#### Boosted H→bb/cc Tagging in ATLAS

Jackson Barr 2025-02-20





#### **Boosted Jets**



Increasing p<sub>T</sub>

- Standard b-tagging algorithms use R=0.4 anti-k<sub>t</sub> jets but as decay products become more collimated at high pT, objects can be reconstructed within a R=1.0 jet
- Rule of thumb for two body decay,  $R \approx 2m/p_T Higgs$  boson decay products are boosted above 250 GeV

# **Higgs Tagging**

- $H \rightarrow$  bb is the largest branching ratio for the decay of a SM Higgs, boosted bb-tagging important for precision measurements of the Higgs  $p_T$  spectra or for searches involving high mass resonances
- The boosted regime has also been shown to be very sensitive for H → cc (which still hasn't been observed!)



| _  | bb    | ww    | ττ     | ZZ     | YY      |
|----|-------|-------|--------|--------|---------|
| bb | 34%   |       |        |        |         |
| ww | 25%   | 4.6%  |        |        |         |
| ττ | 7.3%  | 2.7%  | 0.39%  |        |         |
| ZZ | 3.1%  | 1.1%  | 0.33%  | 0.069% |         |
| YY | 0.26% | 0.10% | 0.028% | 0.012% | 0.0005% |

## **Previous** Approach

- The previous standard b-tagging algorithm used in Run 2 was the DL1r tagger based upon a recurrent neural network
- The previous <u>Xbb tagger</u> consisted of a neural network trained on the DL1r outputs of up to three variable radius sub-jets within the large-R jet along with the jet kinematics





# Current Approach – <u>GN2X</u>

- The previous approach b-tags the sub-jets independently and can only learn correlations between their b-tagging scores – GN2X uses all tracks within the jet
- GN2X is a transformer based model that not only can be used for the identification of boosted Higgs decays but also predicts the origin of the tracks and perform vertex finding
- An important consideration for Higgs tagging is trying to avoid sculpting the background distributions to look like the signal – a Higgs sample with a large decay width is used to give a flatter mass distribution



# **Inputs and Samples**

- Inputs include the jet pT, η and mass along with track level features – heterogeneous versions of model uses information from particle flow objects and/or kinematics of subjets
- A resampling in the jet kinematics is performed to reduce the effects of any kinematic sculpting
- Trained on O(100 m) jets, model with a few million parameters



| Jet Input          | Description                                                                |  |  |
|--------------------|----------------------------------------------------------------------------|--|--|
| $p_{\mathrm{T}}$   | Large- <i>R</i> jet transverse momentum                                    |  |  |
| η                  | Signed large- $R$ jet pseudorapidity                                       |  |  |
| mass               | Large-R jet mass                                                           |  |  |
| Track Input        | Description                                                                |  |  |
| q/p                | Track charge divided by momentum (measure of curvature)                    |  |  |
| dη                 | Pseudorapidity of track relative to the large-R jet $\eta$                 |  |  |
| $\mathrm{d}\phi$   | Azimuthal angle of the track, relative to the large-R jet $\phi$           |  |  |
| $d_0$              | Closest distance from track to primary vertex (PV) in the transverse plane |  |  |
| $z_0 \sin \theta$  | Closest distance from track to PV in the longitudinal plane                |  |  |
| $\sigma(q/p)$      | Uncertainty on $q/p$                                                       |  |  |
| $\sigma(\theta)$   | Uncertainty on track polar angle $\theta$                                  |  |  |
| $\sigma(\phi)$     | Uncertainty on track azimuthal angle $\phi$                                |  |  |
| $s(d_0)$           | Lifetime signed transverse IP significance                                 |  |  |
| $s(z_0\sin\theta)$ | Lifetime signed longitudinal IP significance                               |  |  |
| nPixHits           | Number of pixel hits                                                       |  |  |
| nSCTHits           | Number of SCT hits                                                         |  |  |
| nIBLHits           | Number of IBL hits                                                         |  |  |
| nBLHits            | Number of B-layer hits                                                     |  |  |
| nIBLShared         | Number of shared IBL hits                                                  |  |  |
| nIBLSplit          | Number of split IBL hits                                                   |  |  |
| nPixShared         | Number of shared pixel hits                                                |  |  |
| nPixSplit          | Number of split pixel hits                                                 |  |  |
| nSCTShared         | Number of shared SCT hits                                                  |  |  |
| subjetIndex        | Integer label of which subjet track is associated to (GN2X + Subjets only  |  |  |
| Subjet Input       | <b>Description</b> (Used only in GN2X + Subjets)                           |  |  |
| $p_{\mathrm{T}}$   | Subjet transverse momentum                                                 |  |  |
| η                  | Subjet signed pseudorapidity                                               |  |  |
| mass               | Subjet mass                                                                |  |  |
| energy             | Subjet energy                                                              |  |  |
| $d\eta$            | Pseudorapidity of subjet relative to the large-R jet $\eta$                |  |  |
| $\mathrm{d}\phi$   | Azimuthal angle of subjet relative to the large-R jet $\phi$               |  |  |
| GN2 $p_b$          | b-jet probability of subjet tagged using GN2                               |  |  |
| $GN2 p_c$          | c-jet probability of subjet tagged using GN2                               |  |  |
| GN2 $p_u$          | light flavour jet probability of subjet tagged using GN2                   |  |  |
| Flow Input         | <b>Description</b> (Used only in GN2X + Flow)                              |  |  |
| $p_{\mathrm{T}}$   | Transverse momentum of flow constituent                                    |  |  |
| energy             | Energy of flow constituent                                                 |  |  |
| dη                 | Pseudorapidity of flow constituent relative to the large-R jet $\eta$      |  |  |
| dφ                 | Azimuthal angle of flow constituent relative to the large-R jet $\phi$     |  |  |

