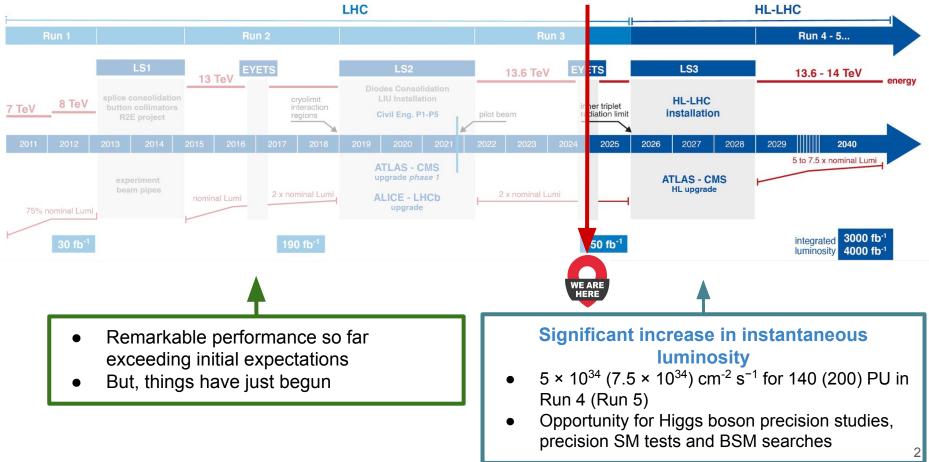


ML techniques for reconstruction developed and used for the future CMS High Granularity Calorimeter

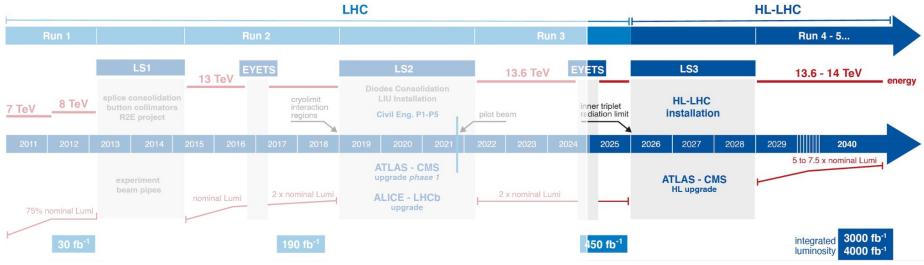
Shamik Ghosh Laboratoire Leprince-Ringuet, Ecole Polytechnique, CNRS

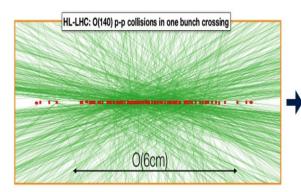
Polarized Perspectives: Tagging and Learning in the SM , 20-21 Feb 2025

