Simulation tools for polarized bosons #COMETA Polarization Party – Vienna, AT

Richard Ruiz

Institute of Nuclear Physics - Polish Academy of Science (IFJ PAN)

21 February 2025

= 990

thank you for the invitation!

brief motivation

(meeting is short but intense)

R. Ruiz (IFJ PAN

#COMETA ML Polar. Workshop ('25) – Vienna, AT 3 / 46

Broad motivation for

exploring high-energy scattering of helicity-polarized states (req. lots of data!)

VBSCan review (Rev.Phys.'22) [2106.01393]

Wishlist for MC tools – loop-induced in QCD and/or EW

- full NLO in $\ensuremath{\mathsf{QCD}}$ and/or $\ensuremath{\mathsf{EW}}$
- off-shell/finite-width

- interference (int.) between resonant and non-res. diagrams

 int. between polarization configurations

– s- and t-channel configurations

= 900

many state-of-the-art tools can do many things...

many state-of-the-art tools can do many things... but not everything, not yet

this talk: a 15ish min summary by a theorist (me!) to many ex'ers on what (some) MC tools can do today re: polarization

> < = > = = < < < <

scope: COMETA Monte Carlo Olympics

not the offical name. just sounds nice!

R. Ruiz (IFJ PAN

#COMETA ML Polar. Workshop ('25) – Vienna, AT 7 / 46

COMETA-2025-XYZ

Precise Standard-Model predictions for polarised Z-boson pair production and decay at the LHC

Costanza Carrivale^(a), Roberto Covarelli^(a), Ansgar Denner^(a), Christoph Haitz^(a), Mareen Hoppe^(a), Martina Javurkova^(a), Duc Ninh Le^(a), Jakob Linder^(a), Rafael Coelho Lopes de Sa^(a), Olivier Mattelaer^(a), Susmita Mondal^(a), <u>Giovanni Pelliccioli^(d)</u>, Rene Poncelet^(a), Richard Ruiz^(a), Marek Schönherr^(a), Frank Siegert^(a), Lailm Xu^(a), Giulia Zanderighi^(a)

COMETA-2025-XYZ

Precise Standard-Model predictions for polarised Z-boson pair production and decay at the NHCARY

Costanza Carrivale^(a), Roberto Covarelli^(a), Ansgar Denner^(a), Christoph Haitz^(a), Mareen Hoppe^(a), Martina Javurkova^(a), Duc Ninh Le^(a), Jakob Linder^(a), Rafael Coelho Lopes de Sa^(a), Olivier Mattelaer^(a), Susmita Mondal^(a), <u>Giovanni Pelliccioli^(d)</u>, Rene Poncelet^(a), Richard Ruiz^(a), Marek Schönherr^(a), Frank Siegert^(a), Lailin Xu^(a), Giulia Zanderighi^(a)

< ロ > < 同 > < 回 > < 回 > < 回 >

EL SQA

simple idea: are predictions among tools (a) consistent and/or (b) correct?

◆□ × E × E × E = 9 < 0</p>

compare predictions for $pp \rightarrow Z_{\lambda}Z_{\lambda} \rightarrow e^+e^-\mu^+\mu^-$ at various orders

