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AI Winters
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Then.. AI TakeOff….
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Machine learning at scale, for science
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Machine learning has been proven a very good tool to: 
• Extract information from (very large) datasets 
• Efficiently analyse very large amounts of data  
• Easily handle data from different sources 
• Scalability to HPC environments

Can we use these tools for fully data-driven science?

Observation based datasets in 
physics are comparable or 

larger than these!
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Scientific opportunities
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ML HPC

Fundamental 
science

New discoveries: 
• Explore the potential of unsupervised learning to extract new 

information directly from data  
• Learn unknown correlation patterns 

Compact representations: 
• Condense dataset information in a compact 

representation 
• eg. condense the info in a few GB rather than TB 

Multi-scale dependencies: 
• Model complex higher-order, statistical relationships 

between observations, fields, …  
• improve current simulations

Multi-source models: 
• Enable multimodal and multi-source learning  
• eg. build models based on scientific data, GDP, birth rate etc..
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Deep Learning in HEP
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B. Hooberman 
et al. (NIPS 

2017)

Re-cast physics problems as “DL problems” 
Interpret detector output as images and apply techniques borrowed from 
computer vision 
Interpret physics events as sentences  and apply NLP techniques 
Better performances if applied directly to “raw” data 

Adapt DL to HEP requirements 
In terms of model interpretability 
Results validation against classical methods 
Detailed systematics 

Adopting ”new” computing models 
Accelerators and dedicated hardware 
HPC integration 
Cloud resources 
Big Data platforms



Generative Models

R. Feynman
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Generative models
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31

The problem: 
Assume data sample follows pdata distribution  
Can we draw samples  from distribution  pmodel  such that pmodel ≈ 
pdata?
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Generative models
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31

The problem: 
Assume data sample follows pdata distribution  
Can we draw samples  from distribution  pmodel  such that pmodel ≈ 
pdata?

Maximum Likelihood Estimator: 
• Assume some form for pmodel (prior 

knowledge, parameterized by θ) 
• draw samples from pθ∗ 

Generative models don’t look for 
mathematical expression of  pmodel 

Train NN as a generator  

that maps samples from a tractable 
distribution supported in   to points in n 

ℊ:ℝ𝑚 → ℝ𝑛

ℝ𝑚 ℝ
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Latent Representation 
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• Information content is preserved 
within a hidden manifold with 
lower dimension 

• Can manipulate latent space (style 
specification, hypothesis testing 
directly in data, …) 

• Can optimise latent representation 
according to a specific task (guided 
compression) 

• Can help with multi-modality

NB: Problems exhibiting complex symmetries may benefit from latent space representations 
connected to the specific underlying symmetry group! 

Fleuret, Deep Learning Course

M. Kagan, CERN openlab Summer Student Lectures



 Sofia Vallecorsa - sofia.vallecorsa@cern.ch

Deep Generative Models
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32

See Danilo Rezende tutorial on Deep Generative Models

Deep models allow 
higher levels of 
abstraction and 
improve generalization 
wrt to shallow models



Different primitives for different data representations
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Perceptrons and MLP 
Convolutions 
Graphs  
Recurrent Units (and LSTMs) 
Point Clouds 
…

Recurrent Networks:

LSTMs:

Credit: G. Louppe

Credit: Fleuret

Point Clouds:

Graphs:
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Auto-Encoders
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Explicit constraints on encoded 
representations (learn the latent variable 
distribution) 
Two components in the loss function 
(reconstruction loss  and KL divergence to 
constrain latent to prior)

Ex. Variational Auto-Encoder

Ex. Auto-Encoder

Example of latent variables models (and implicit…) 

Multiple AE variants and flavours have been developed in the past few years
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Renato Cardoso | Oracle AI-ML meeting

Diffusion models

15 November 2023
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Parametrized Markov Chains trained using variational inference to produce samples 
matching the data after finite time. 

Chain transitions are reverse diffusions  (gradually adding noise to the data) 

Ex. Diffusion Denoising Probabilistic Models (DDPM, arxiv:2006.11239) based on U-Net:  

Iteratively add Gaussian noise to input image, eventually reaching pure noise 

Generation process inverts the diffusion: start from pure noise sample, then 
iteratively de-noise it.



