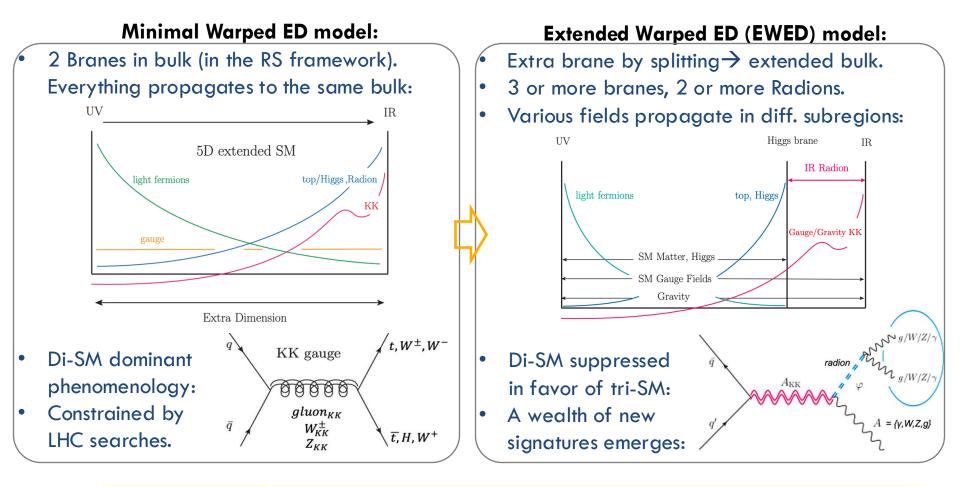


February 20th 2025, Workshop: Polarized Perspectives: Tagging and Learning in the SM

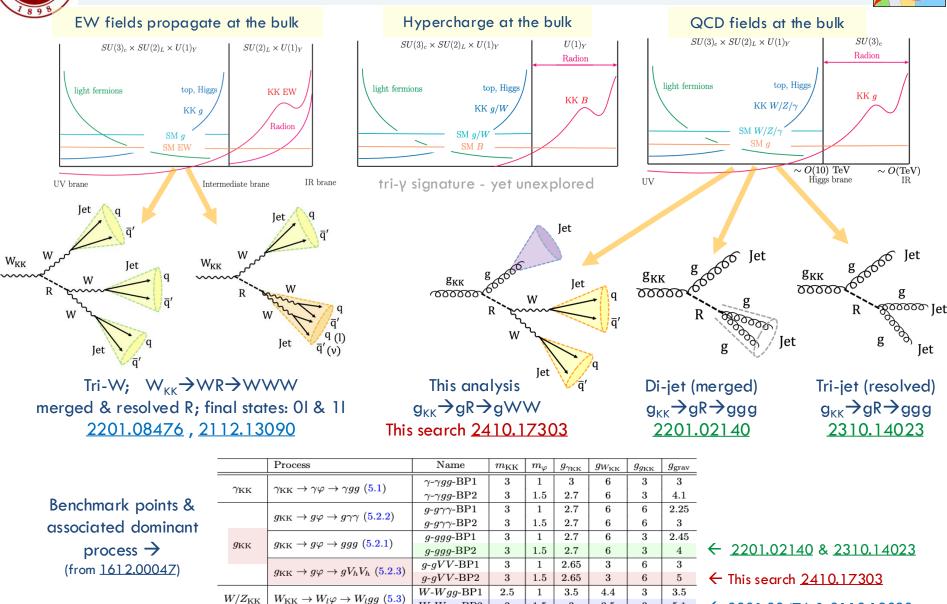
Search for Di-resonant New Physics with Massive Jets at CMS

Antonis Agapitos


CMS

Motivation: BSM physics beyond minimal

- Hierarchy: EW-M_{PI} scale gap motivates BSM physics.
- No BSM physics yet \rightarrow time to look in non-standard final states/scenarios.


