

Generative Models in HEP: Examples from the experiments

Sofia Vallecorsa

9th December 2024

Introduction

A few words on Generative Models

Running in real time, challenges and constraints

Anomaly detection

Running Reconstruction

Jets

Simulating LHC events

Event Generation & Detector Simulation

Summary

 $\overline{2}$

A bit of history

Sofia Vallecorsa - sofia.vallecorsa@cern.ch

Then.. AI TakeOff….

Machine learning at scale, for science

Machine learning has been proven a very good tool to: • Extract information from (very large) datasets *Observation based datasets in physics are comparable or* • Efficiently analyse very large amounts of data *larger than these!*• Easily handle data from different sources • Scalability to HPC environments Training dataset size (datapoints)

letter at the theory of the theo $GloVe$ (32B) \Box GloVe $(6B)$ **NLP from scratch** \Box П OС \Box $IBM-5$ D OOMSIVERY Е ⊟ □ □ □ П П П \Box \Box \Box П $1e+2$ 1988 1992 1996 2000 2004 2008 2012 2016 2020 **Publication date** CC BY Epoch

Can we use these tools for fully data-driven science?

Scientific opportunities

Multi-scale dependencies:

- Model complex higher-order, statistical relationships between observations, fields, …
- improve current simulations

Compact representations:

- Condense dataset information in a compact representation
- eg. condense the info in a few GB rather than TB

Multi-source models:

- Enable multimodal and multi-source learning
- eg. build models based on scientific data, GDP, birth rate etc..

New discoveries:

- Explore the potential of unsupervised learning to extract new information directly from data
- Learn unknown correlation patterns

Deep Learning in HEP

Re-cast physics problems as "DL problems"

Interpret detector output as *images* and apply techniques borrowed from computer vision

Interpret physics events as sentences and apply NLP techniques Better performances if applied directly to "raw" data

Adapt DL to HEP requirements

In terms of model interpretability Results validation against classical methods Detailed systematics

Adopting "new" computing models Accelerators and dedicated hardware **HPC** integration Cloud resources Big Data platforms

Generative Models

R. Feynman

The problem:

Assume data sample follows p_{data} distribution

Can we draw samples from distribution p_{model} such that $p_{model} \approx$ p_{data} ?

9

The problem:

Assume data sample follows p_{data} distribution Can we draw samples from distribution p_{model} such that $p_{model} \approx$ p_{data} ?

Maximum Likelihood Estimator:

- Assume some form for p_{model} (prior knowledge, parameterized by θ)
- draw samples from pθ∗

$$
\theta^* = \argmax_{\theta} \sum_{\mathbf{x} \in \mathcal{D}} \log(p_{\text{model}}(\mathbf{x}; \theta))
$$

31 Generative models don't look for mathematical expression of p_{model} Train NN as a generator *ℊ*:*ℝ* → *ℝ* that maps samples from a tractable distribution supported in \mathbb{R}^m to points in \mathbb{R}^n

Latent Representation

- Information content is preserved within a hidden manifold with lower dimension
- Can manipulate latent space (style specification, hypothesis testing directly in data, …)
- Can optimise latent representation according to a specific task (guided compression)
- Can help with multi-modality

NB: Problems exhibiting complex symmetries may benefit from latent space representations connected to the specific underlying symmetry group!

Sofia Vallecorsa - sofia.vallecorsa@cern.ch

Deep Generative Models

Deep models allow higher levels of abstraction and improve generalization wrt to shallow models

See Danilo Rezende tutorial on Deep Generative Models

Different primitives for different data representations

Perceptrons and MLP Convolutions Graphs Recurrent Units (and LSTMs) Point Clouds

…

Auto-Encoders

Ex. Variational Auto-Encoder

Explicit constraints on encoded representations (learn the latent variable distribution)

Two components in the loss function (reconstruction loss and KL divergence to constrain latent to prior)

Multiple AE variants and flavours have been developed in the past few years

Parametrized Markov Chains trained using variational inference to produce samples matching the data after finite time.

Chain transitions are reverse diffusions (gradually adding noise to the data)

Ex. Diffusion Denoising Probabilistic Models (DDPM, arxiv:2006.11239) based on U-Net: Iteratively add Gaussian noise to input image, eventually reaching pure noise Generation process inverts the diffusion: start from pure noise sample, then iteratively de-noise it.