code	OS appr.	full	unpol.	LL	LT	TL	TT				
Tree level $q\bar{q} \rightarrow ZZ \rightarrow 4\ell$											
MoCaNLO	DPA	11.336(1)	11.242(1)	0.6574(1)	1.3332(2)	1.3370(2)	7.7874(8)				
STRIPPER	DPA	11.3357(4)	11.2451(2)	0.6560(0)	1.3326(0)	1.3365(0)	7.7925(1)				
MulBos	DPA	11.3563(7)	11.2393(3)	0.6572(0)	1.3329(1)	1.3366(1)	7.7846(2)				
BBMC	DPA	11.3372(4)	11.2424(3)	0.6574(0)	1.3333(1)	1.3372(1)	7.7872(2)				
PowHeg-Box	DPA	11.335(1)	11.245(1)	0.6575(1)	1.3333(1)	1.3374(1)	7.7885(8)				
Sherpa	NWA	11.363(6)	11.513(4)	0.6767(4)	1.3538(6)	1.3734(6)	7.952(3)				
MG5AMC	BW	11.38(2)	11.29(2)	0.660(1)	1.335(2)	1.338(2)	7.81(1)				
Loop induced $gg \rightarrow ZZ \rightarrow 4\ell$											
MoCaNLO	DPA	1.6968(6)	1.6978(6)	0.0914(0)	0.0360(0)	0.0356(0)	1.5360(5)				
STRIPPER	DPA	1.682(7)	1.700(2)	0.0912(1)	0.0360(0)	0.0357(0)	1.538(2)				
MulBos	DPA	_	1.6981(9)	0.0913(1)	0.0360(0)	0.0357(0)	1.5363(8)				
MG5AMC+VPOLAR	BW	1.699(6)	1.697(6)	0.0902(3)	0.0355(1)	0.0359(1)	1.539(6)				

R. Ruiz (IFJ PAN)

good agreement

R. Ruiz (IFJ PAN)

#COMETA ML Polar. Workshop ('25) – Vienna, AT 12 / 46

Polarization in MC tools

apologies: many authors/contributors and papers not listed for brevity

- MoCANLO (Denner, Pelliccioli, et al) diboson + VBS @ NLO QCD+EW
- BBMC (Biedermann, Billoni, Denner, et al) diboson @ NLO QCD+EW
- POWHEG-BOX (Pelliccioli, Zanderighi, et al) diboson @ NLO QCD+EW
- MULBOS (Le, Dao, et al) diboson @ NLO QCD+EW
- STRIPPER (Poncelet, Popescu, et al) single, diboson @ NNLO QCD
- SHERPA (Hoppe, Siegert, et al) arbitrary res. processes @ NLO-partial QCD
- MG5AMC (w/ Mattelaer, et al) arbitrary res. processes (incl. BSM) @ LO +VPOLAR (w/ Javurkova, et al) - + non-res. (incl. BSM) @ 1-loop QCD

different approaches to treating intermediate weak boson

(let us be honest, this is what I want to talk about)

R. Ruiz (IFJ PAN

#COMETA ML Polar. Workshop ('25) – Vienna, AT 14 / 46

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

common bit #1: helicity-polarized propagator

Popular (and successful) paradigm: decompose numerator of propagator via completeness relationship

care is need at this step!

$$-g_{\mu
u} + q_{\mu}q_{
u}/M_V^2 = \sum_{\lambda=\pm,0,5} \eta_{\lambda} \varepsilon_{\mu}(q,\lambda) \varepsilon_{
u}^*(q,\lambda),$$

note: $\eta_{+} = \eta_{-} = \eta_{0} = -\eta_{5} = +1$

◆□▶ ◆□▶ ◆ □▶ ★ □▶ 三日 の ○ ○

R. Ruiz (IFJ PAN)

#COMETA ML Polar. Workshop ('25) – Vienna, AT 16 / 46

Popular (and successful) paradigm: decompose numerator of propagator via completeness relationship care is ne

care is need at this step!

$$-g_{\mu\nu} + q_{\mu}q_{\nu}/M_V^2 = \sum_{\lambda=\pm,0,S} \eta_{\lambda} \varepsilon_{\mu}(q,\lambda)\varepsilon_{\nu}^*(q,\lambda),$$

note: $\eta_+ = \eta_- = \eta_0 = -\eta_S = +1$

vector boson propagator becomes sum over truncated propagators

similar result for massive fermions

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

$$\Pi_{\mu\nu}^{V}(q) = \frac{-i\left(g_{\mu\nu} - q_{\mu}q_{\nu}/M_{V}^{2}\right)}{q^{2} - M_{V}^{2} + iM_{V}\Gamma_{V}}$$
$$= \sum_{\lambda \in \{0, \pm 1, S\}} \underbrace{\eta_{\lambda}}_{\pm 1} \underbrace{\left(\frac{i\varepsilon_{\mu}(q, \lambda) \varepsilon_{\nu}^{*}(q, \lambda)}{q^{2} - M_{V}^{2} + iM_{V}\Gamma_{V}}\right)}_{\equiv \Pi_{\mu\nu}^{V\lambda} \text{ truncated prop.}}$$

