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Motivation



openQxD [5]

Simulations of QCD and QCD+QED O(a) improved Wilson-Clover fermions
Based on openQCD v1.6 [1, 2]
Variety of BCs; open/SF/periodic in time, C⋆ boundaries [3] or periodic
boundaries in space
Powerful solvers: CGNE, GCR with Schwarz-alternating procedure and
inexact deflation [4]
Pure-MPI parallelisation, C89 standard (next release will be C99)
Actively developed and maintained by RC⋆ collaboration

Requirement
C⋆ boundaries and QCD+QED Wilson-Clover fermions
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GPU-enabled openQxD - Motivation

Main Goal
Offload solves to GPU (target system: new Alps machine and Lumi-G)

$ OpenMP offloading
+ Easy and rapid porting
− Disappointing results (more efforts required)

$ Coupling to existing solver suite
− Operator on GPU still a problem
− General solvers not on eye level with state-of-the-art lattice solvers

$ Own CUDA/HIP implementation in openQxD
+ Cleanest solution (no external dependencies)
− Insane effort (lots of core changes, breaking changes, ...)

$ Coupling to QUDA
+ No need to reinvent the wheel
+ Get all features of QUDA (solver suite, eigensolvers, ...)
− Only real additional efforts: (1) Interface, (2) C⋆ boundaries, (3) QCD+QED

Wilson-Clover
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QUDA [8]

Plug and play library to offload Dirac solves
Supports many lattice discretisations (Wilson, staggered, Domain-wall, ...)
Powerful solvers: BiCGstab, GCR with multigrid [6, 7], ...
C++-14 standard
Supports NVIDIA, AMD, Intel and CPU threading
Actively developed and maintained by NVIDIA + many others
NVIDIA licence (similar to MIT)
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Interfacing openQxD with QUDA



openQxD: memory layout I

1 /* Complex double struct */
2 typedef struct
3 {
4 double re,im;
5 } complex_dble;

Figure: Complex double struct

1 /* Clover field struct */
2 typedef struct
3 {
4 double u[36];
5 } pauli_dble;

Figure: Clover field struct

1 /* Gauge field struct */
2 typedef struct
3 {
4 complex_dble c11,c12,c13,c21,c22,c23,c31,c32,c33;
5 } su3_dble;

Figure: Gauge field struct

Gauge field d.o.f: 4V (V = lattice volume, 8 directions)
Clover field d.o.f: 2V (V, 2 chiralities, 6x6 matrix (complex, Hermitian))
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openQxD: memory layout II

1 typedef struct
2 {
3 complex_dble c1,c2,c3;
4 } su3_vector_dble;

Figure: SU(3) vector struct

1 typedef struct
2 {
3 su3_vector_dble c1,c2,c3,c4;
4 } spinor_dble;

Figure: Spinor field struct

Spinor field d.o.f: V (V = lattice volume, 4 spin, 3 color) −→ array of structs
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Different gauge field layouts
openQxD
▶ stores 8 (forward and backward) directed gauge fields for all odd-parity

points
▶ locally stores gauge fields on the boundaries only for odd-parity points and

not for even-parity points
QUDA
▶ 4 gauge fields for each space-time point (one for each positive direction

openQxD QUDA

Figure: 2D example (4 × 4 local lattice) of how and which gauge fields are stored in
memory in openQxD (left) and QUDA (right). Filled lattice points are even, unfilled odd
lattice points.
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Status

Interface
C⋆ boundaries
QCD+QED Wilson-Clover

8 20



Status

¥ Interface
C⋆ boundaries
QCD+QED Wilson-Clover
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C⋆ boundaries

physical lattice mirror lattice

Figure: 2D example of a 6 × 6 lattice with C⋆ boundary conditions on both directions.
We have the (doubled) x-direction (horizontal) and a direction with C⋆ boundaries
(vertical). Left is the physical, right the mirror lattice. The union is the extended lattice

.
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C⋆ boundaries: Implementation in QUDA

Analogue to the implementation in openQCD
Doubling the lattice as it comes from openQxD (i.e. additional index:
physical, mirror)
Communication grid topology struct now contains a member property
cstar −→ number of spatial C⋆ directions
comm_rank_displaced(): calculates the neighbouring rank number
given one of (positive or negative) 8 directions −→ implements the
shifted boundaries
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Status

¥ Interface
C⋆ boundaries
QCD+QED Wilson-Clover
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Status

