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● Physical spectrum: Observable particles
● Peaks in (experimental) cross-sections

● Higgs, W, Z,... fields depend on the gauge
● Cannot be observable

● Gauge-invariant states are composite
● Higgs-Higgs, W-W, Higgs-Higgs-W etc.

● Why does perturbation theory work?
● Fröhlich-Morchio-Strocchi mechanism

Review: 1712.04721
Update: 2305.01960
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     0+ singlet:
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● Flavor has two components
● Global SU(3) generation 
● Local SU(2) weak gauge (up/down distinction)

● Same argument: Weak gauge not observable
● Replaced by bound state – FMS applicable

● Gauge-invariant state, but custodial doublet
● Yukawa terms break custodial symmetry

● Different masses for doublet members
● Can this be true? Lattice test

[Fröhlich et al.'80,
 Egger, Maas, Sondenheimer'17]
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Flavor on the lattice
● Only mock-up standard model

● Compressed mass scales
● One generation
● Degenerate leptons and 

neutrinos
● Dirac fermions: left/right-

handed non-degenerate
● Quenched

● Same qualitative outcome

● FMS construction
● Mass defect
● Flavor and custodial 

symmetry patterns
● Supports FMS prediction

[Afferrante,Maas,Sondenheimer,Törek’20]
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● Bound states have an extension
● Can it be measured?
● Example: Vector
● Measure the form factor

● Comparison proton: mr~5 – Here: Lattice 
● Experimentally possible?
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● Physical mr~2 while gauge-dependent W has mr~0.5i

Physical form factor

At high energies:
Probes substructure
Behaves like WWW

At low energies:
Dominated by bound state
with finite size
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Bound states as extended objects
[Maas,Raubitzke,Törek’18]

● Physical mr~2 while gauge-dependent W has mr~0.5i

WWW form factor: Almost tree-level

Anomalous triple
gauge coupling would
be very distinct 
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v iΓijk
ffh
(P ,P−q ,q)

Reweights
standard
diagrams

Both raise (in the standard model) the number of loops by 1
But neither are Yukawa suppressed

∫dk Γiijk (P−k , k , P−q ,q)
New
diagrams

Calculable itself in augmented perturbation theory

Binding-to-constituent transition

[Maas, Plätzer et al. unpublished]
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 Maas et al.’22]

Resumming real emission

∼ln2
s

mW
2

at 1 TeV of the same 
order as strong 
corrections

Standard perturbation theory

Augmented by correct
asymptotic state

Virtual and real
emissions compensate
(BN/KLN theorems)
- substantial change:
Cancel this effect
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