Popular (and successful) paradigm: decompose numerator of propagator via completeness relationship care is ne

care is need at this step!

$$-g_{\mu
u} + q_{\mu}q_{
u}/M_V^2 = \sum_{\lambda=\pm,0,S} \eta_{\lambda} \ arepsilon_{\mu}(q,\lambda)arepsilon_{
u}^*(q,\lambda),$$

note: $\eta_+ = \eta_- = \eta_0 = -\eta_S = +1$

vector boson propagator becomes sum over truncated propagators

similar result for massive fermions

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

$$\Pi_{\mu\nu}^{V}(q) = \frac{-i\left(g_{\mu\nu} - q_{\mu}q_{\nu}/M_{V}^{2}\right)}{q^{2} - M_{V}^{2} + iM_{V}\Gamma_{V}}$$
$$= \sum_{\lambda \in \{0, \pm 1, S\}} \underbrace{\eta_{\lambda}}_{\pm 1} \underbrace{\left(\frac{i\varepsilon_{\mu}(q, \lambda) \varepsilon_{\nu}^{*}(q, \lambda)}{q^{2} - M_{V}^{2} + iM_{V}\Gamma_{V}}\right)}_{\equiv \Pi_{\mu\nu}^{V\lambda} \text{ truncated prop.}}$$

note: what happens after this decomposition differs between groups!

R. Ruiz (IFJ PAN

Unpolarized matrix elements (MEs) become sum over polarized MEs

#COMETA ML Polar. Workshop ('25) – Vienna, AT 17 / 46

◆□▶ ◆□▶ ◆目▶ ◆目▶ ◆□▶ ◆□

Unpolarized matrix elements (MEs) become sum over polarized MEs

R. Ruiz (IFJ PAN)

#COMETA ML Polar. Workshop ('25) – Vienna, AT 18 / 46

Unpolarized matrix elements (MEs) become sum over polarized MEs

Polarized cross sections are then built from polarized MEs

$$d\sigma_{\lambda} = rac{1}{ ext{flux}} rac{1}{ ext{spin/color avg.}} \sum_{ ext{dof.}} \int dPS \ |\mathcal{M}_{\lambda}|^2$$

R. Ruiz (IFJ PAN)

#COMETA ML Polar. Workshop ('25) – Vienna, AT 18 / 46

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

common bit #2: diagram selection

In practice non-(doubly)resonant diagrams (top row) are neglected

- polarization in MC tools is typically hard-coded at level of $|\mathcal{M}|^2$

exception is MG5aMC+VPolar w/ Javurkova, et al (PLB'24) [2401.17365]

– impact of gauge dependence, interference suppressed through strict kinematical/analysis requirements, e.g., $|m_{\ell\ell}-M_Z|<10~\text{GeV}$

difference #1: narrow width approximation

NWA and spin-correlated NWA (1/2)

Narrow Width Approximation (NWA):

at
$$|\mathcal{M}|^2$$
 level: $\frac{1}{(q^2 - M_V^2)^2 + (M_V \Gamma_V)^2} \rightarrow \frac{\pi}{M_V \Gamma_V} \delta(q^2 - M_V^2)$
 $\sigma(A \rightarrow B \rightarrow C) \approx \sigma(A \rightarrow B) \times \text{BR}(B \rightarrow C)$

Procedure:

- 1. Generate $n A \rightarrow B$ events
- 2. Generate $n B \rightarrow C$ events
- 3. For each event $k \in \{n\}$, boost C event to A's frame, concatenate

NWA and spin-correlated NWA (2/2)

Procedure:

- 1. Generate $A \rightarrow B$ [MadSpin]
- 2. Generate $A \rightarrow B \rightarrow C$ with $A \rightarrow B$ momenta
- 3. Reweight [both]