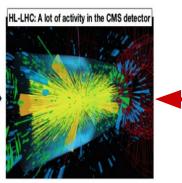
Motivation: HL-LHC

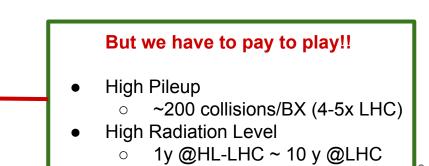


Motivation: HL-LHC



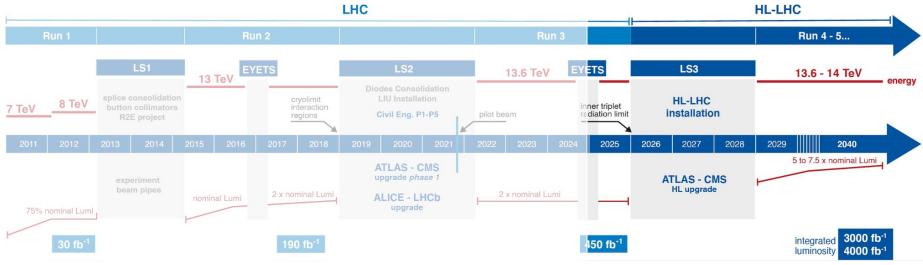




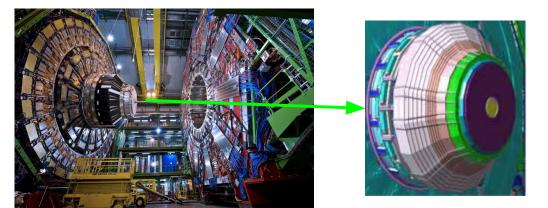


3

Motivation: HL-LHC

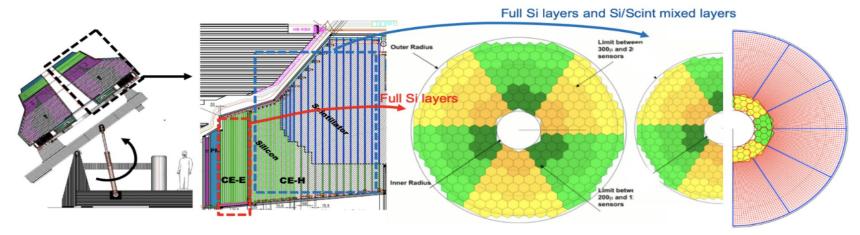


Existing endcap calorimeters will suffer the most \rightarrow Replace with HGCal



CMS Phase-II Upgrade Endcap Calorimeter

High Granularity Calorimeter (HGCAL): granular and radiation hard endcap calorimeter replacement



Calorimeter Endcap Electromagnetic (CE-E)

• EM focused part

Active material

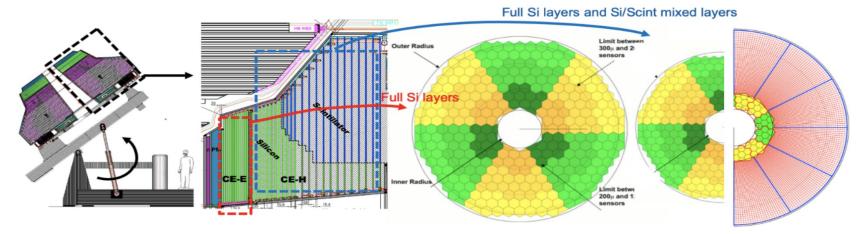
- 26 Layers of Si (cell size: 0.5-1 cm²) Passive material
 - Pb, CuW, Cu
 - 27.7 X₀

Calorimeter Endcap Hadronic (CE-H)

- HAD focused part (hybrid structure) Active material
 - 7 Layers of Si (cell size: 0.5-1 cm²)
- 14 Layers of Si and plastic scintillator Passive material
 - Stainless Steel, Cu
 - 10.0 λ

CMS Phase-II Upgrade Endcap Calorimeter

High Granularity Calorimeter (HGCAL): granular and radiation hard endcap calorimeter replacement



Calorimeter Endcap Electromagnetic (CE-E)

• EM focused part

Active material

• 26 Layers of Si (cell size: 0.5-1 cm²)

