staggered Fermions: Kahler-
Dirac preconditioning

• 2-d paper: arXiv:1801.07823

• Core idea: spectral deformation by Kahler-Dirac 
structure

• Each 2d hypercube of staggered dof = one lattice 
Kahler-Dirac fermion

• Block-precondition by this 2d structure

• Deforms anti-Hermitian indefinite spectrum into 
(roughly) circular spectrum

• Carries similar spectral properties as Wilson-clover 
after coarsening

• Implemented in QUDA, exposed in MILC

Spectral deformations
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Batched HISQ Multigrid

• The “gotchas” of Staggered/HISQ

• Four Dirac fermions means 4x the zero modes

• The “fundamental” unit of degrees of freedom is the 24 
hypercube

Setup and Solve
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Batched HISQ Multigrid

• The “gotchas” of Staggered/HISQ
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• The “fundamental” unit of degrees of freedom is the 24 
hypercube

• Consequences:

• Aggregates can be larger, ~O(64)…

• …but there needs to be more coarse d.o.f.

• …more benefit from multi-RHS

• Example:

• Fine level: 243x48

• Intermediate level: 63x8, 𝑁𝑐 = 64, 𝑁𝑠 = 2

• Coarsest level 23x4, 𝑁𝑐 = 96, 𝑁𝑠 = 2

Setup and Solve

NUMBERS ARE PRELIMINARY

AND WILL IMPROVE

Setup: 12.6 sec, 4.58 Tflops to 5.46 sec, 10.6 Tflops

Solve throughput: 0.24 sec/solve to 0.15 sec/solve
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Batched HISQ Multigrid

• The “gotchas” of Staggered/HISQ

• Four Dirac fermions means 4x the zero modes

• The “fundamental” unit of degrees of freedom is the 24 
hypercube

• Consequences:

• Aggregates can be larger, ~O(64)…

• …but there needs to be more coarse d.o.f.

• …more benefit from multi-RHS

• Example:

• Fine level: 243x48

• Intermediate level: 63x8, 𝑁𝑐 = 64, 𝑁𝑠 = 2

• Coarsest level 23x4, 𝑁𝑐 = 96, 𝑁𝑠 = 2

• More degrees of freedom means more wins from 
multi-RHS

• Multi-RHS saves power and time

Setup and Solve

NUMBERS ARE PRELIMINARY

AND WILL IMPROVE

Setup: 12.6 sec, 4.58 Tflops to 5.46 sec, 10.6 Tflops

Solve throughput: 0.24 sec/solve to 0.15 sec/solve
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There’s More? Other Thoughts 
and Questions
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What We Haven’t Covered
We’ve come so far and have so far to go

• In CUDA:

• (Even better) asynchronous SIMT: overlapping memory transactions and compute in a kernel

• Tensor Memory Accelerator (TMA): Automatic stride & address generation up to tensors of rank 5

• Coarse gauge links have a parity, checker-board coordinate, direction, row, column… we need all 5

• Ex, for the coarse dslash: Overlap computing one direction with fetching the next

• In QUDA:

• The depths of HISQ multigrid

• Future work on domain-wall/Mobius multigrid

• …and countless more
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And Don’t Forget…
Where we started

• Multigrid: A class of algorithms that mitigate critical slowing down

• And that’s nice, but the devil’s really in the details
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• And that’s what must inform the algorithmic and implementation decisions that get made
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And Don’t Forget…
Where we started

• Multigrid: A class of algorithms that mitigate critical slowing down

• And that’s nice, but the devil’s really in the details

• Reality: Time (and energy) to solution is the only thing that matters

• And that’s what must inform the algorithmic and implementation decisions that get made

• Energy Efficiency: Move fewer electrons a shorter distance (and accomplish the same goal)

• And it’s not just feel-good, time-to-solution often comes along for the ride
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Backup



126

Preliminary TMA Coarse Dslash Numbers
Work by Jiqun Tu

• Current state (December 11, 2024) is available at https://github.com/lattice/quda/pull/1497

https://github.com/lattice/quda/pull/1497
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Grace Architecture
The CPU building block of the Grace-Hopper superchip

• High Performance Power Efficient Cores

• 72 flagship Arm Neoverse V2 Cores ( Armv9-A )

• 4x128b SVE2 SIMD units per core ( SVE2 / NEON )

• 3.16 GHz Base Clock / 2.7 GHz Vector Clock

• 3.6 FP64 TFLOP/s

• Scalable Coherency Fabric

• 3.2 TB/s of bisection bandwidth connects CPU 

cores, NVLink-C2C, memory, and system IO

• High-Bandwidth Low-Power Memory

• Up to 480 GB of LPDDR5X memory that delivers up 

to 500 GB/s of memory bandwidth

• Coherent Chip-to-Chip Connections

• NVLink-C2C with 900 GB/s raw bidirectional 

bandwidth for coherent connection to CPU or GPU

• ~7x BW that can be delivered by PCIe Gen 5 link

• Supports up to 4 chip coherency over coherent 

NVLink

Example possible fabric topology for illustrative purposes
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Hopper GPU Architecture
The GPU building block of the Grace-Hopper superchip