Theory sources: Kaustubh Agashe, et al his talk at CMS

- LHC Signals from Cascade Decays of Warped Vector Resonances <u>arXiv:1612.00047</u>
- Dedicated Strategies for Triboson Signals from Cascade Decays of Vector Resonances arXiv:1711.09920
- Detecting a Boosted Diboson Resonance <u>arXiv:1809.07334</u>

EWED landscape & CMS searches

20/02/25

gKK search at CMS, Antonis Agapitos, PKU

W-Wgg-BP2

3

1.5

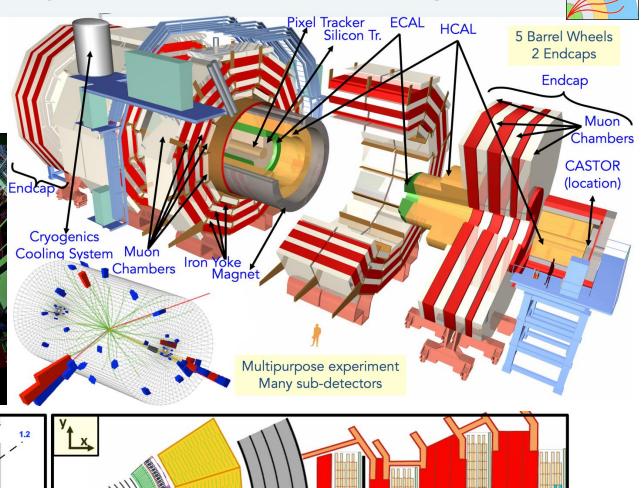
3

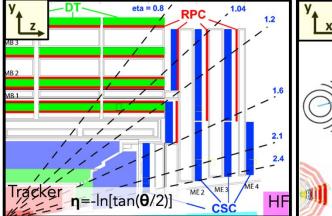
3.5

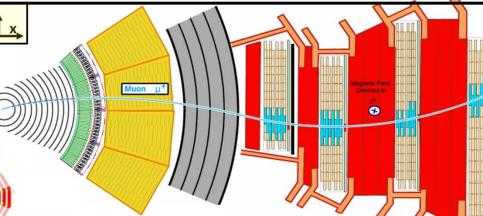
3

5.1

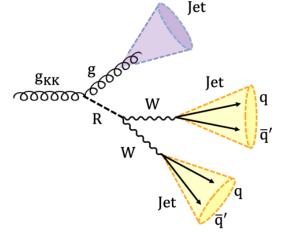
← 2201.08476 & 2112.13090

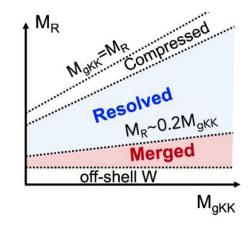


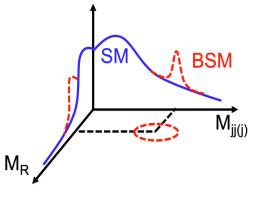

The CMS detector at the LHC


CMS

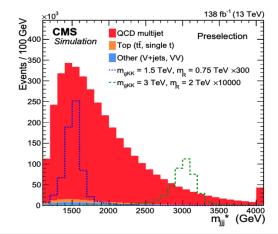
Compact Muon Solenoid Mass: ~12500 Tones Size: ~15m x 22m Magnetic field: 4 T (3.8 T) CMS collaboration is 30 y.o. ~6100 collaborators ~250 Institutes ~57 countries <u>here for more</u>




N PARTY AND A PART


Signal topology & Preselection

- We use benchmark point at which the dominant process is: $g_{KK} \rightarrow gR \rightarrow gWW$
- Big advantage of the W-tagging & narrow mass-window to suppress QCD BKG.