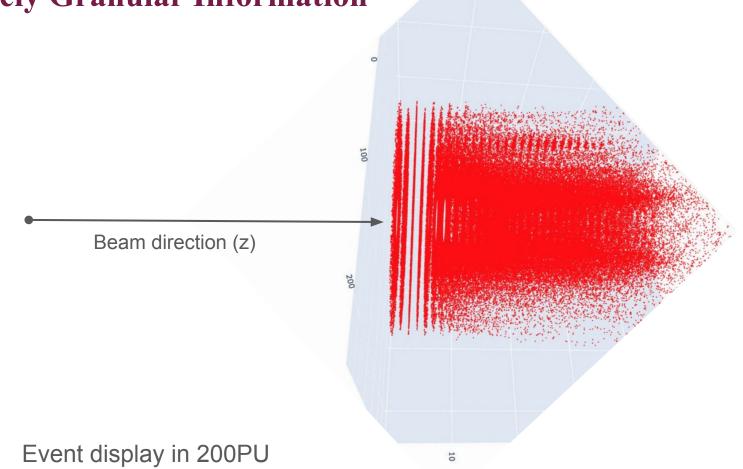
Passive material

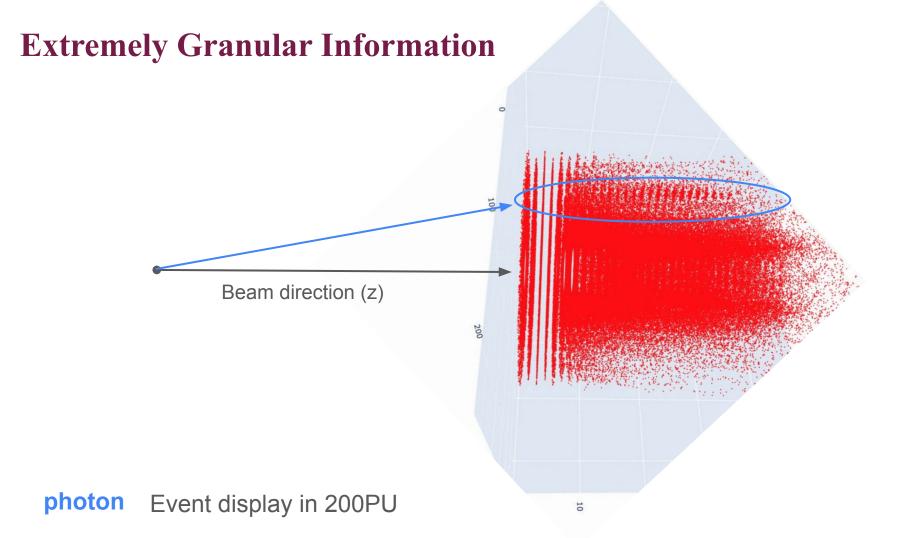
- Pb, CuW, Cu
- 27.7 X₀

~ 6M Si sensor channels

Calorimeter Endcap Hadronic (CE-H)

- HAD focused part (hybrid structure) Active material
 - 7 Layers of Si (cell size: 0.5-1 cm²)
- 14 Layers of Si and plastic scintillator Passive material
 - Stainless Steel, Cu
 - 10.0 λ



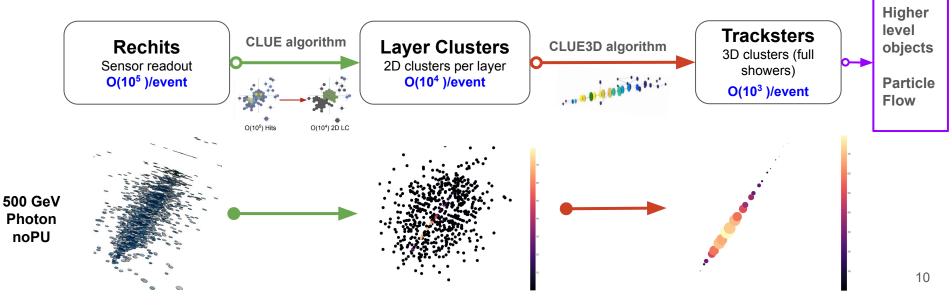


Reconstrction Framework: <u>**TICL</u>** - The Iterative CLustering</u>

- Modular framework developed inside CMSSW
 - Allows customised iterations targeting specific objects (EM/HAD/MIP)
- Full reconstruction starting from rechits (x,y,z,E,t) to particle properties and identification probabilities
- Framework modern architecture friendly (GPU/FPGA)

Reconstrction Framework: <u>**TICL</u>** - The Iterative CLustering</u>

- Modular framework developed inside CMSSW
 - Allows customised iterations targeting specific objects (EM/HAD/MIP)
- Full reconstruction starting from rechits (x,y,z,E,t) to particle properties and identification probabilities
- Framework modern architecture friendly (GPU/FPGA)



