

Track reconstruction with timing in ATLAS during the HL-LHC for Run 4 and beyond

Lorenzo Santi o.b.o. ATLAS l.santi@cern.ch

Polarized Perspectives: Tagging and Learning in the SM 20.02.2025

HL-LHC tr event in ATLAS ITK at <µ>=200

Being on time

HL-LHC is a **unique opportunity** to **test future frontier** detectors such as **4D Trackers**

Timing detectors are a **growing area** of interest in HEP i.e. **HGTD** in ATLAS and **MTD** in CMS will be installed in Run4!

The **next phase** in technological advancement **is the developement** of silicon trackers carachterized by $\mathcal{O}(10\mu m) \otimes \mathcal{O}(10ps)$:

In Run4 ATLAS will install a fully silicon tracker: **ITk**

The presented work is a study of a potential impact of a hermetic timing coverage in ATLAS in ITk, eventually <u>beyond Run4</u>: <u>link</u>

Lorenzo Santi - Polarized Perspectives - 20.02.2025

FLAVOUR PHYSICS | FEATURE

LHCb looks forward to the 2030s

1 March 2023

The future VELO will be a true 4D-tracking detector

Timing opportunities in ATLAS

Two innermost pixel **layers** of ITk need to be replaced due hard radiation after 2000 fb^{-1} of data at HL-LHC

Lorenzo Santi - Polarized Perspectives - 20.02.2025

High Granularity Timing Detector (HGTD) installed for Run4

Coverage:

 $2.4 < \eta < 4$

track time resolution:

 $t_{trk} \sim 30 ps$

Main questions:

How *precisely* we can determine the vertex time t_{HS} on all events?

Can we improve b-tagging?

Motivations

HGTD motivation: Pile-Up removal in forward region Where the IP_{z0} resolution is lower

Lorenzo Santi - Polarized Perspectives - 20.02.2025

What if we have hermetic coveragewith timing in the barrel?Performance: Vertexing, FTag ...Physics case: HH, LLP ...

HGTD: tracks and time

Based on Low Gain Avalanche Detectors (LGAD) Track time resolution: from **30ps** (initial) to **50ps** (final)

On VBF $H \rightarrow inv$. time association rate ~60%

HGTD: physics objects

HGTD allows to have for the first time a t_0 of the vertex

 t_0 resolution gets up to 22ps if more than 50% of the tracks come from HS

track to vertex association can be extended with time:

$$\frac{z - z_0}{\sigma_z} < s \quad \rightarrow \quad \frac{t - t_0}{\sigma_t} < s$$

with the caveat that **not always** it is possible to reconstruct the t_0 :

On VBF $H \rightarrow inv$. about 65% of the events have a t_0

HGTD: physics objects

It allows also to suppress Pile-Up jets suppression

the PU rejection increases around 50% for an HS efficiency of 85%!

This requires a precise measurement on t_0

Lorenzo Santi - Polarized Perspectives - 20.02.2025

PU rejection

ratio

Motivations

HGTD motivation: Pile-Up removal in forward region Where the IP_{z0} resolution is lower

What if we have hermetic coveragewith timing in the barrel?Performance: Vertexing, FTag ...Physics case: HH, LLP ...

without time

All presented studies are based on MC simulations: <u>PUB Note</u>

All presented studies are based on MC simulations: <u>PUB Note</u>

All presented studies are based on MC simulations: <u>PUB Note</u>

Lorenzo Santi - Polarized Perspectives - 20.02.2025

zoom in space

All presented studies are based on MC simulations: <u>PUB Note</u>

Lorenzo Santi - Polarized Perspectives - 20.02.2025

zoom in space

zoom in time

Determination of t_{HS}

Lorenzo Santi - Polarized Perspectives - 20.02.2025

Track time emulated **from truth** level MC information

Track time distribution of *vtx*

$$t_{all}^{reco} = \sum_{trk} t_{trk} w_{trk}$$

if we consider all the tracks associated to vertex from 3D-vertexing

Obs: this scan be seen as the case where no time information is available

Vertexing: Determination of t_{HS}

Lorenzo Santi - Polarized Perspectives - 20.02.2025

Track time emulated **from truth** level MC information

Track time distribution of *vtx*

$$t_{all}^{reco} = \sum_{trk} t_{trk} w_{trk}$$
$$t_{HS}^{reco} = \sum_{trk} t_{trk} w_{trk}$$
$$t_{HS}^{reco} = \sum_{trk \in HS} t_{trk} w_{trk}$$