COMETA Olympics:

- $\operatorname{SHERPA:}$ spin-correlated NWA
- MGAMC : no NWA, only diagram selection for $A \rightarrow B \rightarrow C$

▲□▶ ▲□▶ ▲□▶ ▲□▶ 三回目 のへで

Double Pole Approximation

DPA aka On-Shell Projection (OSP):

Denner, Dittmaier, et al (NPB'00, NPB'05)

0. diagram selection [implicit because cannot be done without it]

1. usual **Breit-Wigner pole** with $q^2 \neq M_V^2$ dictated by dPS integration $|\mathcal{M}|^2 \propto \frac{1}{(q^2 - M_V^2)^2 + (M_V \Gamma_V)^2}$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Double Pole Approximation

DPA aka On-Shell Projection (OSP):

Denner, Dittmaier, et al (NPB'00, NPB'05)

0. diagram selection [implicit because cannot be done without it]

- 1. usual **Breit-Wigner pole** with $q^2 \neq M_V^2$ dictated by dPS integration $|\mathcal{M}|^2 \propto \frac{1}{(q^2 - M_V^2)^2 + (M_V \Gamma_V)^2}$
- 2. usual "helicity-truncated" tensor structure

$$-i\left(g_{\mu
u}-q_{\mu}q_{
u}/M_{V}^{2}
ight) \quad
ightarrow \quad iarepsilon_{\mu}(q,\lambda) \; arepsilon_{
u}^{*}(q,\lambda)$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ④□ ��

Double Pole Approximation

DPA aka On-Shell Projection (OSP):

Denner, Dittmaier, et al (NPB'00, NPB'05)

0. diagram selection [implicit because cannot be done without it]

- 1. usual **Breit-Wigner pole** with $q^2 \neq M_V^2$ dictated by dPS integration $|\mathcal{M}|^2 \propto \frac{1}{(q^2 - M_V^2)^2 + (M_V \Gamma_V)^2}$
- 2. usual "helicity-truncated" tensor structure

$$-i\left(g_{\mu
u}-q_{\mu}q_{
u}/M_{V}^{2}
ight) \ o \ iarepsilon_{\mu}(q,\lambda) \ arepsilon_{
u}^{*}(q,\lambda)$$

3. important! momentum mapping / shuffling

reduced gauge dependency vs energy conservation

$$q+q'= ilde{q}+ ilde{q}'$$
 where $ilde{q}^2, ilde{q}'^2=M_Z^2$

compare predictions for $pp \rightarrow Z_{\lambda}Z_{\lambda} \rightarrow e^+e^-\mu^+\mu^-$ at various orders

code	OS appr.	full	unpol.	LL	LT	TL	TT				
Tree level $q\bar{q} \rightarrow ZZ \rightarrow 4\ell$											
MoCaNLO	DPA	11.336(1)	11.242(1)	0.6574(1)	1.3332(2)	1.3370(2)	7.7874(8)				
STRIPPER	DPA	11.3357(4)	11.2451(2)	0.6560(0)	1.3326(0)	1.3365(0)	7.7925(1)				
MulBos	DPA	11.3563(7)	11.2393(3)	0.6572(0)	1.3329(1)	1.3366(1)	7.7846(2)				
BBMC	DPA	11.3372(4)	11.2424(3)	0.6574(0)	1.3333(1)	1.3372(1)	7.7872(2)				
PowHeg-Box	DPA	11.335(1)	11.245(1)	0.6575(1)	1.3333(1)	1.3374(1)	7.7885(8)				
Sherpa	NWA	11.363(6)	11.513(4)	0.6767(4)	1.3538(6)	1.3734(6)	7.952(3)				
MG5AMC	BW	11.38(2)	11.29(2)	0.660(1)	1.335(2)	1.338(2)	7.81(1)				
Loop induced $gg \rightarrow ZZ \rightarrow 4\ell$											
MoCaNLO	DPA	1.6968(6)	1.6978(6)	0.0914(0)	0.0360(0)	0.0356(0)	1.5360(5)				
STRIPPER	DPA	1.682(7)	1.700(2)	0.0912(1)	0.0360(0)	0.0357(0)	1.538(2)				
MulBos	DPA	-	1.6981(9)	0.0913(1)	0.0360(0)	0.0357(0)	1.5363(8)				
MG5AMC+VPolar	BW	1.699(6)	1.697(6)	0.0902(3)	0.0355(1)	0.0359(1)	1.539(6)				