¥ Interface
¥ C⋆ boundaries

QCD+QED Wilson-Clover
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QCD+QED

In addition to the SU(3)-valued gauge field Uµ(x), we have the U(1)-valued
gauge field Aµ(x)
Combined: U(3)-valued field eiqAµ(x)Uµ(x) with qf the charge of a quark
In QUDA, we just use
▶ QUDA_RECONSTRUCT_9
▶ QUDA_RECONSTRUCT_13
▶ QUDA_RECONSTRUCT_NO

We have an U(1) SW-term,

Dw → Dw + qcU(1)sw
i
4

3∑
µ,ν=0

σµν Âµν , (1)

where q is the charge and the U(1) and Âµν(x) is the field strength tensor.
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QCD+QED: Implementation in QUDA

Resulting term has the same properties as the SU(3) SW-term (Hermitian,
diagonal w.r.t chiralities)
Clover field reorder class:
openQxD (row-major):

u0 u6 + iu7 u8 + iu9 u10 + iu11 u12 + iu13 u14 + iu15
· u1 u16 + iu17 u18 + iu19 u20 + iu21 u22 + iu23
· · u2 u24 + iu25 u26 + iu27 u28 + iu29
· · · u3 u30 + iu31 u32 + iu33
· · · · u4 u34 + iu35
· · · · · u5

 . (2)

QUDA (column-major):
u0 · · · · ·

u6 + iu7 u1 · · · ·
u8 + iu9 u16 + iu17 u2 · · ·
u10 + iu11 u18 + iu19 u24 + iu25 u3 · ·
u12 + iu13 u20 + iu21 u26 + iu27 u30 + iu31 u4 ·
u14 + iu15 u22 + iu23 u28 + iu29 u32 + iu33 u34 + iu35 u5

 . (3)
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Status

¥ Interface
¥ C⋆ boundaries

QCD+QED Wilson-Clover
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Status
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Solver interface



Solver interface in openQxD

Solvers are called by means of their function, i.e. cgne(), sap_gcr(),
dfl_sap_gcr()
Usual utility:
▶ input file parsing
▶ solver setup
▶ call solver

1 [Solver 0]
2 solver CGNE
3 nmx 256
4 res 1.0e-12

1 [Solver 1]
2 solver SAP_GCR
3 nkv 16
4 isolv 1
5 nmr 4
6 ncy 5
7 nmx 24
8 res 1.0e-8

1 [Solver 2]
2 solver DFL_SAP_GCR
3 idfl 0
4 nkv 16
5 isolv 1
6 nmr 4
7 ncy 5
8 nmx 24
9 res 1.0e-8

Figure: Example solver sections
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Additional solver type

Add solver type QUDA
All options from QudaInvertParam and QudaMultigridParam

1 [Solver 3]
2 solver QUDA
3 gcrNkrylov 16
4 tol 1e-12
5 inv_type QUDA_GCR_INVERTER
6 inv_type_precondition QUDA_MG_INVERTER
7 ...
8
9 [Solver 3 Multigrid]

10 n_level 2
11 ...
12
13 [Solver 3 Multigrid Level 0]
14 ...
15
16 [Solver 3 Multigrid Level 1]
17 ...

Figure: Example QUDA solver section
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Optimisations

No doubling of the gauge field
Calculate U(1) SW-term in QUDA (no transfer)
Offload smearing, contractions
Spinor field memory management (field unification)
Partitioning
multiple RHS
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Performance



Tested system

Tödi testing system at CSCS, Switzerland
4x NVIDIA® Grace™ CPU, 120GB RAM, 72 Neoverse V2 Armv9 cores
4x NVIDIA® H100 GPU, 96GB RAM
NVLink® provides all-to-all cache-coherent memory between all host and
device memory

Wikipedia, Niklausschreiber2, CC BY-SA 3.0

Figure: Tödi: highest mountain in the Glarus Alps (3612 m)
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Inverter scaling

Figure: Strong scaling of one inversion of the Dirac operator; T × L3 = 128 × 643,
mπ = 300 MeV, C⋆-boundaries in all 3 spatial directions.