Ideal Case selecting tracks from the HS

Vertexing: Determination of t_{HS}

Lorenzo Santi - Polarized Perspectives - 20.02.2025

Track time emulated **from truth** level MC information

Track time distribution of *vtx*

$$t_{all}^{reco} = \sum_{trk} t_{trk} w_{trk}$$
$$t_{reco}^{reco} = \sum_{trk \in HS} t_{trk} w_{trk}$$
$$t_{reco}^{reco} = \sum_{trk \in HS} t_{trk} w_{trk}$$
$$t_{rkclus}^{reco} = \sum_{trk \in clus} t_{trk} w_{trk}$$

DBSCAN Timing Clustering algorithm

Obs: This algorithm emulates a 4D Vertexing, 3D+1D

Vertex time resolution

To extract the **vertex time resolution**, $\sigma(t_{HS})$, we can consider the standard deviation on the $t_{HS}^{reco} - t_{HS}^{truth}$ distribution for the aforementioned cases

The distribution with *All tracks* corresponds to the case where no timing information is accessible.

The **vertex time resolution** obtained with the *Clustering* is close to the *HS tracks* one corresponding to the ideal case where all the PU has been removed:

 $\sigma(t_{HS}): 28 \text{ps} \rightarrow 7.2 \text{ps} (5.6 \text{ps})$

Impact on Flavour Tagging

Lorenzo Santi - Polarized Perspectives - 20.02.2025

Impact parameters are the **most discriminant** variables in FTAG: (d_0, z_0)

Being produced randomly along z **Pile-Up** will contaminate b-jets with high longitudinal impact parameter (z_0)

This study shows the impact of timing on the state-of-the-art GNN for FTag: GN1*

*GN1 evolving to GN2

Timing in GN1: GNT

Introduce a **new track** input **variable** based on time to discriminate between Pile-Up and HS

Track time significance:

$$\sigma(t) = \frac{|t_{trk} - t_{HS}|}{\sigma_t}$$

Having a precise t_{HS} is extremely important

Lorenzo Santi - Polarized Perspectives - 20.02.2025

Track Variables	GN1 ITk	GNT
d0	X	Х
z0SinTheta	X	Х
σ(Theta)	X	X
qOverP	X	Х
σ(qOverP)	X	X
φ	X	Х
σ(φ)	Х	Х
signed d0 significance	X	Х
signed z0 significance	Х	Х
Δη(trk, jet)	X	Х
Δφ(trk, jet)	Х	Х
n pix hits	Х	Х
n pix hits (11 variables)	X	X
$(t-t_{\rm HS})/\sigma(t)$		X

GNT = GN1 + time significance

Performances: ROC

Lorenzo Santi - Polarized Perspectives - 20.02.2025

GN1 is the baseline without time 3D GNT 30ps is GN1+timing and 30ps smearing 4DGNT 60ps is GN1+timing and 60ps smearing GNT 90ps is GN1+timing and 90ps smearing

Up to a factor of 3 improvement in l-jet rejection with 30ps smearing on already great performances of GN1

With lower track time resolution the improvement is less prominent but still solid

4.0	To understand the improvement obtained it is
3.5	possible to define:
3.0	Jet PU fraction = $\frac{\#trk_{PU}}{\#trk}$
2.5 ഗ്ല	πιικ
2.0 .	
ิส 1.5	
1.0	
0.5	
0.0	

Lorenzo Santi - Polarized Perspectives - 20.02.2025

4.0	To understand the improvement obtained it is possible to define:
3.5 3.0	Jet PU fraction $= \frac{\#trk_{PU}}{\#trk}$
2.5 arp. nuits 1.5	The PU fraction distrbution peaks at low values meaning that with ITk Jets are mainly " <i>clean</i> "
1.0	
0.5	

0.0

4.0	To understand the improvement obtained it possible to define:
3.5	
3.0	Jet PU fraction $= \frac{\#trk_{PU}}{\#trk}$
2.5 arp. nuits 1.5	The PU fraction distrbution peaks at low values meaning that with ITk Jets are mainly " <i>clean</i> "
1.0 0.5 0.0	Nonetheless the light-mistag rate increases wit Pile-Up contamination

Lorenzo Santi - Polarized Perspectives - 20.02.2025

4.0	To understand the improvement obtained it is
3.5	possible to define:
3.0	Jet PU fraction $= \frac{\#trk_{PU}}{\#trk}$
2.5 arp. nuits 1.5	The PU fraction distrbution peaks at low values meaning that with ITk Jets are mainly " <i>clean</i> "
1.0 0.5 0.0	Nonetheless the light-mistag rate increases wit Pile-Up contamination

With timing information this trend gets flattened

Impact on Physics Analysis: HH

Timing could have great impact on all the Higgs program

b-tagging has a huge impact on **Di-Higgs** analyses

 $HH \rightarrow bb\gamma\gamma$ in the right plot

How the **HH sensitivity improve** as a function of the **b**-**tagging** efficiency?

