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Boosted Jets
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» Standard b-tagging algorithms use R=0.4 anti-k; jets but as decay products become more collimated at high
oT, objects can be reconstructed within a R=1.0 jet

» Rule of thumb for two body decay, R =~ 2m/pr— Higgs boson decay products are boosted above 250 GeV
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Higgs Tagging
« H — bbis the largest branching ratio for the decay of a SM Higgs, boosted bb-tagging important for
precision measurements of the Higgs pr spectra or for searches involving high mass resonances

* The boosted regime has also been shown to be very sensitive for H — cc (which still hasn't been
observed!)
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Previous Approach

* The previous standard b-tagging algorithm used in Run 2 was the L

(
DL1r tagger — based upon a recurrent neural network
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» The previous Xbb tagger consisted of a neural network trained on
the DL1r outputs of up to three variable radius sub-jets within the
large-R jet along with the jet kinematics
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https://cds.cern.ch/record/2724739/files/ATL-PHYS-PUB-2020-019.pdf

Current Approach — GN2X

» The previous approach b-tags the sub-jets independently and can only learn correlations between their
D-tagging scores — GN2X uses all tracks within the jet

o GN2Xis a transformer based model that not only can be used for the identification of boosted Higgs
decays but also predicts the origin of the tracks and perform vertex finding

« An important consideration for Higgs tagging is trying to avoid sculpting the background distributions to
look like the signal — a Higgs sample with a large decay width is used to give a flatter mass distribution
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https://cds.cern.ch/record/2866601/files/ATL-PHYS-PUB-2023-021.pdf
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Inputs and Samples

Inputs include the jet pT, N and mass along with track

level features — heterogeneous versions of model uses
information from particle flow objects and/or kinematics

of subjets

A resampling in the jet kinematics is performed to
reduce the effects of any kinematic sculpting

Trained on O(100 m) jets, model with a few million
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Jet Input Description

PT Large-R jet transverse momentum

n Signed large-R jet pseudorapidity

mass Large-R jet mass

Track Input  Description

q/p Track charge divided by momentum (measure of curvature)
dn Pseudorapidity of track relative to the large-R jet n

do Azimuthal angle of the track, relative to the large-R jet ¢

do Closest distance from track to primary vertex (PV) in the transverse plane
Zosin@ Closest distance from track to PV in the longitudinal plane
a(q/p) Uncertainty on g/p

a(6) Uncertainty on track polar angle 6

a(¢) Uncertainty on track azimuthal angle ¢

s(do) Lifetime signed transverse IP significance

5(zo sin ) Lifetime signed longitudinal IP significance

nPixHits Number of pixel hits

nSCTHits Number of SCT hits

nIBLHits Number of IBL hits

nBLHits Number of B-layer hits

nIBLShared =~ Number of shared IBL hits

nIBLSplit Number of split IBL hits

nPixShared Number of shared pixel hits

nPixSplit Number of split pixel hits

nSCTShared  Number of shared SCT hits

subjetIndex Integer label of which subjet track is associated to (GN2X + Subjets only)
Subjet Input  Description (Used only in GN2X + Subjets)

PT Subjet transverse momentum

n Subjet signed pseudorapidity

mass Subjet mass

energy Subjet energy

dn Pseudorapidity of subjet relative to the large-R jet n

do Azimuthal angle of subjet relative to the large-R jet ¢

GN2 py, b-jet probability of subjet tagged using GN2

GN2 p, c-jet probability of subjet tagged using GN2

GN2 p, light flavour jet probability of subjet tagged using GN2

Flow Input Description (Used only in GN2X + Flow)

PT Transverse momentum of flow constituent

energy Energy of flow constituent

dn Pseudorapidity of flow constituent relative to the large-R jet n
d¢ Azimuthal angle of flow constituent relative to the large-R jet ¢




Transformer Models

Transformers are a model architecture that arose from the field of Natural
Language Processing (NLP) — architecture used by LLMs like ChatGPT

The key to the transformer architecture is the Attention Mechanism —
calculates the pairwise “relevance” between all input objects

Each object is then updated by an attention weighted sum of all other
objects

Attention mechanism is a useful inductive bias for this task, tracks
originating from a common vertex, or have parent-daughter relationship
should have high attention weights, fake tracks and pileup tracks should
nave lower weights with real PV tracks
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GN2X Outputs
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H—bb Performance

GN2X significantly improvements in top and QCD
rejection over the previous Xbb tagger, more than
doubling QCD rejection for all signal efficiencies

Performance compared to tagging two subjets
with GN2 independently to shows how much
training on all constituents in the jet inclusively
orings over a subjet-based approach
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H—bb Performance
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Mass Sculpting

Jet mass distributions of the QCD background are

compared pre- and post-tagging to evaluate the
amount of mass sculpting present

No localised peak at 125 GeV but there is still some

residual mass sculpting — mostly a product of
changing flavour fractions pre- and post-tag
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H—cc Performance
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Auxiliary Tasks

GN1 successfully GN1 verte).( a.nd
predicts jet flavour . origin prediction
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Auxiliary Tasks

GN1 correctly

Primary vertex Two tracks predicts the

from the B primary vertex

, : - decay
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Signal Calibration

MC performance is nice but at the end of the day

data is what matters

Tagger is ~mass agnostic, therefore we assume that
we can use a Z—Dbb standard candle as our signal

oroxy in the calibration

Alternate calibration approach using g—bb has also

been explored as well
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*As much as I'm allowed to say that is ;)

Where to Next?*
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Heterogenous Inputs

or how ATLAS finally learned pflow is pretty cool for flavour tagging

Transformers seem here to stay for a while so after
doing the easy step of switching to them, how do we
further improve as architecture improvements become
more minor?

Two types of approach: put more into our models or
try getting more out

An example of the first is the inclusion of neutral PElow
constituents

Neutral constituent information leads to a further ~50%
improvement in QCD rejection
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https://arxiv.org/abs/2009.04986
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https://cds.cern.ch/record/2905688/files/ATL-PHYS-PUB-2024-015.pdf

Jet Regression - Resolutlon
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* In addition to reducing the bias in the jet response, the dedicated b-jet regression leads to much
sharper resolutions

. L 19
» Performance tested across a range of physics processes with improvements observed everywhere



Summary

* |nrecent years there's been a lot of effort to harmonise our efforts in single and double b-
tagging — we now use the same model architectures and frameworks to train them

« There is alot of interesting physics that can be done with these models from diHiggs searches
to the measurement of the Higgs to second generation quark couplings

« Lots of ongoing further developments being done to further extend the performance and
applicability of these taggers to a wider range of signatures

« Expect to see GN2X used in some of the early Run 3 results for those analyses!

Thanks for Listening!
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