132 SMs

4th Gen Tensor Core

Larger 60 MB L2

4th Gen NVLink

900 GB/s total bandwidth

2nd Gen Multi-Instance GPU

Confidential Computing

PCIe Gen5

GPU Processing 

Clusters (GPC)

“Thread Block 

Clusters”

96GB HBM3, 4 TB/s 

bandwidth
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Grace Hopper Superchip
GPU can access CPU memory at CPU memory speeds

HOPPER
GPU

GRACE
CPU

N
V
L
IN

K
 C

2
C

9
0
0
 G

B
/
s

CPU LPDDR5X
120GB

500GB/s

CPU LPDDR5X

NVIDIA Grace Hopper Superchip

N
V
L
IN

K
 N

E
T
W

O
R
K

H
IG

H
-S

P
E
E
D

I/
O

GPU HBM3
96 GB HBM3

4000 GB/s

GPU HBM3

18x NVLINK 4

900 GB/s

Hardware Consistency

4x 

16x PCIe-5

512 GB/s

https://resources.nvidia.com/en-us-grace-cpu/nvidia-grace-hopper
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Node Architecture of Jupiter (Jedi) Supercomputer
4 x Grace-Hopper Superchips

200 Gbit/s 

IB

200 Gbit/s 

IB

200 Gbit/s 

IB

200 Gbit/s 

IB
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Wilson-Clover: the Standard 
Bearer

• Brannick et al 2008, Babich et al 2010

• Multiple implementations (QUDA, Grid, DD-𝛼AMG, 
apologies for others I’ve missed)

• The Wilson operator is a “model” operator

• Low modes near complex origin

• High modes gapped from origin in the real direction

• Has been successfully extended to twisted mass, 
twisted clover

• Well-documented issue of severely ill-conditioned 
eigenvalues in coarse operator

• State-of-the-art Solution: SVD deflation of coarsest 
level

Optional subtitle
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Staggered Fermions: Kahler-
Dirac preconditioning

• 2-d paper: arXiv:1801.07823

• Core idea: spectral deformation by Kahler-Dirac 
structure

• Each 2d hypercube of staggered dof = one lattice 
Kahler-Dirac fermion

• Block-precondition by this 2d structure

• Deforms anti-Hermitian indefinite spectrum into 
(roughly) circular spectrum

• Carries similar spectral properties as Wilson-clover 
after coarsening

• Implemented in QUDA, exposed in MILC

Spectral deformations
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Five-level Algorithm

• Fine level: outer staggered/HISQ solver

• Second level: “pseudo-fine” block preconditioned 
level

• Unitary transformation for staggered operator (before 
block preconditioning)

• HISQ operator: drop Naik term, corrected on fine level 
by smoother

• Traditional MG aggregation from there:

• Third level: Nc = 64 x Nspin = 2

• Fourth level: Nc = 96 x Nspin = 2

• Fifth level: Deflation

Spectral deformations

Kahler-Dirac

“Pseudo-fine” 

grid

First coarse 

grid

Coarsest grid

Deflation

Fine grid
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HISQ MG Algorithm on Summit
FIXME

Physical pion mass configuration courtesy of Carleton DeTar (MILC collaboration)
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Chiral Fermions: Domain Wall

• The challenge: maximally indefinite spectrum

• (Heavily) violates half-plane condition, subverts rates 
of convergence proofs

• Methods on the normal operator:

• Cohen et al 2011, Boyle 2014

• Latest & Greatest from Peter: MG-Preconditioned 
Block CG, arXiv:2409.03904 + previous talk!

• Other recent work:

• Comparison of Domain Wall Fermion Multigrid 
Methods (Boyle & Yamaguchi, 2021, arXiv: 2103.05034)

• Approximate Pauli-Villars preconditioned operator in 2-
d in Brower et al, arXiv:2004.07732 (demonstrated in 
4-d by Boyle)

• Four-level hierarchically deflated conjugate residual 
(HDCR) on Hermitian indefinite operator in Grid, (Boyle, 
arXiv:1611.06944)

Spectral deformations

Note: Spectrum for 2-d Schwinger model;

4-d QCD has 5 “eyes” in the burger plot
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Approximate Pauli-Villars 
Preconditioning

• Demonstrated in 2-d: arXiv:2004.07732, 4-d by Boyle 
in 29 hours

• Motivator is multigrid on DPV-1 Ddwf (effective 
overlap)

• Three steps:

• Replace DPV-1 with DPV † --- still obeys half-plane 
condition

• Perform a Galerkin coarsening of the 4-d operator on 
each slice, separately preconditioning Ddwf and DPV

• Only prolong/restrict on chiral boundaries

• Idea of coarsening Wilson kernel (equiv. Hermitian 
kernel) applies to all formulations, overlap

• Implemented in Grid in 29 hours, Implementation in 
QUDA a WIP 

Spectral deformations
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