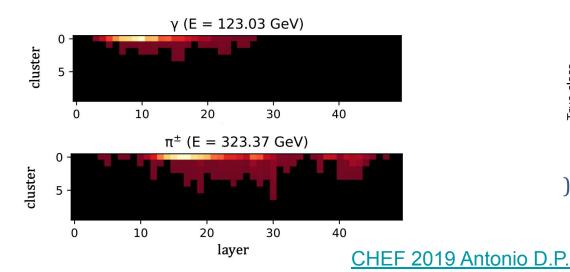
Particle Property Estimation

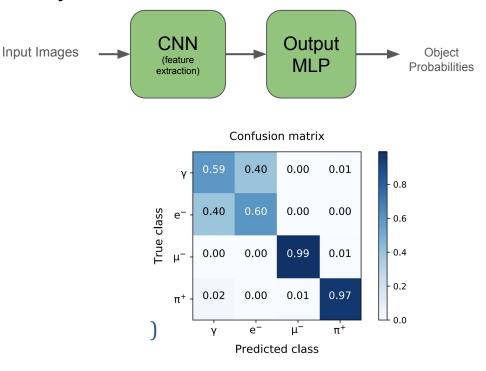
- Assign Identity to reconstructed 3D showers : Particle ID
- Estimate corrected properties: energy, position, timing
- Classical Approach
 - Compute variables describing transverse/ longitudinal spread of showers, electromagnetic and hadronic energy fractions etc
 - Simple but limited performance
- Machine Learning Approach
 - Learn useful representations from full shower information
 - Identify methods most suitable for our data

Particle Property Estimation: Particle ID

Distinguish electromagnetic from hadronic objects

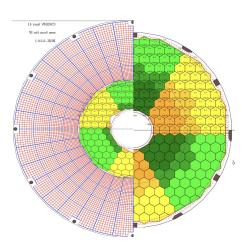
- e/gamma VS pions
- Represent data as images
 - 2D clusters ordered by energy
- Images fed into a CNN

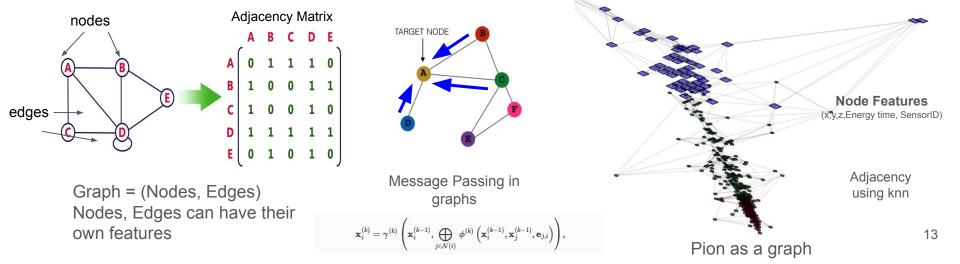




Particle Property Estimation: Particle ID

- CNN approach misses granular information
- HGCAL generates heterogeneous data
 - Different sensor types/ sizes/ geometries
- Use graph data structures to handle this complexity
- Use Graph Neural Networks to build shower representations

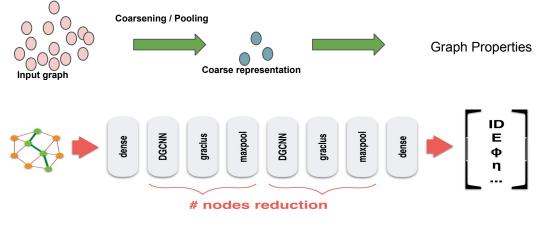




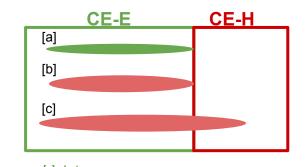
Particle Property Estimation: Particle ID

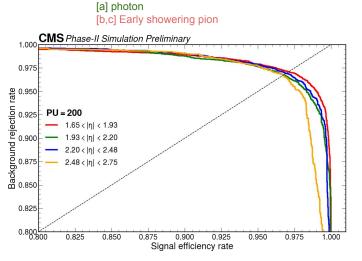
Distinguish electromagnetic from early showering pions

- Represent reconstructed shower as a graph
- Use optimised graph neural networks