- g_{KK} is spin-1, R is spin-0
- We focus on the OI channel: $g_{KK} \rightarrow gR \rightarrow gWW \rightarrow jets$ (BR~56%)
- We cover only the resolved R case: $0.2 \le m_R/m_{gKK} \le 0.9 \rightarrow 3$ jets

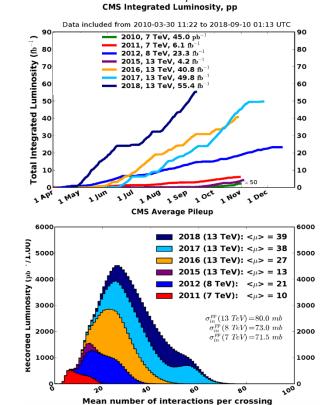
Strategy:

- 1. Tri-jet selection,
- Identify (tag) 2 jets as W-candidates with PNet,
- 3. form m_{ii} (R) and m_{iii} (g_{KK}),
- 4. bin over m_{ii} , fit $m_{iii} \rightarrow$

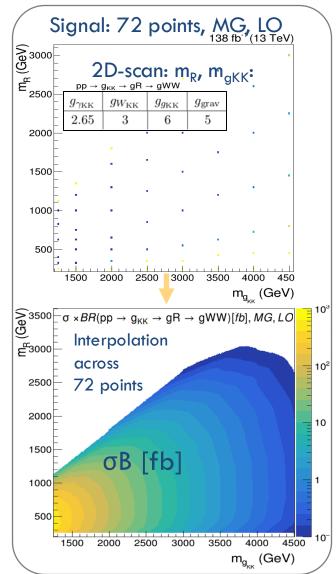
Preselection cuts:

- 1. N_{j-AK8}=3, N_{lep}=0,
- 2. $p_{T_{i1}(i2,i3)} > 400 (200) \text{ GeV,}$ $|\eta_i| < 2.4, \quad \eta = \ln[\tan(\theta/2)]$
- 3. $m_{j\alpha,jb} > 50 \text{ GeV}$,
- 4. $H_T \equiv \sum_i p_T(jet[i]) > 1.1 \text{ TeV}$

20/02/25

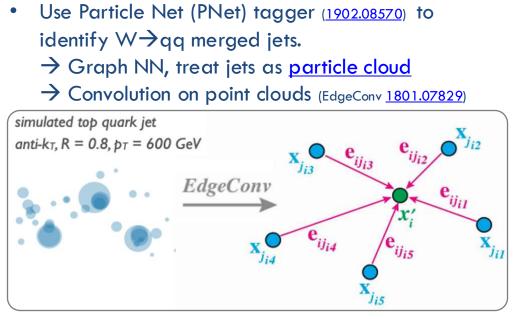


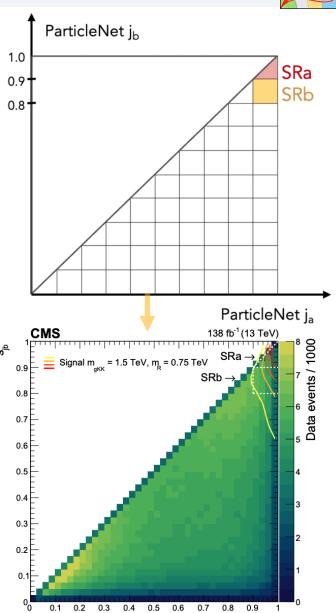
Datasets, Trigger, & MC samples


DATA: pp collision at 13 TeV

- Full Run 2 (JetHT) dataset used.
- Trigger paths: $H_T (H_T \equiv \sum_i p_T(jet[i])) \& m_{jAK8}$ -based
- $L = 138 \text{ fb}^{-1}$
- Triggers OR combination found to be eff. $>\sim$ 99% for H_T>1.1 TeV.

