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What is ACTS?

Community platform for R&D
across various experiment

Robust concurrency through =
thread-safety by design
~

Minimal external dependen- | Je®

L’
cies, easy to build \
e

Modern architecture and code, unit
tested, continuous integration

e A Common Tracking Software (ACTS) is

o An open-source library written in modern
C++

0 https://github.com/acts-project/acts
E https://acts.readthedocs.io/en/

e Goal:
o Provide established tracking algorithms
within a modern package
o Provide testbed for R&D activities,
machine learning and heterogeneous

/ computing
@

Experiment-independent
toolkit for track reconstruction
applications

ACTS. Aietal '22

Courtesy of P. Gessinger



https://link.springer.com/article/10.1007/s41781-021-00078-8
https://github.com/acts-project/acts
https://acts.readthedocs.io/en/latest/#

ACTS current activity

Courtesy of P. Gessinger
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ACTS Workshop '24

e Project is approaching 10 years of lifetime
e Very active and growing community of developers

e 39 releases, 40+ contributors from multiple experiments



https://indico.cern.ch/event/1397634/contributions/6059531/
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Deployment on experiments

ATLAS (panda

EXPERIMENT

CE ﬂé
STEF| // \\ LUXE

Lohengrin NA60+



https://link.springer.com/article/10.1007/s41781-021-00078-8

The ACTS Library

e The ACTS library is made of two main packages

O

Core: collection of algorithms and components to build
a tracking algorithm to be exported and used in a
specific experiment reconstruction framework

Examples: standalone event generation, simplified
detector interaction and track reconstruction

B Notintended to be used directly by experiments for
reconstruction

e The library can be extended via dedicated
Plugins:

O

O

Machine Learning algorithms support (ONNX,
ExaTrk, ..)

Detector Description packages (DD4Hep, GeoModel,

o)
Heterogeneous computing (CUDA, Detray, ... )
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https://link.springer.com/article/10.1007/s41781-021-00078-8

(*) Combinatorial Kalman Filter

Tracking in a nutshell
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Track parameterization in ACTS wack 7= (d,, 75, 8, 6, q/p 1)

e Tracks in ACTS are parameterized by a
6 dimensional vector with respect a
reference surface, line or point

O 2 impact parameters do, Z,

0 2anglesO, ¢

o charge over momentum magnitude g/p
o track time t,

Courtesy of A. Salzburger

e This parameterization allows:
0 Seamless computation of track time of
arrival on sensitive devices
o Kalman Filter step with time measurements




Track parameterization in ACTS

Tracks in ACTS are parameterized by a
6 dimensional vector with respect a
reference surface, line or point

O 2 impact parameters do, Z,

0 2anglesO, ¢

o charge over momentum magnitude g/p

o track time t,

This parameterization allows:
0 Seamless computation of track time of
arrival on sensitive devices
o Kalman Filter step with time measurements

Possibility to easily add time
measurement on devices
o From truth smearing, no digitization

J

track 7 =(d,, z, 6, ¢, a/p, t,)

Courtesy of A. Salzburger
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The Open Data Detector (ODD)

The Example framework comes with a
generic silicon (HL-)LHC based on DD4Hep

Heavily in use in the development of the
ACTS track reconstruction toolkit

Basis of performance and regression
monitoring of ACTS

Plan to produce a large Open Access
Dataset to supersede the TrackML one for
tracking algorithm R&D in a more realistic
environment

No digitization support, only hit-smearing
with user-defined resolutions
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https://indico.cern.ch/event/1252748/contributions/5521502/
https://gitlab.cern.ch/acts/OpenDataDetector
https://indico.cern.ch/event/855454/contributions/4596738/
https://indico.jlab.org/event/459/contributions/11546/

The ODD Extensions

e Recently added an ODD Electromagnetic Calorimeter e Possible expansion with the FCC-hh Tile Calorimeter
o High granularity SiW sampling calorimeter o derivate of ATLAS Tile Calorimeter
° i(rjlélﬁilrgg E:yﬁeé ﬂg%%?ed for CLIC, CLD and ILD - e Another option could be Silicon Based HCAL

V OpenDataDetector CHEP '23 ODD @ CTD '23 ODD @ ACAT 21



https://indico.cern.ch/event/1252748/contributions/5521502/
https://gitlab.cern.ch/acts/OpenDataDetector
https://indico.cern.ch/event/855454/contributions/4596738/
https://indico.jlab.org/event/459/contributions/11546/

The ODD Tracking Performance

Technical efficiency over n for tt events Resolution of dy over n for single u events
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Tracking efficiency defined as Reconstructible Particles / Reconstructed Tracks
Evaluated on ttbar samples at different PU conditions as well as single particle samples
Track parameter resolutions approach intrinsic layout resolution at high PU

Viable R&D platform for tracking algorithm research

V OpenDataDetector CHEP '23 ODD @ CTD '23 ODD @ ACAT 21



https://indico.cern.ch/event/1252748/contributions/5521502/
https://gitlab.cern.ch/acts/OpenDataDetector
https://indico.cern.ch/event/855454/contributions/4596738/
https://indico.jlab.org/event/459/contributions/11546/

4D Track Fitting and time information in the ODD

e Track finding and fitting can use time e Possible to run event simulation with time
information e Event Data Model and I/O already

supporting time information
e Algorithms can take time automatically

e Fully integrated in track propagation

and filtering formalism o Orit can be toggled to use it
Courtesy of A. Stefl
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Track seeding with timing information

