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Motivation: HL-LHC
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e Remarkable performance so far Significant increase in instantaneous
exceeding initial expectations luminosity
e But, things have just begun e 5x103%(7.5x10%)cm?s™" for 140 (200) PU in
Run 4 (Run 5)

e  Opportunity for Higgs boson precision studies,
precision SM tests and BSM searches
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But we have to pay to play!!

High Pileup

o ~200 collisions/BX (4-5x LHC)
High Radiation Level

o 1y @HL-LHC ~10y @LHC
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Existing endcap calorimeters will
suffer the most — Replace with HGCal




CMS Phase-1II Upgrade Endcap Calorimeter

High Granularity Calorimeter (HGCAL): granular and radiation hard endcap calorimeter replacement

Full Si layers and Si/Scint mixed layers

Calorimeter Endcap Electromagnetic (CE-E) Calorimeter Endcap Hadronic (CE-H)

e EM focused part e HAD focused part (hybrid structure)
Active material Active material

e 26 Layers of Si (cell size: 0.5-1 cm?) e 7 Layers of Si (cell size: 0.5-1 cm?)
Passive material e 14 Layers of Si and plastic scintillator

e Pb, CuW, Cu Passive material

o 277X, e Stainless Steel, Cu

e 10.0A



CMS Phase-1II Upgrade Endcap Calorimeter

High Granularity Calorimeter (HGCAL): granular and radiation hard endcap calorimeter replacement

Full Si layers and Si/Scint mixed layers

Calorimeter Endcap Electromagnetic (CE-E) Calorimeter Endcap Hadronic (CE-H)

e EM focused part e HAD focused part (hybrid structure)
Active material Active material

e 26 Layers of Si (cell size: 0.5-1 cm?) e 7 Layers of Si (cell size: 0.5-1 cm?)
Passive material e 14 Layers of Si and plastic scintillator

e Pb, CuW, Cu Passive material

o 277X, e Stainless Steel, Cu

~ 6M Si sensor channels 10.0 A



Extremely Granular Information
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Reconstrction Framework: TICL - The 1terative CLustering

e Modular framework developed inside CMSSW
o Allows customised iterations targeting specific objects (EM/HAD/MIP)

e Full reconstruction starting from rechits (x,y,z,E,t) to particle properties and
identification probabilities
e Framework modern architecture friendly (GPU/FPGA)


https://hgcal.web.cern.ch/Reconstruction/TICL/
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https://hgcal.web.cern.ch/Reconstruction/TICL/

Particle Property Estimation

e Assign Identity to reconstructed 3D showers : Particle ID
e Estimate corrected properties: energy, position, timing

e Classical Approach

o Compute variables describing transverse/ longitudinal spread of showers, electromagnetic and
hadronic energy fractions etc
o  Simple but limited performance

e Machine Learning Approach

o Learn useful representations from full shower information
o ldentify methods most suitable for our data
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Particle Property Estimation: Particle ID

Distinguish electromagnetic from hadronic objects

° mma VS pion
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https://indico.cern.ch/event/818783/contributions/3598473/attachments/1952894/3242645/CHEF2019_Talk.pdf

Particle Property Estimation: Particle ID

e CNN approach misses granular information

e HGCAL generates heterogeneous data
o Different sensor types/ sizes/ geometries

e Use graph data structures to handle this complexity
e Use Graph Neural Networks to build shower representations
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Particle Property Estimation: Particle ID

CE-E CE-H
[a]
Distinguish electromagnetic from early showering pions o
e Represent reconstructed shower as a graph [c]
e Use optimised graph neural networks
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https://cmsdpgplots.web.cern.ch/#/hgcal/CMS-DP-2022_002
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Particle Property Estimation: Energy Regression

Correct reconstructed energy

CMS+CALICE preliminary
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https://cmsdpgplots.web.cern.ch/#/hgcal/CMS-DP-2022_022

Linking : Higher Level Objects

Electron Superclustering

e Electrons and photons radiate and convert in the tracker and magnetic field spreads the trajectories in ¢

o  Superclustering associates these showers

e Currently used algorithm is moustache
o  Geometrical algorithm in eta phi space

e HGCAL provides 3D tracking of showers

o  Utilise direction estimates from cleaned 3D showers using Principal Component Analysis
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Linking : Higher Level Objects

For a pair of tracksters . .
create variables based on Deﬁpt Nel:(ral »l TObab'“tyER; coming from
position and angle S the same EM object

Build superclusters iteratively, placing threshold on the pair scores
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https://cmsdpgplots.web.cern.ch/#/hgcal/CMS-DP-2024_124

Work in Progress
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Hadron reconstruction: Linking is tricky Current approach

e Collect tracksters in a neighbourhood
e Convert data to a graph with the tracksters as nodes and association as edges
e Use a GNN for performing edge prediction
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https://cds.cern.ch/record/2865866/files/CERN-THESIS-2023-110.pdf

End-to-End Reconstruction

e Aim to estimate particle properties from sensor hits
e Use a GNN (GravNet) to learn latent space representation

e Use specialised losses (Object Condensation Loss)

Object Condensation loss for a point with a minima at its
matching point and maximas around nearby non-matching points
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https://arxiv.org/abs/1902.07987
https://arxiv.org/abs/2002.03605
https://indico.cern.ch/event/1338689/contributions/6010037/attachments/2952407/5190464/CHEP.pdf

Conclusion

HGCAL reconstruction is a challenging task
o  Overlapping showers in 200PU

TICL is the current reconstruction framework inside CMSSW

ML algorithms at key steps in the reconstruction workflow

o A mix of traditional and ML algorithms
o CNNs, GNNs, Transformers

ML playing increasing role in higher level combinatorics
Lots of interesting developments ongoing
Alternative fully ML driven strategies also being developed
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Thanks for your attention!
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TICL : Computing performance

HGCAL reconstruction currently
takes only around 5% of the
total Phase-2 CMS
reconstruction time

Further decrease expected with
offloading of algorithms to GPUs
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