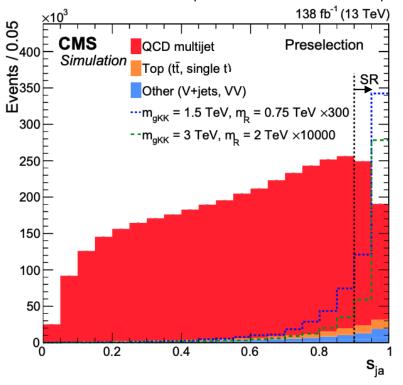
BKG samples QCD_HT500to700_TuneCP5_J QCD_HT700to1000_TuneCP5 OCD_HT1000to1500_TuneCP QCD_HT1500to2000_TuneCP QCD_HT2000toInf_TuneCP5_ TTToHadronic_TuneCP5_13T TTToSemiLeptonic_TuneCP5. WJetsToQQ_HT-400to600_Tui WJetsToQQ_HT-600to800_Tui WJetsToQQ_HT-800toInf_Tun ZJetsToQQ_HT-400to600_Tun ZJetsToQQ_HT-800toInf_Tune ZJetsToQQ_HT-600to800_Tun ST_tW_antitop_5f_inclusiveDe ST_tW_top_5f_inclusiveDecay ST_t-channel_antitop_4f_Inclu ST_t-channel_top_4f_Inclusive ST_s-channel_4f_hadronicDec WW_TuneCP5_13TeV-pythia8 ZZ_TuneCP5_13TeV-pythia8 WZ_TuneCP5_13TeV-pythia8 QCD multijet Top (tt, single t) Other (V+jet, VV)


Simulation (MC) Madgraph, Pythia ...

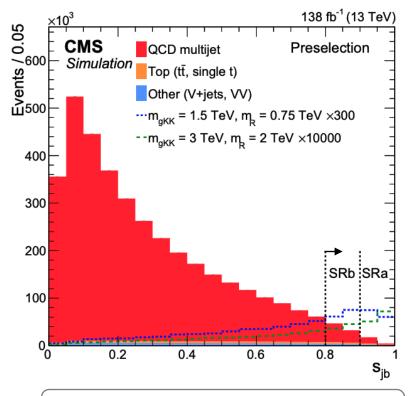


W-tagging with PNet & SR binning

- Form ratio of "W_{qq}/QCD" classes score.
- The 2 highest <u>PNet</u> score jets j_a , j_b are assigned as W-candidates, is j_c . is the gluon.
- Use PNet (MD) scores of j_{α} & j_{b} to select as:
- SRa \rightarrow both jets with PNet_{ja,jb} >0.9
- SRb \rightarrow PNet_{ja}>0.9 & 0.8<PNet_{jb}<0.9



S_{ia}


W-tagging with PNet & SR binning

- The PNet (MD) scores of j_{α} & j_{b} according to simulation
- SRa \rightarrow both jets with PNet_{ja,jb} >0.9
- SRb \rightarrow PNet_{ia}>0.9 & 0.8<PNet_{ib}<0.9

No demands for 3rd jet, as the gluon candidate: m_{jc} or PNet_{jc}.
 → This maintains generality and provides sensitive to signals like: X→AWW, or X→WW + j^{ISR/FSR}.

	PNet Tagger is calibrated with						
SFs formed on tt data sample:							
	Jet $p_{\rm T}$ [GeV]	200–300	300-400	> 400			
	$s_{ja} > 0.9$	0.83 ± 0.03	0.84 ± 0.04	0.82 ± 0.05			
	$0.8 < s_{\rm ib} < 0.9$	1.08 ± 0.03	1.01 ± 0.04	1.02 ± 0.05			