Attention and Transformers

Seq2seq models and the information bottleneck

Image Credit: d2l.ai

Seq2seq models analyse sequences

Predict probability distributions of the next token given previous context

Encoder compresses the sequence in a fixed size vector

Compression in fixed size latent vector is a bottleneck

Need a mechanism to **focus on most relevant** input tokens at each prediction step

Introduce (Self-) Attention Maps

Use softmax to calculate probability (maintain differentiable architecture)

Output is independent of the order of input examples (set instead of sequences)

Highlight relationships between input elements

17 Attention mechanism as originally formulated in a bi-directional LSTM Auto-Encoder (arxiv:1409.0473)

Attention - Transformers

Transformer components include:

Multi Head Attention Normalisation layers Position Independent Feed Forward Layers

Skip Connections

See tutorial G.. Weiss tutorial at IML workshop : https://indico.cern.ch/event/1297159/

Processing Systems, 2017, 5998–6008

Example applications

Online Machine/Deep Learning

LHC Run3 Fact sheet:

Since 2022, collisions at 6.8 TeV

25 ns bunch crossing

Peak collision rate at 30 MHz (2017-2018)

Peak instantaneous luminosity of 2 \times 10 34 cm $^{-2}$ s $^{-1}$ (2023)

About 50 pileup collisions

Many ML/DL applications for real time detectors operation:

Data Quality Monitoring , Adaptive Data Acquisition Systems , Triggers

Constraints on Latency:

Accelerate inference through dedicated ASICs, FPGAs

Constraints on Model Complexity:

Reduce model size through quantisation, compression, distillation, …

Constraints on the quality of data available:

Input features are known with limited resolution (or limited detector information)

 \Rightarrow is this a limitation for ML/DL?

Anomaly detection for model independent searches

How to insure we do not miss potential discoveries?

Model agnostic searches represent an alternative Multiple strategies exist

Deep Learning provides particularly powerful tools Suitable for online deployment (trigger)

Anomaly Detection with VAE

First demonstrations as early as 2018 !

Variational Auto Encoders as modelindependent (unsupervised) BSM search tools

Train on known physics

Monte Carlo Real detector data Minimise input-output difference $\mathcal{L} = ||x - x'||^2$ Anomalies will exhibit large error Build an anomaly score

Run3 running examples @ CMS

Run3 running examples @ CMS

Other Online Applications (Ex. from CHEP2024)

Compressed data streaming at BDX: replace trigger based data acquisition with compressed data stream via AutoEncoder

Jefferson Lab

Real-time implementation of Artificial Intelligence compression algorithm for High-Speed Streaming Readout signals, CHEP2024

Data Quality Monitoring in CMS: ResNet AutoEncoder

Anomaly detection for data quality monitoring of the Muon system at CMS, CHEP2024

Better also on execution time

Offline processing challenges

Jets represent a major area of applications for ML

- **Truth Jets:** stable particles defined by MC generators
- **Track Jets**: Use charged-particle tracks. Particularly useful for pile-up mitigation or jet tagging.
- Topo Jets: Calorimeter energy deposits. Requires cells clustering and calibration.
- "Particle Flow" Jets: Combine tracks and energy deposits.
- A few notes:

Tracks info is limited to charged-particles, while topoclusters are built from both charged and neutral particles

Angular resolution of the trackers is "still" better than calorimeters. Calorimeter extend pseudo rapidity coverage.

Use Self Attention on point-cloud particle data to learn "semantics"

- SA layers extract different information for each jet (jet sub-structure)
- Increased relevance to harder sub-jets in the case of Z boson, W boson, and top quark initiated jets.
- Light quark and gluon jets have **homogeneous** radiation pattern

Jet Tagging: highlights from ML4Jets 2024

CMS Jet Tagging: ParticleTransformer trained to classify b, c, tau, and s and regress on energy and resolution quantiles (no positional encoding since jets are permutation invariant)

https://indico.cern.ch/event/1386125/overview

70

60

50

 \sqrt{s} = 13 TeV

tt jets, $\varepsilon_b = 70\%$

ATLAS Simulation Preliminary

2500

2000

GN₂

 $x4.2$

[arXiv:2202.03772](https://arxiv.org/abs/2202.03772) **[hep-ph]**

Monte Carlo Simulation

Monte Carlo and simulation related tasks account for largest computational costs within offline data processing