Attention and Transformers
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Seq2seq models and the information bottleneck 
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Image Credit: d2l.ai

Seq2seq models analyse sequences 
Predict probability distributions of the next token given previous context 

Encoder compresses the sequence in a fixed size vector  

Compression in fixed size latent vector is a bottleneck 
Need a mechanism to focus on most relevant input tokens at each 
prediction step 

Introduce (Self-) Attention Maps 
Use softmax to calculate probability (maintain differentiable 
architecture) 

Output is independent of the order of input examples (set instead of 
sequences)  

Highlight  relationships between input elements

Attention mechanism as originally 
formulated in a bi-directional LSTM 
Auto-Encoder (arxiv:1409.0473)
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Attention - Transformers

18Vaswani et al., Advances in Neural Information 
Processing Systems, 2017, 5998–6008

Transformer components include: 
Multi Head Attention 
Normalisation layers 
Position Independent Feed Forward Layers 
Skip Connections  

See tutorial G.. Weiss tutorial at IML workshop :  
https://indico.cern.ch/event/1297159/



Example applications
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Online Machine/Deep Learning
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Constraints on Latency: 
Accelerate inference through dedicated ASICs, FPGAs 

Constraints on Model Complexity: 
Reduce model size through quantisation, compression, distillation, … 

Constraints on the quality of data available:  
Input features are known with limited resolution (or limited detector information)  
—>  is this a limitation for ML/DL ?

Many ML/DL applications for real time detectors operation: 
Data Quality Monitoring , Adaptive Data Acquisition Systems , Triggers 

https://home.cern/news/news/accelerators/accelerator-report-10-000-lhc-fills

LHC Run3 Fact sheet: 
Since 2022, collisions at 6.8 TeV 
25 ns bunch crossing 
Peak collision rate at 30 MHz (2017-2018) 

Peak instantaneous luminosity of 2 × 1034cm−2s−1 (2023)  
About 50 pileup collisions



Anomaly detection for model independent searches
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How to insure we do not miss potential discoveries?  
Model agnostic searches represent an alternative 
Multiple strategies exist 

Deep Learning provides particularly powerful tools 
Suitable for online deployment (trigger)



Anomaly Detection with VAE
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First demonstrations as early as 2018 !

arXiv:1811.10276 
arxiv: 2005.01598 

Variational Auto Encoders as model-
independent (unsupervised) BSM search 

tools 

Train on known physics 
Monte Carlo 
Real detector data 

Minimise input-output difference 
Anomalies will exhibit large error 

Build an anomaly score
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Run3 running examples @ CMS
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A. Gandrakota,  
ICHEP2024
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Run3 running examples @ CMS
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A. Gandrakota,  
ICHEP2024



Other Online Applications (Ex. from CHEP2024)

Anomaly detection for data quality monitoring of the Muon 
system at CMS, CHEP2024
 

Data Quality Monitoring in CMS: 
ResNet AutoEncoder
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Compressed data streaming at BDX: replace trigger 
based data acquisition with compressed data stream 
via AutoEncoder 

Real-time implementation of 
Artificial Intelligence 
compression algorithm for 
High-Speed Streaming Readout 
signals, CHEP2024 
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Offline processing challenges
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Jets

27

Jets represent a major area of applications for ML

• Truth Jets: stable particles defined by MC generators 

• Track Jets: Use charged-particle tracks. Particularly useful for 
pile-up mitigation or jet tagging.  

• Topo Jets: Calorimeter energy deposits. Requires cells 
clustering and calibration.  

• “Particle Flow” Jets: Combine tracks and energy deposits. 

• A few notes:   

Tracks info is limited to charged-particles, while topo-
clusters are built from both charged and neutral particles 

Angular resolution of the trackers is “still” better than 
calorimeters. Calorimeter extend pseudo rapidity 
coverage.

See ML4Jets https://indico.cern.ch/event/1253794/overview  

Both jet reconstruction and Jet tagging (classification) are major applications for ML/DL



Point Cloud Transformers V. Mikuni and F. Canelli 2021 Mach. Learn.: Sci. Technol. 2 035027

Use Self Attention on point-cloud particle data to learn “semantics”

• SA layers extract different information for each 
jet (jet sub-structure) 

• Increased relevance to harder sub-jets in the 
case of Z boson, W boson, and top quark initiated 
jets.  