W-candidate selection on m_{iet}

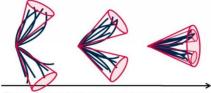
130

120

110

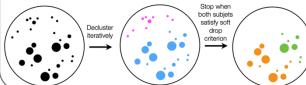
100

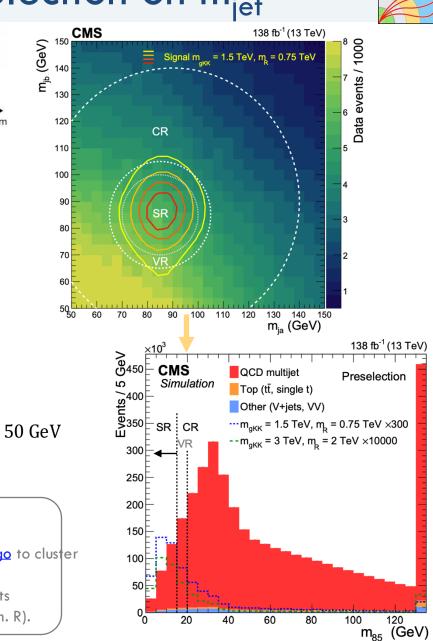
90


80

70

60


 $W \rightarrow qq$ are boosted: using the <u>anti-KT</u> algo form single AK8 jets

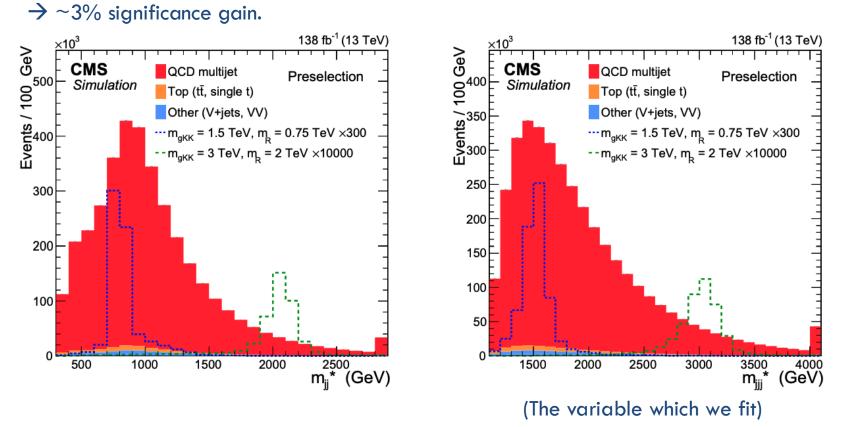

Boosted jets: Increasing transverse momentum

- The 2 highest <u>PNet</u> score jets j_a, j_b are assigned to be the W-candid., gluon is j.
- We demand the jets <u>Soft Drop</u> masses m_{ia.ib}, to be on W-peak with the condition of m₈₅ variable: $m_{85} \equiv \sqrt{(m_{ja} + 85)^2 + (m_{jb} + 85)^2} < 15 \text{ GeV}$
- We define 3 regions based on m_{85} :
 - Signal Regions (SRs)have: $m_{85} < 15$ GeV.
 - Control Regions (CRs) are: $m_{85} > 15 \text{ GeV } \& m_{90} < 50 \text{ GeV}$
 - Validation Regions (VRs): $15 < m_{85} < 20$ GeV.

The <u>Soft-Drop</u> is an algorithm which removes soft & wide-angle radiation from within the jet, improving mass scale & resolution:

We use the <u>anti-kT algo</u> to cluster individual particles (PF candidates) into jets (using clustering param. R).