R. Ruiz (IFJ PAN)

#COMETA ML Polar. Workshop ('25) – Vienna, AT 25 / 46

TT shows impact of momentum mapping in leptons

- TL show impacts of momentum mapping in ZZ and leptons

R. Ruiz (IFJ PAN

#COMETA ML Polar. Workshop ('25) – Vienna, AT 26 / 46

ъ.

COMETA-2025-XYZ

Precise Standard-Model predictions for polarised Z-boson pair production and decay at the NHCARY

Costanza Carrivale^(a), Roberto Covarelli^(a), Ansgar Denner^(a), Christoph Haitz^(a), Mareen Hoppe^(a), Martina Javurkova^(a), Duc Ninh Le^(a), Jakob Linder^(a), Rafael Coelho Lopes de Sa^(a), Olivier Mattelaer^(a), Susmita Mondal^(a), <u>Giovanni Pelliccioli^(d)</u>, Rene Poncelet^(a), Richard Ruiz^(a), Marek Schönherr^(a), Frank Siegert^(a), Lailin Xu^(a), Giulia Zanderighi^(a)

#COMETA ML Polar. Workshop ('25) – Vienna, AT 27 / 46

what is on the horizon?

R. Ruiz (IFJ PAN)

#COMETA ML Polar. Workshop ('25) – Vienna, AT 28 / 46

polarization vectors are special in gauge theories

#COMETA ML Polar. Workshop ('25) – Vienna, AT 29 / 46

decomposing propagators

For generic momenta $q = (E, \vec{q})$ with $q^2 \neq M_V$ in R_{ξ} gauge:

transverse polarizations:

$$\sum_{\lambda=\pm 1} \varepsilon_{\mu}(q,\lambda)\varepsilon_{\nu}^{*}(q,\lambda) = -g_{\mu\nu} - \underbrace{\Theta_{\mu\nu}(\theta_{V},\phi_{V})}_{\text{cos and sin}}$$

longitudinal polarization:

$$arepsilon_{\mu}(q,\lambda=0)arepsilon_{
u}(q,\lambda=0) \;=\; rac{q_{\mu}q_{
u}}{q^2} \;+\; \Theta_{\mu
u}$$

scalar/auxiliary polarization (unitary gauge when $\xi \to \infty$):

$$arepsilon_\mu(q,\lambda=\mathcal{S})arepsilon_
u(q,\lambda=\mathcal{S}) \;=\; q_\mu q_
u \; \left(rac{1}{q^2}+rac{(\xi-1)}{q^2-\xi M_V^2}
ight)$$

sum recovers propagator but polarized xsec feature miscancellations:

 \mathcal{M} -level miscancellations $\sim \mathcal{O}(\Theta)$ and $\mathcal{O}(q^2 - M_V^2)$

how large are these miscancellations?

work in progress

R. Ruiz (IFJ PAN)

#COMETA ML Polar. Workshop ('25) – Vienna, AT 31 / 46

how large are these miscancellations is the interference? ©

work in progress

R. Ruiz (IFJ PAN

#COMETA ML Polar. Workshop ('25) – Vienna, AT 32 / 46

the road map

R. Ruiz (IFJ PAN)

#COMETA ML Polar. Workshop ('25) – Vienna, AT 33 / 46

$$\mathcal{M} = \mathcal{M}_{f}^{\mu} \left(\sum_{\lambda \in \{\pm 1, 0, A\}} \eta_{\lambda} \times \Pi_{\mu\nu}^{V\lambda} \right) \mathcal{M}_{i}^{\nu}$$
$$= \sum_{\lambda \in \{\pm 1, 0, A\}} \eta_{\lambda} \times \underbrace{\mathcal{M}_{f}^{\mu} \cdot \Pi_{\mu\nu}^{V\lambda} \cdot \mathcal{M}_{i}^{\nu}}_{=\mathcal{M}_{\lambda} \text{ polarized ME}}$$