• Light quark and gluon jets have homogeneous 
radiation pattern



Jet Tagging: highlights from ML4Jets 2024
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https://indico.cern.ch/event/1386125/overview
CMS Jet Tagging: ParticleTransformer 
trained to classify b, c, tau, and s and regress 
on energy and resolution quantiles (no 
positional encoding since jets are 
permutation invariant)

https://cds.cern.ch/record/2904702 
arXiv:2202.03772 [hep-ph]

ATL-PHYS-PROC-2024-081

ATLAS Jet Tagging: GNN -based 
transformer encoder Also multi-task 
training (tagging, tracks origin and vertex)

https://cds.cern.ch/record/2904702
https://arxiv.org/abs/2202.03772


Monte Carlo Simulation

30

Monte Carlo and simulation related tasks account 
for largest computational costs within offline data 
processing 

Calorimeters are particularly expensive 
Multiple fast simulations techniques exist

Ideal task for state-of the-art generative AI 
Used for fast simulation in HEP as early as 2017

CPU time = 53%
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Synthetic data generation through DL
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Initially use computer vision approaches and interpret data as 3D grids to simulate energy 
deposition patterns in calorimeters 
Gradually increase model complexity and extend fast simulation “concept” (ultra-fast sim)

3D Generative Adversarial Networks  
F. Rehm, et al. arXiv:2105.08960 (2021).

Diffusion models for 
shower generation, 
CHEP2023J. M. Allen, Space Opera Theatre, MidJourney (2022)



GAN for calorimeters
FastCaloGAN: 300 GANs  
M. Faucci CHEP 2023

Zhang H. et al. Self-attention generative adversarial 
networks. – PMLR, 2019 С. 7354-7363.

Self-Attention GANs 
F. Ratnikov, A. Rogachev, CHEP2021

IN PRODUCTION IN ATLAS 



Increasing complexity  

28.05.24

GAN – AutoEncoder hybrid

Buhmann, Erik, et al. 
"Getting high: high fidelity 
simulation of high 
granularity calorimeters 
with high 
speed." Computing and 
Software for Big Science 5.1 
(2021): 1-17.

Krause, Claudius, and David Shih. "CaloFlow II: Even Faster 
and Still Accurate Generation of Calorimeter Showers with 
Normalizing Flows." arXiv:2110.11377 

Normalizing Flows



Renato Cardoso | Foundation Models for physics simulation

Conditional Diffusion based Transformer
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26 March 2024

Architecture based on visual 
transformers 

Input condition on Energy, Particle 
Trajectory, Geometry 

Heavy data preprocessing necessary 
to map calorimeter geometry to 
image tiles 

Maybe different data representation 
could be more convenient? 

Results: 

Good accuracy throughout all 
profiles 

Cell energy shows particular 
good results compared to 
other generative models

R. Cardoso, CHEP 2023



More Simulation

Deep learning to match fast-sim to fullsim 
at analysis level Increases fidelity of fastsim

Refining fast simulation 
using machine learning, 
CHEP2023

A normalizing flow - based end-to-end super-fast-sim, 

transforming Monte Carlo events directly into high-level 

analysis objects.

Flashsim: a ML based 
simulation for analysis 
datatiers , CHEP2023

More interesting developments in constructing ML models 
for event generation (hadronization) or to have 
fundamental data-driven ML representation for hadronic 
physics models in Geant4

MLHad: Simulating 
Hadronization with Machine 
Learning, CHEP2023

Simulation of Hadronic 
Interactions with Deep 
Generative Models, 
CHEP2023

Generator-matched jets



Comparing experimental data to theory
The Landscape of Unfolding 
with Machine Learning, 
ML4JET2024Generative Unfolding

Transformer based top unfolding

Latent Variational Diffusion:  
Perform the diffusion process in the latent space of a 
pre-trained VAE (2112.10752) 
Variational diffusion model (2107.00630): interpretation 
of the diffusion model as an infinitely deep chain of VAE

How to unfold Top decays, 
ML4JET2024Full Event Particle-Level 

Unfolding with Variable-
Length Latent Variational 
Diffusion, ML4JET2024



Event Generators:  a Lorentz Equivariant Transformer
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Transformer components are modified 
learn data in a geometric algebra over 
space-time,  equivariant under Lorentz 
transformations. 

Test on Amplitude Regression, Jet 
Tagging and Event Generation 

Event Generation: 
Use L-GATr blocks in a normalising flow 
Focus on hadronic top decay 

Event Generation with Lorentz-Equivariant Geometric Algebra Transformers, ML4Jets 2024 
arxiv:2411.00446



Summary and Conclusion
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The number of Generative Models applications in 
experimental HEP continues to increase 

In many cases, these tools are already in production 
for Run 3 

Interest also on Large Language Models and AI-
based assistants (information retrieval, code assistants, 
etc..) (I did not talk about this!) 
(see for example: https://indico.desy.de/event/38849/) 

Generative Models based research in the theory 
domain seems increasing 

See HEP ML living review : https://iml-wg.github.io/HEPML-LivingReview/

https://indico.cern.ch/event/1386125

Thanks! 
Question?

https://indico.desy.de/event/38849/