#### **Transformer Models**

- Transformers are a model architecture that arose from the field of Natural Language Processing (NLP) architecture used by LLMs like ChatGPT
- The key to the transformer architecture is the Attention Mechanism calculates the pairwise "relevance" between all input objects
- Each object is then updated by an attention weighted sum of all other objects
- Attention mechanism is a useful inductive bias for this task, tracks originating from a common vertex, or have parent-daughter relationship should have high attention weights, fake tracks and pileup tracks should have lower weights with real PV tracks





## **GN2X Outputs**

- GN2X adds a H  $\rightarrow$  cc output class in addition to the H  $\rightarrow$  bb, top and QCD classes from the previous tagger
- A discriminant score is built using a weighted log likelihood ratio
- Auxiliary task outputs are a per track probability score for each type of track and a list of vertices

$$D_{\text{Hbb}}^{\text{GN2X}} = \ln\left(\frac{p_{\text{Hbb}}}{f_{\text{Hcc}} \cdot p_{\text{Hcc}} + f_{\text{top}} \cdot p_{\text{top}} + (1 - f_{\text{Hcc}} - f_{\text{top}}) \cdot p_{\text{QCD}}}\right)$$



# H→bb Performance

- GN2X significantly improvements in top and QCD rejection over the previous Xbb tagger, more than doubling QCD rejection for all signal efficiencies
- Performance compared to tagging two subjets with GN2 independently to shows how much training on all constituents in the jet inclusively brings over a subjet-based approach



# H→bb Performance

discrimination vital for further improvements



 $H(b\bar{b})$  efficiency

# **Mass Sculpting**

- Jet mass distributions of the QCD background are compared pre- and post-tagging to evaluate the amount of mass sculpting present
- No localised peak at 125 GeV but there is still some residual mass sculpting – mostly a product of changing flavour fractions pre- and post-tag



# H→cc Performance

- As H → cc is a new addition, the only baseline we can compare to is the c-tagging of the subjets independently
- Larger improvement over baseline compared to the b-tagging case!
- Identification of c-hadrons more challenging than bhadrons e.g. a 1% QCD mist-tag efficiency corresponds to a ~75% H → bb efficiency, but only a ~50% H → cc efficiency



## **Auxiliary Tasks**



Example vertexing performance from previous GN1 model





# **Signal Calibration**

- MC performance is nice but at the end of the day data is what matters
- Tagger is ~mass agnostic, therefore we assume that we can use a Z→bb standard candle as our signal proxy in the calibration
- Alternate calibration approach using g→bb has also been explored as well





#### Where to Next?\*

#### Heterogenous Inputs or how ATLAS finally learned pflow is pretty cool for flavour tagging

- Transformers seem here to stay for a while so after doing the easy step of switching to them, how do we further improve as architecture improvements become more minor?
- Two types of approach: put more into our models or try getting more out
- An example of the first is the inclusion of neutral <u>PFlow</u> <u>constituents</u>
- Neutral constituent information leads to a further ~50% improvement in QCD rejection



## **Jet Regression - Response**

- We exploit the unique characteristics of b-hadron decays for flavour tagging e.g. displaced tracks, high mass secondary vertices, semi-leptonic decays
- These features also affect the jet mass and  $p_{\rm T}$  and so a dedicated mass and  $p_{\rm T}$  calibration for jets containing b-hadrons is desirable
- A <u>recent result</u> used the GN2 architecture for this task in both small-R and large-R jets
- Improvements in both the  $p_{\rm T}$  and mass responses (difference between truth and reconstructed) are seen across a wide  $p_{\rm T}$  range





**Jet Regression - Resolution** 



• In addition to reducing the bias in the jet response, the dedicated b-jet regression leads to much sharper resolutions

• Performance tested across a range of physics processes with improvements observed everywhere



- In recent years there's been a lot of effort to harmonise our efforts in single and double btagging – we now use the same model architectures and frameworks to train them
- There is a lot of interesting physics that can be done with these models from diHiggs searches to the measurement of the Higgs to second generation quark couplings
- Lots of ongoing further developments being done to further extend the performance and applicability of these taggers to a wider range of signatures
- Expect to see GN2X used in some of the early Run 3 results for those analyses!

# **Thanks for Listening!**