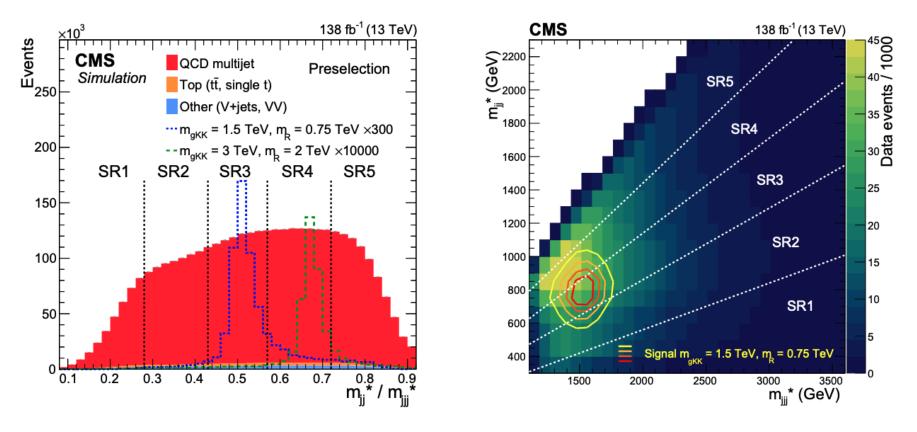
20/02/25


R & gKK masses reconstruction

• M_R reco. from j_a , j_b :

$$m_{jj}^* \equiv m_{jj} - m_{ja} - m_{jb} + 2 \times 85 \,\mathrm{GeV}$$

- $M_{
 m gKK}$ reco. from j_{a} , j_{b} , j_{c} : $m_{jjj}^{*} \equiv m_{jjj} m_{ja} m_{jb} + 2 \times 85 \, {
 m GeV}$
- → i.e. we correct invariant masses to mitigate resolution effect from jet SD masses.
 → sharper peaks (see Fig.4).



SR binning

• From ratio m_{ii}^*/m_{iii}^* and define 5 bins SR1—5. \rightarrow Effectively binning over m_R .

- In each of these 5 SR we have 2 SRs (SRa, SRb) based on PNet scores.
 → Thus, we have 10 SRs in total.
- We fit the m_{iii}^* spectra.

BKG prediction in 10 SRs

mj_{a(b)}

130

100

70

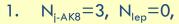
50

 $\operatorname{Pred}_{\operatorname{SRxy}}^{\operatorname{QCD}} \equiv [\operatorname{Data} - \operatorname{Rest}]_{\operatorname{CRxy}} \frac{\mathcal{QCD}_{\operatorname{SRxy}}}{\operatorname{QCD}_{\operatorname{CRxy}}}$

50

70

100


QCD_{SRxy}

130

mj_{b(a}

CR

SR full selection summary

- 2. p_{Tj1(j2,j3)}>400(200)GeV $|\eta_{i}| < 2.4$,
- $m_{j\alpha,jb} > 50 \text{ GeV},$ 3.
- $H_{\tau} > 1100 \text{ GeV},$ 4.
- 5. $m_{85} < 15$ GeV,
- PNet > 0.8, & binning 6.
- $|\Delta \eta_{ii}|^{max} < 3$ 7.
- 8. $N_{\rm h} = 0$ (CHS, tight, deepflavor)

10 SRs categories:

m_{jj}^*/m_{jjj}^*	s _{jb}
< 0.28	> 0.9
	0.8–0.9
0.28 0.42	> 0.9
0.20-0.43	0.8–0.9
0.42.0.57	> 0.9
0.45-0.57	0.8–0.9
0 57 0 72	> 0.9
0.37-0.72	0.8–0.9
> 0.72	> 0.9
/ 0.72	0.8–0.9
)))))

QCD multijet 80-90%

- Dominant \rightarrow data-driven prediction ٠
- Form Control Regions (CRs) defined in $m_{ia,ib}$ sideband as: m_{85} >15 & m_{90} <50 GeV keeping the rest conditions as in SRs.
- Form 10 CRs: CR1–5a & CR1–5b ۲
- Similar kinem/cs to SRs; high QCD purity. •
 - Predict QCD with \rightarrow

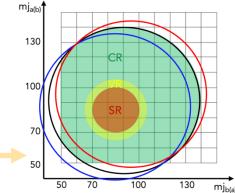
۲

We validate QCD pred. in 10 VRs (defined by 15<m₈₅<20 GeV).

Top (tt, single t) 3–8% Other (V+jet, VV) 8–16%

- Subdominant BKGs \rightarrow use MC for prediction.
- We correct the MC applying SFs for PNet selection eff. per matched $W \rightarrow qq$ jets.
- We validate Top MC (shape & rate) in dedicated samples (bRs) like the SRs but with $N_{\rm b} \ge 1$.
- We assign conservative (large) rate unc. for these 3 BKGs.