Dynamic Reduction Network(DRN) 2003.08013

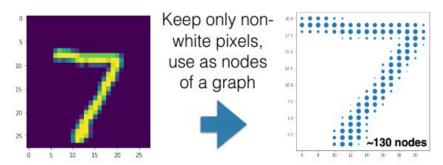




Good background rejections in 200PU

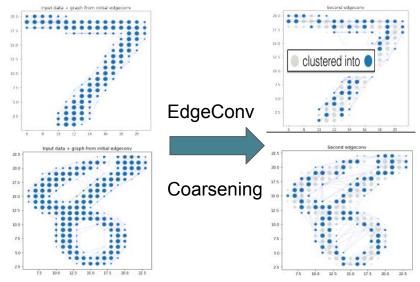
DRN

• Applied to MNIST

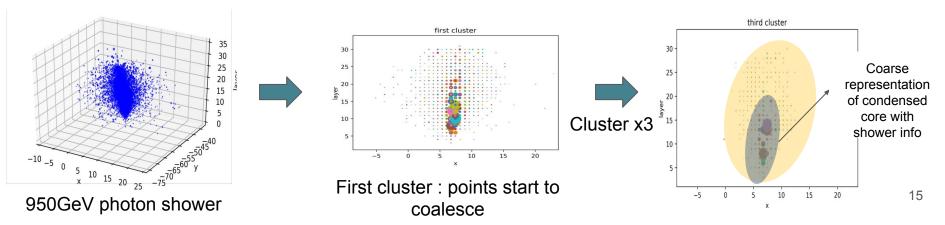


Accuracy = 0.9955 (Hidden dimension=256, k= 4)

• Applied to photon showers in HGCal



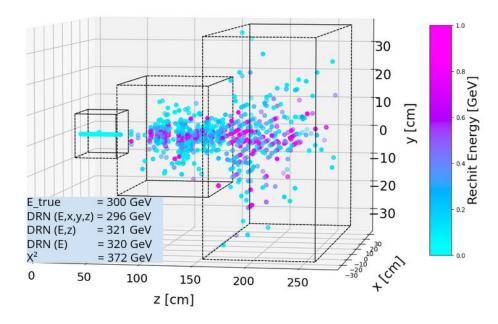
DRN on MNIST learns compact pooled representation to extract features of digits.

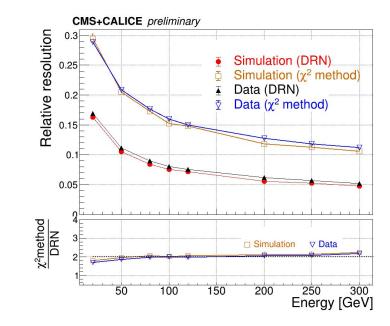


Particle Property Estimation: Energy Regression

Correct reconstructed energy

- Use pion test beam (2018) data
- Use Dynamic Reduction Network



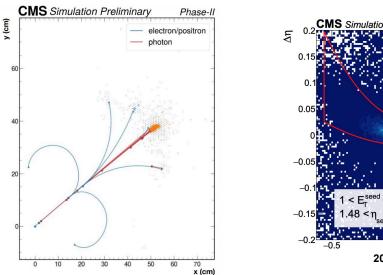


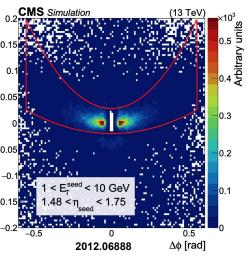
Significant improvement in energy resolution using GNN compared to classic calibration method

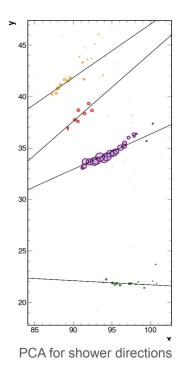
CMS-DP-2022_022

Linking : Higher Level Objects Electron Superclustering

- Electrons and photons radiate and convert in the tracker and magnetic field spreads the trajectories in φ
 - Superclustering associates these showers
- Currently used algorithm is moustache
 - Geometrical algorithm in eta phi space
- HGCAL provides 3D tracking of showers
 - Utilise direction estimates from cleaned 3D showers using Principal Component Analysis