GDR not yet available on Alps
NVSHMEM not yet available on Alps
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Conclusion



Conclusions

v Up and running interface to QUDA
v C⋆ boundaries in QUDA
v QCD+QED Wilson-Clover in QUDA
v Offloaded Dirac solves and eigensolver
u Contractions
u Smearing
u Field memory manager
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Thanks for listening!
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openQxD: spacetime ordering I

txyz-convention, i.e. 4-vector x = (x0, x1, x2, x3)

Lexicographical index (Lµ = rank-local lattice extent):

Λ(x, L) := L3L2L1x0 + L3L2x1 + L3x2 + x3. (4)

openQxD orders indices in cache-blocks: decomposition of the rank-local
lattice into equal blocks of extent Bµ
▶ Within a block: Λ(b,B), where b = block-local Euclidean 4-vector
▶ Block themselves: Λ(n,NB), where NB,µ = Lµ/Bµ and nµ = ⌊xµ/Bµ⌋

Even-odd ordering in the block (but not the blocks themselves)

x̂ =
⌊

1
2
(
VBΛ(n,NB) + Λ(b,B)

)⌋
+ P(x)V2 , (5)

where VB = B0B1B2B3 is the volume of a block, P(x) = 1
2 (1 − (−1)

∑
µ xµ) gives the

parity and V = L3L2L1L0.



openQxD: spacetime ordering II
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Figure: 2D example (8 × 8 local lattice) of the rank-local unique lattice index in openQxD
(in time first convention (txyz)). The blue rectangles denote cache blocks of size 4 × 4.
Gray sites are odd, white sites are even lattice points.



C⋆ Dirac operator I

The QCD+QED C⋆ Wilson-Clover Dirac operator in QCD simulations applied onto
a spinor field ψ(x) is (the lattice spacing is set to a = 1)

Dwψ(x) = (4 +m0)ψ(x)

− 1
2

3∑
µ=0

{
Hµ(x)(1 − γµ)ψ(x + µ̂) + Hµ(x − µ̂)−1(1 + γµ)ψ(x − µ̂)

}
+cSU(3)sw

i
4

3∑
µ,ν=0

σµν F̂µν(x)ψ(x) + qcU(1)sw
i
4

3∑
µ,ν=0

σµν Âµνψ(x) ,

(6)

where the gauge field Hµ(x) is the U(3)-valued link between extended lattice
point x and x + µ̂, the γµ are the Dirac matrices obeying the Euclidean Clifford
algebra, {γµ, γν} = 2δµν and σµν = i

2 [γµ, γν ].



C⋆ Dirac operator II

The SU(3) field strength tensor F̂ is defined as

F̂µν(x) =
1
8 {Qµν(x)− Qνµ(x)} ,

Qµν(x) = Uµ(x)Uν(x + µ̂)Uµ(x + ν̂)−1Uν(x)−1

+ Uν(x)Uµ(x − µ̂+ ν̂)−1Uν(x − µ̂)−1Uµ(x − µ̂)

+ Uµ(x − µ̂)−1Uν(x − µ̂− ν̂)−1Uµ(x − µ̂− ν̂)Uν(x − ν̂)

+ Uν(x − ν̂)−1Uµ(x − ν̂)Uν(x + µ̂− ν̂)Uµ(x)−1

where the gauge field Uµ(x) is SU(3)-valued



C⋆ Dirac operator III

We add the U(1) SW-term,

Dw → Dw + qcU(1)sw
i
4

3∑
µ,ν=0

σµν Âµν , (7)

where q is the charge and the U(1) field strength tensor Âµν(x) is defined as

Âµν(x) =
i

4qel
Im {zµν(x) + zµν(x − µ̂)

+zµν(x − ν̂) + zµν(x − µ̂− ν̂)}

zµν(x) = ei{Aµ(x)+Aν(x+µ̂)−Aµ(x+ν̂)−Aν(x)}



C⋆ boundary conditions
The implementation of the C⋆ boundary conditions for the fields is the
following (orbifold construction):

Aµ(x + Lkk̂) = −Aµ,

ψf (x + Lkk̂) = C−1ψ
T
f (x),

ψf (x + Lkk̂) = −ψTf (x)C,

Uµ(x + Lkk̂) = U∗µ(x),

(8)

where Lk is the size of the lattice in direction k̂, U∗ denotes complex
conjugation. The charge–conjugation matrix C satisfies

CT = −C, C† = C−1, C−1γµC = −γTµ. (9)
The gauge action is

Sg,SU(3) =
1
g2

0

∑
C∈S0

tr [1 − U(C)] , (10)

Sg,U(1) =
1

2q2
ele2

0

∑
C∈S0

tr [1 − z(C)] , (11)

where the bare coupling constants are g0, e0,qel = 1/6. Given a path C on a
lattice, U(C) and Z(C) denote the SU(3) and U(1) parallel transport along C.