Systematic Uncertainties


	Uncertainty source	Effect on		Number of NPs & correlations
	Normalization QCD	Rate	20% ← Domin 50%	10, uncorr. across SRs
N	Normalization Top	Rate	50%	ant 10, uncorr. across SRs
	Normalization Other	Rate	30%	10, uncorr. across SRs
Ž	QCD bkg. shape due to m_{90} usage	Shape	$\pm 1\sigma$ templates	10, uncorr. across SRs
\mathbf{D}	QCD bkg. shape due to other processes	Shape	$\pm 1\sigma$ templates	10, uncorr. across SRs

RATE • QCD 20% based on validation prefit disclosure & MC low stat.

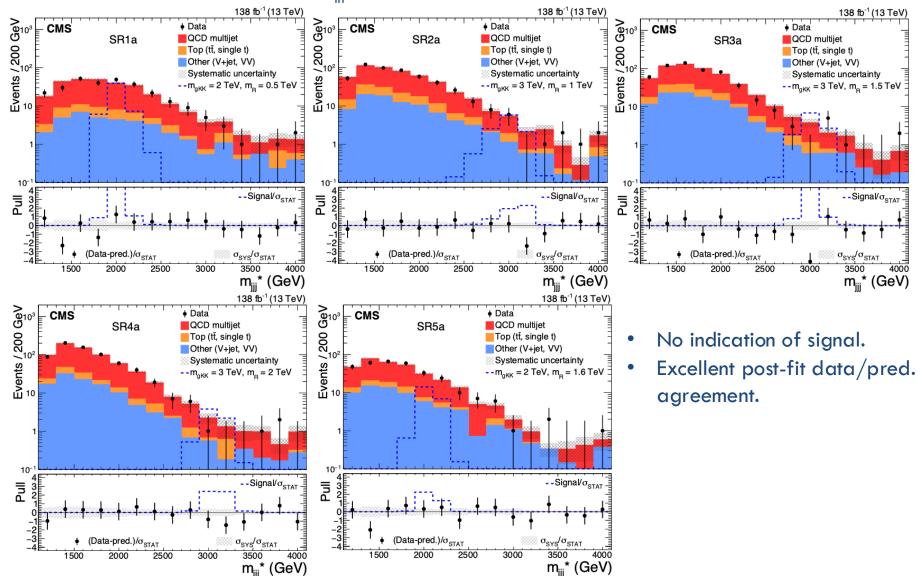
Top 50% based on data in bRs, Other 30% based on similar search.
 All uncorrelated across 10 SRs → 30 nuisances.

SHAPE

- Vary "rest" in QCD BKGs prediction by x2 down, x0 up.
- Shift CR circle center: m_{90} <50 (central) $\rightarrow m_{85}$ <50 (down), m_{95} <50 (up).