4% b-tagging improvement can lead to up to 0.3σ significance improvement!

Obs: Timing could be **available only** on **partial HL-LHC statistics**

ATLAS for the HL-LHC program

Modern detectors and algorithms are solid against Pile-Up, but a fraction is still observed

impacting physics cases

These results motivate in-depth studies with **more realistic detector** assumptions and also state of the art algorithms such as GN2

Similar studies are on-going to see the impact on **c-tagging/tau-identification**

Technology challenge requires great effort and R&D

Lorenzo Santi - Polarized Perspectives - 20.02.2025

This presentation shows the impact of track reconstruction with timing on the physics program

The work suggest that 4D tracking with **hermetic coverage** can potentially **improve performances**

Lorenzo Santi

CAT Meeting

Track Time assignment

Track time assignment from truth level information Gaussian smearing to emulate the timing resolution Cases considered: $\sigma(t_{trk}) = 30ps$, 60ps, 90psPerfect resolution when no smearing is applied

Lorenzo Santi - Polarized Perspectives - 20.02.2025

A relevant quantity is the relative time with respect to the Hard Scatter as:

$$t_{trk} - t_{HS}$$

What if we have time?

Event display from **truth** MC $t\bar{t}$ PU: $\langle \mu \rangle = 200$

What if we have time?

Event display from **truth** MC $t\bar{t}$ PU: $\langle \mu \rangle = 200$

Backup

In both cases the distribution gets flattened

Lorenzo Santi - Polarized Perspectives - 20.02.2025

4

.

0

Graph Neural Networks for FTAG

Impact of timing on the state-of-the-art GNN for FTag: GN1*

Tracks associated to the Jet as input to the GNN predicting the flavour

Auxiliary tasks for Vertex prediction and Track classification

(a) 30 ps track-time resolution

(b) 60 ps track-time resolution

(c) 90 ps track-time resolution

Lorenzo Santi - Polarized Perspectives - 20.02.2025

To understand where the improvement comes from a Pile-Up dependent variable is built:

vtx PU fraction = $= \frac{\#trk_{PU}}{m}$ #trk

Dependence of $\sigma(t_{HS})$ vs *PU fraction*

Degrading the track time resolution $\sigma(t_{HS})$ the improvement is lower as expected and the distribution is less flat

Missing and mistagged hits

A complete simulation is needed for an accurate study

We investigated independently the impact of missing hits and mistag hits showing that the performances get degraded mostly at low b-jet efficiencies

missing hit: assuming time only in 2nd layer; if a track has no hit the significance of the track is randomly emulated as HS

mistag hit: for tracks with Truth Match Probability < 80% the significance is randomly emulated as PU

Lorenzo Santi - Polarized Perspectives - 20.02.2025

4.0 3.5 Similarly to the vertex case we can define 3.0 #trk_{PU} #trk jet PU fraction = = 2.5 units 2.0 arb. Dependence of light-jet mistag rate vs *jet PU* 1.5 *fraction* gets flattened with time information 1.0 0.5 Large improvement comes from highly Pile-Up 0.0 contaminated jets

Impact on Physics Analysis: LLP

4D tracking can also improve the sensitivity to LLP:

- LLP with small $c\tau$
- displaced photons
- $H \rightarrow inv$. studied in the <u>HGTD TDR</u>

Time resolution of *delayed photons* is 190*ps* due to the lack of knowledge about t_{HS}

$$\Delta t = t_0 + t_{\text{IP} \to \text{ECal}}^{\text{Reconstructed}} - t_{\text{IP} \to \text{ECal}} - t_0^{\text{Reconstructed}} - t_0^{\text{Reconstructed}}$$

$$180\text{ps} \quad 100\text{ps} \quad 4\text{D improves!}$$

Performances: ROC

Lorenzo Santi - Polarized Perspectives - 20.02.2025

GN1 is the baseline without time GNT 30ps is GN1+timing and 30ps smearing GNT ideal is GN1+timing and no smearing

Up to a factor of 3 improvement in l-jet rejection with 30ps smearing on already great performances of GN1

Performances: ROC

Lorenzo Santi - Polarized Perspectives - 20.02.2025

1.0

GN1 is the baseline without time GNT 30ps is GN1+timing and 30ps smearing GNT 60ps is GN1+timing and 60ps smearing GNT 90ps is GN1+timing and 90ps smearing

With lower track time resolution the improvement is less prominent but still solid

Track classification

Largest improvement in discriminating Pile-Up tracks from non Pile-Up tracks

Track classification

Largest improvement in discriminating Pile-Up tracks from non Pile-Up tracks

Lorenzo Santi - Polarized Perspectives - 20.02.2025

Not evident impact on Track from Heavy Flavour Tracks