Calorimeters are particularly expensive Multiple fast simulations techniques exist

Ideal task for state-of the-art generative AI Used for fast simulation in HEP as early as 2017

Synthetic data generation through DL

Initially use computer vision approaches and interpret data as 3D grids to simulate energy deposition patterns in calorimeters Gradually increase model complexity and extend fast simulation "concept" (ultra-fast sim)

J. M. Allen, *Space Opera Theatre***,** MidJourney (2022) **CHEP2023** CHEP2023

GAN for calorimeters

FastCaloGAN: 300 GANs

M. Faucci CHEP 2023

 Log_{10} p_{truth} [MeV]

Self-Attention GANs

F. Ratnikov, A. Rogachev, CHEP2021

Zhang H. et al. Self-attention generative adversarial networks. – PMLR, 2019 С. 7354-7363.

Increasing complexity

GAN – AutoEncoder hybrid

Buhmann, Erik, et al. "Getting high: high fidelity simulation of high granularity calorimeters with high speed." *Computing and Software for Big Science* 5.1 (2021): 1-17.

Normalizing Flows

Krause, Claudius, and David Shih. "CaloFlow II: Even Faster and Still Accurate Generation of Calorimeter Showers with Normalizing Flows." *arXiv:2110.11377*

 0.75

1.00

Conditional Diffusion based Transformer

Architecture based on visual transformers

Input condition on Energy, Particle Trajectory, Geometry

Heavy data preprocessing necessary to map calorimeter geometry to image tiles

Maybe different data representation could be more convenient?

Results:

Good accuracy throughout all profiles

Cell energy shows particular good results compared to other generative models

 \leftarrow Ceant4

 60

 $\overline{40}$

R. Cardoso, CHEP 2023

More Simulation

Deep learning to match fast-sim to fullsim at analysis level Increases fidelity of fastsim

A normalizing flow - based end-to-end super-fast-sim, transforming Monte Carlo events directly into high-level analysis objects.

More interesting developments in constructing ML models for event generation (hadronization) or to have fundamental data-driven ML representation for hadronic physics models in Geant4

MLHad: Simulating Hadronization with Machine Learning, CHEP2023

Simulation of Hadronic Interactions with Deep Generative Models, CHEP2023

Comparing experimental data to theory

Generative Unfolding
 Generative Unfolding

Latent Variational Diffusion:

Perform the diffusion process in the latent space of a pre-trained VAE (2112.10752) Variational diffusion model (2107.00630): interpretation of the diffusion model as an infinitely deep chain of VAE

Full Event Particle-Level Unfolding with Variable-Length Latent Variational Diffusion, ML4JET2024

Transformer based top unfolding

 $p_{T,1}$ [GeV]

Event Generators: a Lorentz Equivariant Transformer

Transformer components are modified learn data in a geometric algebra over space-time, equivariant under Lorentz transformations.

Test on Amplitude Regression, Jet Tagging and Event Generation

Event Generation:

Use L-GATr blocks in a normalising flow Focus on hadronic top decay

$$
pp \to t_h \bar{t}_h + n j, \qquad n = 0...4
$$

Event Generation with Lorentz-Equivariant Geometric Algebra Transformers, ML4Jets 2024 arxiv:2411.00446

Summary and Conclusion

The number of Generative Models applications in experimental HEP continues to increase

In many cases, these tools are already in production for Run 3

Interest also on Large Language Models and AI-

based assistants (information retrieval, code assistants, etc..) (I did not talk about this!)

(see for example: <https://indico.desy.de/event/38849/>)

Generative Models based research in the theory domain seems increasing

See HEP ML living review : https://iml-wg.github.io/HEPML-LivingReview/

Thanks! Question?

Al generative models, such as generative adversarial networks (GANs), have been widely used and studied as efficient alternatives to traditional scientific simulations like Geant4. Diffusion models, which have demonstrated great capability