R. Ruiz (IFJ PAN)

#COMETA ML Polar. Workshop ('25) – Vienna, AT 34 / 46

$$\mathcal{M} = \mathcal{M}_{f}^{\mu} \left(\sum_{\lambda \in \{\pm 1, 0, A\}} \eta_{\lambda} \times \Pi_{\mu\nu}^{\vee \lambda} \right) \mathcal{M}_{i}^{\nu}$$
$$= \sum_{\lambda \in \{\pm 1, 0, A\}} \eta_{\lambda} \times \underbrace{\mathcal{M}_{f}^{\mu} \cdot \Pi_{\mu\nu}^{\vee \lambda} \cdot \mathcal{M}_{i}^{\nu}}_{=\mathcal{M}_{\lambda} \text{ polarized ME}}$$

 $-i\mathcal{M}_{\lambda} = \mathcal{M}_{f}^{\mu} \cdot \Pi_{\mu\nu}^{V\lambda}(q) \cdot \mathcal{M}_{i}^{\nu}$

Question: what do these two lines mean?

<□> <同> <同> < 回> < 回> < 回> < 回> < 回> < 回< の< ○

Question: what do these two lines mean? top: full matrix element is sum over helicity polarizations

#COMETA ML Polar. Workshop ('25) – Vienna, AT 34 / 46

Question: what do these two lines mean? top: full matrix element is sum over helicity polarizations btm: full matrix element is sum over subamplitudes

シック 正則 スポッスポッス モッ

treat \mathcal{M}_{λ} as a full subamplitude, not "just" as a component of a subamplitude

R. Ruiz (IFJ PAN

#COMETA ML Polar. Workshop ('25) – Vienna, AT 35 / 46

treat M_{λ} as a full subamplitude, not "just" as a component of a subamplitude, i.e., put on same footing as any other interferring diagram

R. Ruiz (IFJ PAN)

#COMETA ML Polar. Workshop ('25) - Vienna, AT 35 / 46

(B)

SIN NOR

treat M_{λ} as a full subamplitude, not "just" as a component of a subamplitude, i.e., put on same footing as any other interferring diagram

 \implies promoting truncated propagator to a Feynman rule

w/ Javurkova, et al (PLB'24) [2401.17365]

$$\frac{-i \varepsilon_{\mu}(q,\lambda) \varepsilon_{\nu}^{*}(q,\lambda)}{q^{2} - M_{V}^{2}} = \bigvee_{V_{\lambda}(q)}$$

an example

R. Ruiz (IFJ PAN)

#COMETA ML Polar. Workshop ('25) – Vienna, AT 36 / 46

三日 のへで

< ∃ >

Example: consider full 2 \rightarrow 4 process $gg \rightarrow e^+e^-\mu^+\mu^-$ at $\mathcal{O}(\alpha_s^2\alpha^4)$

R. Ruiz (IFJ PAN

#COMETA ML Polar. Workshop ('25) – Vienna, AT 37 / 46

Example: consider full $2 \rightarrow 4$ process $gg \rightarrow e^+e^-\mu^+\mu^-$ at $\mathcal{O}(\alpha_s^2\alpha^4)$ - replace every instance of Z by Z_0 , Z_T , Z_A 16 diag $\rightarrow 3^2 \times 16$ diag = 144 diag

Example: consider full 2 \rightarrow 4 process $gg \rightarrow e^+e^-\mu^+\mu^-$ at $\mathcal{O}(\alpha_s^2\alpha^4)$

- replace every instance of Z by Z_0 , Z_T , Z_A 16 diag $\rightarrow 3^2 \times 16$ diag = 144 diag