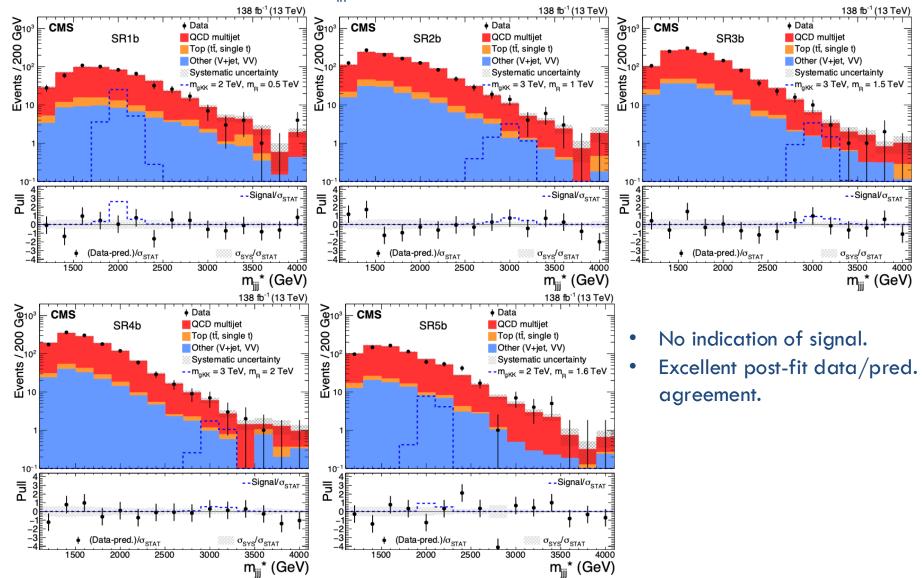
	PU reweighting & int. luminosity	Rate	1.7%	1, correlated across all SRs
σ	PDFs	Rate	$\leq 10\%$	1, correlated across all SRs *
č	μ_R/μ_F scales	Rate	< 0.8%	1, correlated across all SRs *
δ	PNet _W selection eff. per jet (event)	Rate	$6\% (12\%) \leftarrow c$ $\pm 1\sigma$ templates	1, correlated across all SRs
Ś	JEC	Shape	$\pm 1\sigma$ templates	ominantrrelated across all SRs *
0)	JER	Shape	$\pm 1\sigma$ templates	1, correlated across all SRs *

- RATE Lumi, PU, PDFs, QCD scales μ_F , μ_R : 1—10%
 - PNet SFs unc. \rightarrow 6% [12%] per jet [event] (we have 2 W \rightarrow qq jets/event)
- SHAPE JEC & JER: $+\sigma/-\sigma$ variations \rightarrow forming templates per point, per SRs.


20/02/25

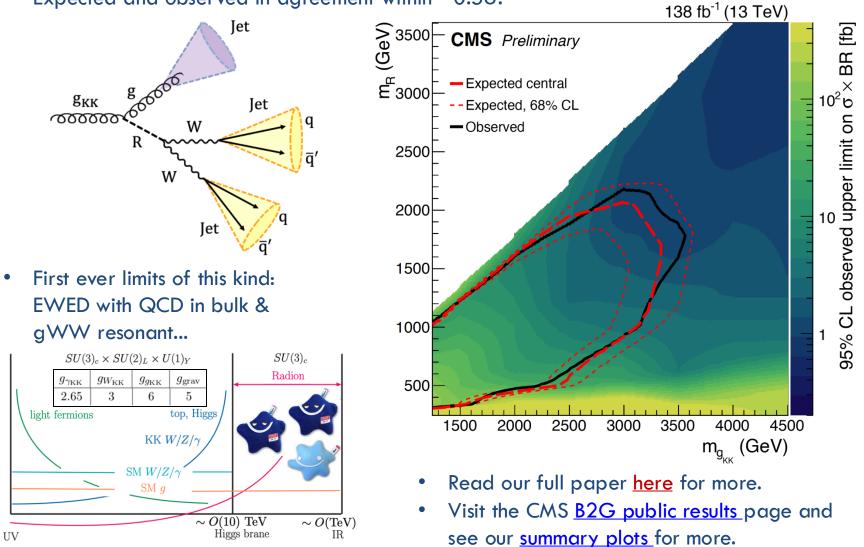
Results: SR1a—SR5a

We fit simultaneously the m_{iii}^* spectra in the 10 SRs, using <u>Combine</u> tool:



Results: SR1b—SR5b

We fit simultaneously the m_{iii}^* spectra in the 10 SRs, using <u>Combine</u> tool:



Interpretation: $\sigma B \& m_{gKK} - m_R$ limits

- We set upper limits, at 95% CL, on σ B, and lower limits on m_{gKK} - m_R masses plane:
- Expected and observed in agreement within $\sim 0.5\sigma$.