Why the doubled lattice?

On the extended lattice, points x and x + Lkk̂ do not coincide!
Admissible fields are given by the boundary conditions
Admissible gauge fields on mirror lattice are completely determined by
their value on the physical lattice
On physical lattice: ψ and ψ̄ are independent Grassmann variables
On extended lattice: ψ̄ is completely determined by ψ
Integration measure for fermion field:

[dψ]Λphys
[
dψ̄

]
Λphys

=
∏

x∈Λphys

dψ(x)ψ̄(x) =
∏

x∈Λexended

dψ(x) = [dψ]Λextended (12)

=⇒ We need the doubled lattice for the fermion field!



Dirac operator scaling I
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Figure: C⋆ Wilson-Clover Dirac operator strong scaling

GDR not yet available on Alps
NVSHMEM not yet available on Alps



Dirac operator scaling II
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Unification of fields



Motivation

Initial code: all functions implemented in CPU → no transfers needed
Ideal final code: all functions implemented in GPU → no transfers needed
−→ we’ll probably never reach that
Intermediate phase: some functions are ported to GPU, but not all of
them → needs transfers

Requirement 1
We don’t want to rewrite every program, when a new function is ported to GPU!

Requirement 2
Fully backwards compatible with openQxD’s memory layout
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openQxD: overloading of functions I

1 #if (defined AVX)
2 // implementation using AVX intrinsics
3 void functionA(spinor_dble *s) { ... }
4 #elif (defined x64)
5 // implementation using SSE2 intrinsics
6 void functionA(spinor_dble *s) { ... }
7 #else
8 // default implementation
9 void functionA(spinor_dble *s) { ... }

10 #endif

Figure: Example overloading of functionA.



openQxD: overloading of functions II

1 #if (defined AVX)
2 // implementation using AVX intrinsics
3 void functionA(spinor_dble *s) { ... }
4 #elif (defined x64)
5 // implementation using SSE2 intrinsics
6 void functionA(spinor_dble *s) { ... }
7 #elif (defined GPU_OFFLOADING)
8 // GPU overloading of the function
9 void functionA(spinor_dble *s) { ... }

10 #else
11 // default implementation
12 void functionA(spinor_dble *s) { ... }
13 #endif

Figure: Example overloading of functionA.



Unified fields

CPU field

≃

GPU field

Figure: Each field with openQxD corresponds to a field within QUDA.

openQxD operates on base pointers of struct-arrays
Establish a 1-1 correspondence between CPU/GPU fields

=⇒ Everytime (de-)allocating a field → (de-)allocate on both devices
=⇒ Maintain consistency among the two fields (CPU/GPU manipulates field)



Maintaining consistency

Spinor field 1 Spinor field 2

0xA
base pointer 1

0xA+NSPIN
base pointer 2

0xA+2*NSPIN
base pointer 3

Figure: Current field allocation scheme.

Spinor field 1 Spinor field 2

0xA
base pointer 1

0xA+NSPIN

0xA+NSPIN+sizeof(spinor_info)
base pointer 2

spinor_info struct 1

spinor_info struct 2

base pointer 3

Figure: New field allocation scheme (spinor_info struct after the data).
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spinor_info struct

Information held by the spinor_info struct:
Field status: CPU_NEWER, GPU_NEWER, IN_SYNC
GPU pointer: pointer to field on the GPU (i.e. pointer to
ColorSpinorField instance)
Other information: eg. field size in bytes, stats, ...

=⇒ Only changes in the (de-)allocation functions: alloc_wsd(),
reserve_wsd(), release_wsd() + their single precision variants



Procedure

Functions within openQxD still operate on base pointers (in the same way
as before!) =⇒ they all still work (no change needed)
GPU-offloaded functions now take the same CPU base pointer

1. Navigate to the spinor_info struct
2. Check if field needs to be transferred
3. Transfer if needed
4. Obtain GPU field pointer from info struct
5. Update status field in info struct
6. Continue function body with GPU field

openQxD functions take the usual CPU base pointer
1. Navigate to the spinor_info struct
2. Check if field needs to be transferred
3. Transfer if needed
4. Update status field in info struct
5. Continue function body with CPU field
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