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Energy correlators

Fundamental object in field theory: energy flow

operator

ϵ(n⃗) = lim
r→∞

r2
∫∞
0 dt niT0i (t, r n⃗)

→ ”Flow of energy through idealized calorimeter

cell located at infinity”

Jet substructure: study the correlation

functions of energy flow operators
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Energy correlators

Energy-Energy Correlator: One of the very first event shapes and a QCD correlation

observable:

Multiple entries per event!

Well explored field

[Basham, Brown, Ellis, Love, PRL

41, 1585 (1978)], [Schindler,

Stewart, Sun, arXiv:2305.19311],

[Lee, Pathak, Stewart, Sun,

arXiv:2405.19396], ...

Fundamental test of QCD!
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Relevance at the LHC

[Thanks to Aditya Pathak]

Back-to-back limit at large χ for boson at rest

→ Peak after boost

Observable sensitive to particle boost
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Energy correlators for mt
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Energy correlators for mt

Why use it for mt?

Top quark measurements at hadron colliders are complicated!

Hadronic initial states, pileup, underlying event, soft QCD, parton shower,

hadronization

Correlators can provide theoretically clean predictions!
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Challenges in top quark mass measurements
[CMS, arXiv:2403.01313]
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[arXiv:2402.08713]

stat. total

Multiple strategies to measure the top

quark mass:

Direct measurements: very precise but

ambiguities in mMC
t

Extractions from cross sections: Less

precise, often depend on definition of a

stable top quark particle, tt threshold

sensitive to non-trivial corrections

Boosted measurements: defined at level

of stable particles, high sensitivity to mt ,

but theory and experimental phase space

not compatible yet

Dennis Schwarz 7

https://arxiv.org/abs/2403.01313


Energy correlators in the top decay

Triplet energy correlator captures opening

angle of top decay

→ Sensitivity to boost (pT) and mass mt

1. Find all triplets of particles

2. For each triplet: entry at ζ =
∑

∆R2
ij

3 with

weight w =
(pT,1pT,2pT,3)

n

pnT,jet

(n: exponent of choice)

Equilateral triangle configuration suppresses

collinear contributions
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Example in ee collisions
[Holguin, Moult, Pathak, Procura, Phys. Rev. D 107, 114002]

Example in ee → tt

Here, replace pT,jet with Q =
√
s

Peak at ζ ∼ 3
(
mt
Q

)2

Non-perturbative effects in the peak very

small

Sensitivity to mt
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https://doi.org/10.1103/PhysRevD.107.114002


Energy correlator in pp collisions
[Holguin, Moult, Pathak, Procura, Phys. Rev. D 107, 114002]

In pp use top decays

reconstructed in a single jet

Energy scale is now jet pT

Robust against MPI

Measurement can be performed

using tracks only!

But peak position still depends on

jet pT, which results in large

uncertainties due to jet calibration
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https://doi.org/10.1103/PhysRevD.107.114002


The W as a standard candle
[Holguin, Moult, Pathak, Procura, Schöfbeck, Schwarz, arXiv:2311.02157]

If we allow the shortest side

of the triangle to be small, a

W peak emerges

Similar pT dependence in W

and top peaks → cancellation
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https://arxiv.org/abs/2311.02157


Ratio of top and W
[Holguin, Moult, Pathak, Procura, Schöfbeck, Schwarz, arXiv:2311.02157]

For now, measure ratio of peak positions (with calculations available, the

measurement would be performed using the full distributions)

Jet pT dependence eliminated in top to W ratio

Non-perturbative effects very small

Precise value of the ratio can be calculated. Here it differs between Pythia and

Herwig because of different showers
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https://arxiv.org/abs/2311.02157


Statistical feasibility
[Holguin, Moult, Pathak, Procura, Schöfbeck, Schwarz, arXiv:2311.02157]

Measurement experimentally feasible at HL-LHC!

Statistical uncertainty < 1 GeV already with Run 3
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https://arxiv.org/abs/2311.02157


Systematic uncertainties - Jet energy scale
[Holguin, Moult, Pathak, Procura, Schöfbeck, Schwarz, arXiv:2407.12900]

Variations of jet pT (oriented at CMS jet energy uncertainty) and constituent pT

lead to shifts well below 200 MeV
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https://arxiv.org/abs/2407.12900


Systematic uncertainties - Track efficiency
[Holguin, Moult, Pathak, Procura, Schöfbeck, Schwarz, arXiv:2407.12900]

Vary tracking efficiency (constant 3% or pT-dependent)

Second model where we only vary the light/heavy tracking efficiency

Estimates have larger uncertainties, still small effect
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https://arxiv.org/abs/2407.12900


Systematic uncertainties - Modelling
[Holguin, Moult, Pathak, Procura, Schöfbeck, Schwarz, arXiv:2407.12900]

Also studied modelling parameters that enter via (simulation-based) unfolding

Variations of UE tune, color reconnection, b fragmentation

All smaller than 200 MeV
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https://arxiv.org/abs/2407.12900


Stability against jet radius
[Holguin, Moult, Pathak, Procura, Schöfbeck, Schwarz, arXiv:2407.12900]

Stable for suitable jet R

If boost too small for chosen R: edge effects
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https://arxiv.org/abs/2407.12900


Energy correlator for mt

In summary:

Novel idea to extract mt using correlators

Sensitivity to mt ✓

Robust against uncertainties ✓

Theoretical control ✓
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Energy correlators in diboson
[Ricci, Riembau, Phys. Rev. D 106, 114010]

Dennis Schwarz 19

https://doi.org/10.1103/PhysRevD.106.114010


Energy correlators in diboson
[Ricci, Riembau, Phys. Rev. D 106, 114010]

One-point correlator in boosted

W/Z→qq

Distance to jet axis as measure

Smaller distances in configurations

where quarks are emitted in/against

boson direction

→ Sensitivity to polarization!
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https://doi.org/10.1103/PhysRevD.106.114010


Energy correlators in diboson
[Ricci, Riembau, Phys. Rev. D 106, 114010]

Now look at two-point correlator

Two-point correlator peaks at similar

position because quark-quark distance

is not changed

But: Interference effects visible in both

E1C and E2C with respect to angle ϕ

(azimuthal angle relative to scattering

plane)

Sensitive to EFT!
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Energy correlators for αS
[CMS, PRL 133 (2024) 071903]
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https://doi.org/10.1103/PhysRevLett.133.071903


Energy correlators for αS
[CMS, PRL 133 (2024) 071903]

Measurement of αS inside jets

Sensitivity from ratio of two-point to three-point correlators

Most precise αS measurement using jet substructure
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https://doi.org/10.1103/PhysRevLett.133.071903


Summary

Energy correlators provide clean predictions from theory

Various configurations for different physics questions

Proposal for precision measurement of mt

Applications also in boosted bosons

Related idea: Learn EFT effects from PF candidates inside jets

[Chatterjee, Cruz, Schöfbeck, Schwarz, Phys. Rev. D 109, 076012]

Most precise αS measurement already published

Promising field at the LHC!
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