- full **ME** given by sum of **all** diagrams (subamplitudes)

Example: consider full $2 \rightarrow 4$ process $gg \rightarrow e^+e^-\mu^+\mu^-$ at $\mathcal{O}(\alpha_s^2\alpha^4)$ - replace every instance of Z by Z_0 , Z_T , Z_A 16 diag $\rightarrow 3^2 \times 16$ diag = 144 diag - full ME given by sum of **all** diagrams (subamplitudes)

R. Ruiz (IFJ PAN

#COMETA ML Polar. Workshop ('25) – Vienna, AT 37 / 46

Example: consider full 2 \rightarrow 4 process $gg \rightarrow e^+e^-\mu^+\mu^-$ at $\mathcal{O}(\alpha_s^2\alpha^4)$

- replace every instance of Z by Z_0 , Z_T , Z_A 16 diag $\rightarrow 3^2 \times 16$ diag = 144 diag
- full ME given by sum of all diagrams (subamplitudes)
- diagram filtering then gives desired subset of diagrams (subamps.)

R. Ruiz (IFJ PAN

#COMETA ML Polar. Workshop ('25) – Vienna, AT 38 / 46

Treating helicity polarization as a Feynman rule provides a new method for computing polarized xsec

Javurkova, Ruiz, et al (PLB'24) [2401.17365]

- loop-induced processes \checkmark
- interference between different polarizations configurations √
- non-resonant diagrams √
- \bullet off-shell/finite-width effects \checkmark

$$\frac{-i \,\varepsilon_{\mu}(q,\lambda) \,\varepsilon_{\nu}^{*}(q,\lambda)}{q^{2} - M_{V}^{2}} = \bigvee_{V_{\lambda}(q)}$$

R. Ruiz (IFJ PAN

Treating helicity polarization as a Feynman rule provides a new method for computing polarized xsec

Javurkova, Ruiz, et al (PLB'24) [2401.17365]

- loop-induced processes \checkmark
- interference between different polarizations configurations √
- non-resonant diagrams √
- off-shell/finite-width effects \checkmark

$$\frac{-i \ \varepsilon_{\mu}(q,\lambda) \ \varepsilon_{\nu}^{*}(q,\lambda)}{q^{2} - M_{V}^{2}} = \ \bigvee_{V_{\lambda}(q)}$$

(resources limited!)

・ 何 ト ・ ヨ ト ・ ヨ ト

= nar

somewhere in Krakow a PhD student is computing sums and differences of many propagators

summary

R. Ruiz (IFJ PAN)

#COMETA ML Polar. Workshop ('25) – Vienna, AT 42 / 46

many state-of-the-art tools can do many things... but not everything, not yet

▲□ ▶ ▲ 臣 ▶ ▲ 臣 ▶ 三目目 のへで

Wishlist for MC tools

- loop-induced in QCD and/or EW

- full NLO in QCD and/or EW
- off-shell/finite-width
- interference (int.) between resonant and non-res. diagrams
- int. between polarization configurations
- s- and t-channel configurations

E SQA

lots of progress

#COMETA ML Polar. Workshop ('25) – Vienna, AT 45 / 46

< 4 ₽ >

< E ▶ < E ▶ E E ■ 9 Q @

lots of progress

horizon: subtle theory uncertainties will soon be known

R. Ruiz (IFJ PAN)

#COMETA ML Polar. Workshop ('25) – Vienna, AT 45 / 46

▶ ▲ 분 ▶ 분 별 = · · ○ へ ○

thank you!