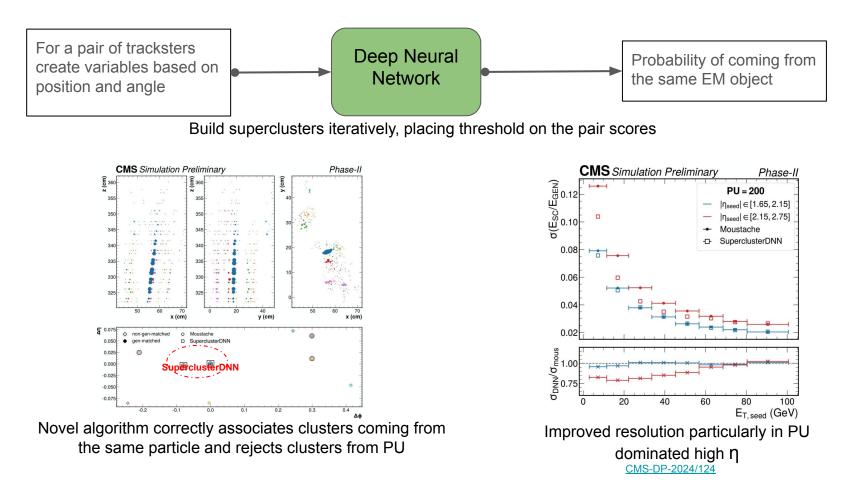




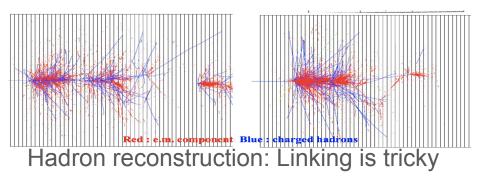


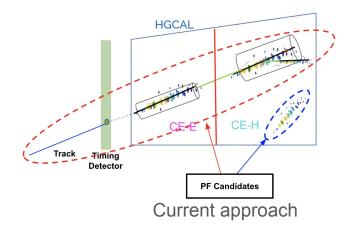
17

Linking : Higher Level Objects

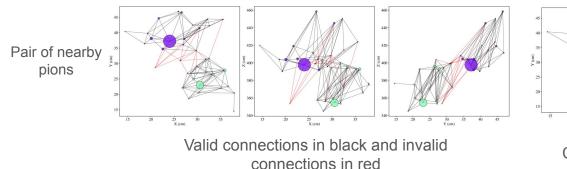


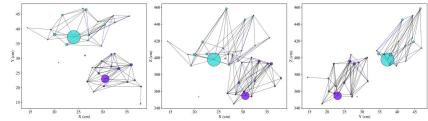
Work in Progress





- Collect tracksters in a neighbourhood
- Convert data to a graph with the tracksters as nodes and association as edges
- Use a GNN for performing edge prediction



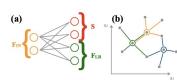


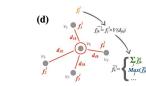
Collecting tracksters based on predicted connection scores

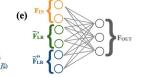
Thesis of Jekatěrina J.

End-to-End Reconstruction

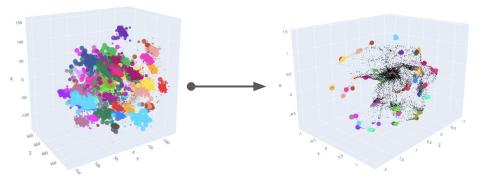
- Aim to estimate particle properties from sensor hits
- Use a GNN (<u>GravNet</u>) to learn latent space representation
- Use specialised losses (<u>Object Condensation Loss</u>)





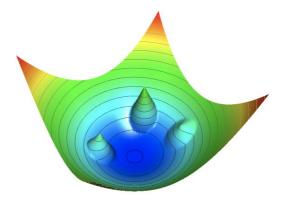


GravNet

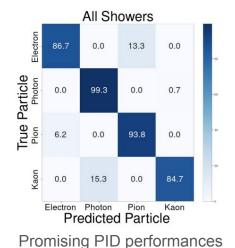


Shower in input space

Shower in clustering space CHEP 2024 Philipp Z.



Object Condensation loss for a point with a minima at its matching point and maximas around nearby non-matching points



Conclusion

- HGCAL reconstruction is a challenging task
 - Overlapping showers in 200PU
- TICL is the current reconstruction framework inside CMSSW
- ML algorithms at key steps in the reconstruction workflow
 - A mix of traditional and ML algorithms
 - CNNs, GNNs, Transformers
- ML playing increasing role in higher level combinatorics
- Lots of interesting developments ongoing
- Alternative fully ML driven strategies also being developed

Thanks for your attention!

TICL : Computing performance

- HGCAL reconstruction currently takes only around 5% of the total Phase-2 CMS reconstruction time
- Further decrease expected with offloading of algorithms to GPUs