Hit time information can be used at different stages of track reconstruction

Depending on the experimental environment, seed finding is very computationally expensive
o High-efficiency, often low purity

Investigated seed finding improvement using 0=30ps time resolution in ODD, ttbar u=200
o Large reduction of Fake Rate and CPU timing (*)
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https://repository.cern/records/h2cbz-as705/preview/CERN_ATLAS_report_4D_tracking_Steven_Thijs_Bos.pdf

Vertexing in ACTS

Vertexing: finding the tracks origins / interaction
points and estimate their location

Generally split in two parts: Finding and Fitting
We distinguish between primary and secondary

vertexing
o Depending on the distance from the beamline

Secondary vertexing still missing in ACTS
line-up

Courtesy of P. Gessinger

Primary Vertex oA
\ .~ w—— Secondary Vertex
p — \ — p

Pile-up Vertex '*




Vertexing in ACTS

Courtesy of P. Gessinger

Vertexing: finding the tracks origins / interaction |
points and estimate their location '
Primary Vertex .
Generally split in two parts: Finding and Fitting \ A Secondary Vertex
o _ P i Ny M, s )

We distinguish between primary and secondary
vertexing '

o Depending on the distance from the beamline Pilean Vartex *

Secondary vertexing still missing in ACTS
line-up

e Vertexing in ACTS is generally a low person-power area
o Great opportunity to step-up and get involved




4D Vertexing in ACTS - Finding

e ACTS provides two finding algorithms:
o lterative Vertex Finder (IVF)
o Adaptive Multi-Vertex Finder (AMVF) (*)

e Several methods to find local maxima of
track agglomerates.

e Ex: Adaptive grid density finder
o Tracks with large d, are dampened away

-0.2

® Truth Collisions «.

(") ATL-PHYS-PUB-2019-015
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https://cds.cern.ch/record/2670380/files/ATL-PHYS-PUB-2019-015.pdf

4D Vertexing in ACTS - Finding

e ACTS provides two finding algorithms:
o lterative Vertex Finder (IVF)
o Adaptive Multi-Vertex Finder (AMVF) (*)

. . 600.0
e Several methods to find local maxima of

track agglomerates.

e Ex: Adaptive grid density finder
o Tracks with large d, are dampened away

e Extended ACTS vertex finding
algorithms to include track time
information
® Truth Collisions "w 005

(") ATL-PHYS-PUB-2019-015 z [mm]



https://cds.cern.ch/record/2670380/files/ATL-PHYS-PUB-2019-015.pdf

4D Vertexing in ACTS - Fitting

e ACTS implements a complete 4D
vertexing fit
o First analytical derivation of the vertexing
Jacobians and numerical implementation

e Very good vertexing fit performance
tested on ttbar and single particle samples

e Max-Likelihood approach to correct for
vertices composed by tracks with multiple
mass hypothesis

o Approach similar to (*)

(*)CMS Vertex Timing CHEP24
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https://indico.cern.ch/event/1338689/contributions/6010087/attachments/2953331/5192130/vertex_timing_CHEP24.pdf
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https://indico.cern.ch/event/1435014/contributions/6038249/attachments/2902452/5090667/Poster2024-Nicollin.pdf

Merged Vtx: two truth vertices reconstructed as one vitx
Split Vix: one truth vertex reconstructed as two vtx

4D Vertexing in ACTS

Vertex efficiency for ttbar over PU
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ACTS 4D tracking and vertexing in ITk - HGTD

e ITk-HGTD ACTS standalone performance for °
CKEF time fitting over radiation exposure

Propagate track time information to
vertex finding and fitting algorithms

Time resolution vs radius
n
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https://indico.cern.ch/event/1397634/contributions/6204265/attachments/2970830/5228212/4D_CKF_sensor_performance_restevam.pdf

A step beyond: flavour tagging with ODD

e Jet reconstruction algorithms (e.g. Fastlet ) can and have been interfaced with ACTS to build particle level jets,
which can in turn be used for jet and flavour tagging studies (*)

e Jets formed by passing to FastJet Pythia8 stable particles (truth Jets) (see ACTS-FastJet-repo) allowing Track-Jet
association
o With new ODD layouts, Calorimeters could be used for same purpose

e ACTS can produce standardized ntuples for Flavour Tagging ML algorithms, i.e. DIPS or GNT (**)

Transverse IP Significance ROC for DIPS on ACTS ttbar
Tl = \-re}
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(*) C. Mauceri's Project (*) DIPS has also been run on ITk geometry with timing information and confirms gains observed in GNT studies, see A. Tomsic’s studies



https://fastjet.fr/
https://github.com/pbutti/acts/commit/ec5976b77c42382f7924501599cdba32dd680350
https://github.com/nhartman94/DIPS-4d-tracking
https://indico.cern.ch/event/1314169/contributions/5528092/attachments/2695784/4678387/4-D%20Tracking%20Summary%20Slides%20(4).pdf
https://cds.cern.ch/record/2908429/files/Summer_student_report-1i3xtpg1kbr69kw3my9x3kikqe.pdf

Conclusions and Summary

e A Common Tracking Software (ACTS) is an experiment independent toolkit for track
reconstruction

e Embraces a large community of developers and its usage is growing across various
experiments

e ACTS not only natively supports 4D tracking in its core algorithms, but also provides a

framework to develop, test and deploy 4D tracking algorithms using the Open Data Detector
(ODD) as generic layout

e ACTS can produce inputs to higher level reconstruction algorithms, e.g. Flavour Tagging,
Particle Identification, ...

e ACTS track reconstruction can be applied to different detector layouts and experiments
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