R. Ruiz (IFJ PAN

#COMETA ML Polar. Workshop ('25) – Vienna, AT 46 / 46

(日)

backup

(日)

Decomposing Propagators

Completeness relationships between **propagators** & **polarization vectors** in gauge theories are subtle. Example: **QED** in Feynman gauge

 $\implies \xi = 1 \text{ so } (1 - \xi)q_{\mu}q_{\nu}/q^2 \rightarrow 0$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

$$-g_{\mu
u} \;=\; egin{pmatrix} -1 & & \ &+1 & \ & &+1 & \ & & +1 & \ & & &+1 \end{pmatrix} \;=\; \sum_{\lambda=\pm,0,S} \;\eta_\lambda arepsilon_\mu(q,\lambda)arepsilon_
u^st(q,\lambda)$$

For $q=(q^0,0,0,q^3)$ and transverse pols $arepsilon_\mu(\lambda=\pm)=(0,\mp1,-i,0)/\sqrt{2}$

$$\sum_{\lambda=\pm} \ arepsilon_{\mu}(q,\lambda)arepsilon_{
u}^{*}(q,\lambda) \ = \ egin{pmatrix} 0 & & \ +1 & 0 \ & 0 & +1 \ & \ & 0 \end{pmatrix}$$

Decomposing Propagators

For $q = (q^0, 0, 0, q^3)$ and longitudinal $\varepsilon_\mu(\lambda = 0) = (q^3, 0, 0, q^0)/\sqrt{q^2}$

For "auxiliary" (A) or "scalar" (S) polarization $\varepsilon_{\mu}(\lambda = S) = q_{\mu}\sqrt{\xi/q^2}$

$$arepsilon_{\mu}(q,\lambda=S)arepsilon_{
u}(q,\lambda=S) = q_{\mu}q_{
u} \left(rac{arepsilon}{q^2}
ight)$$

Precise form for $\lambda = 0, S$ depends on several factors:

- broken (massive) or unbroken (massless) gauge symmetry
- gauge (Feynman vs Landau vs Unitary vs Axial)
- gauge fixing $(\xi = 1 \text{ or } n^2 = -1)$

ヘロト 人間 トイヨト イヨト 山田 ろくつ

Decomposing Propagators

For $q = (q^0, 0, 0, q^3)$ and longitudinal $\varepsilon_\mu(\lambda = 0) = (q^3, 0, 0, q^0)/\sqrt{q^2}$

$$arepsilon_\mu(q,\lambda=0)arepsilon_
u(q,\lambda=0) \ = \ rac{q^2}{q^2} egin{pmatrix} -1 & & \ & 0 & \ & & 0 & \ & & +1 \end{pmatrix} \ + \ rac{q_\mu q_
u}{q^2}$$

For "auxiliary" (A) or "scalar" (S) polarization $\varepsilon_{\mu}(\lambda = S) = q_{\mu}\sqrt{\xi/q^2}$ $\varepsilon_{\mu}(q, \lambda = S)\varepsilon_{\nu}(q, \lambda = S) = q_{\mu}q_{\nu}\left(\frac{\xi}{q^2}\right)$

Example: for W/Z in R_{ξ} gauge, $\varepsilon_{\mu}^{W/Z}(\lambda = S) = q_{\mu}\sqrt{\frac{1}{q^2} + \frac{(\xi-1)}{q^2 - \xi M_V^2}}$

$$arepsilon_{\mu}(q,\lambda)arepsilon_{
u}(q,\lambda) \; = \; \left(rac{1}{q^2} + rac{(\xi-1)}{q^2 - \xi M_V^2}
ight) \; q_{\mu}q_{
u}$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ④□ ��

utilizing frameworks built for new physics

Tools for BSM@LHC

Monte Carlo Tool chains have long been adapted for new physics:

- new particles with spin 0, 1, 1/2, 2
- new vertices
- alternative propagators

Monte Carlo / Event Simulation Chain

FeynRules

A Mathematica package to calculate Feynman rules

Universal FeynRules Object (UFO) libraries encode (.py) Feynman rules (incl. UV and R2 count terms) for MadGraph5, SHERPA, ...

We wrote a UFO with W_{λ}^{\pm} and Z_{λ}

VPolar feynrules.irmp.ucl.ac.be/wiki/VPolarization

```
Definitions ->
```

```
{Z[mu]->Z0[mu]+ZT[mu]+ZA[mu]+ZX[mu]}
```

```
Definitions ->
```

```
{W[mu]->WO[mu]+WT[mu]+WA[mu]+WX[mu]}
```