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Landscape of new physics

Plethora of new ideas  solving one or many problems→ solving one or many problems

Formulated in terms of Lagrangians

     ← Parameters: couplings & energy scales

                   → solving one or many problems Predictions for new phenomena at experiments

Hidden Valley Z'→ jets (simulation)
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Scale of new physics?

Newest fundamental particle discovered: Last missing piece in standard model (SM)

No smoking gun signature of a heavy resonance yet from LHC data

 → solving one or many problems Hint for a separation of new physics scale & electroweak scale?    
                                                    

            Large new physics scale 
consistent with inclusive measurements

CMS B2G-Resonances summary plots
Nature 607 (2022) 60-68
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New (heavy) particles modify SM interactions
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             Assumptions:
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Higgstrahlung: small but important

LHCHXSWG-2019-002arXiv: 2405.18661   

H production

Higgs-strahlung important at high energy Sensitive to Higgs self-coupling

WH/ZH → small production cross section 

Maltoni, Pagani, Shivaji, Zhao (2017)
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Cross section measurement of V associated H production @CMS 
Phys.Rev.D 109 (2024) 9, 092011

VH signal extracted using DNN score in signal-enriched regions

Small production cross section

- H→ bb decay ← largest branching ratio
- V→ leptons   ← clean signature Cross section reported in 

simplified template cross section framework
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EFT effects in V associated H production

Current operators Gauge coupling operators
Rotation to mass eigenstate basis

Coefficients targeted in measurement:  
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EFT effects in V associated H production

Banerjee, Gupta, Reiness, Seth, Spannowsky (2019)Use of angular variables followed from 

EFT effects:

Changing energy spectra
                 +
Modifying angular correlation
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Signal simulation strategy

Possible to encode SMEFT prediction in event weights

Store N(n) weights per event 

 → solving one or many problems obtain EFT prediction for any coefficient value

    SciPost Phys.Comm.Rep. (2024) 4

σ is a quadratic 
function 

of coefficients !

# of signal samples (for ‘n’ coefficients):   N(n) =1 + n + n(n+1)/2    Sufficient← 

Polynomial parameterization
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Event selection & categorization

CMS-PAS-BTV-22-001
Bols, Kieseler, Verzetti, Stoye, Stakia (2020)

Final state

2-lepton 1-lepton 0-lepton

Regions

Signal region (SR) Control regions (CRs)
tt V+ heavy-flavor jets

Used to measure background
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EFT interpretation: Wilson coefficients

Compatibility with SM while varying 
all coefficients together

 p-value = 73%  p-value = 84%

Λ = 1 TeV
 With linear  or

 full quadratic 
expansion

arXiv: 2411.16907

Quadratic component dominates sensitivity for most coefficients
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EFT interpretation: energy scale

Lower bound on Λ

Three BSM scenarios:

- weakly coupled model (c=0.01)
- no assumption (c=1)
- strongly-coupling                          
  perturbativity limit (c=16π2)

Sensitivity: ~ few TeV for c=1

 With linear  or
 full quadratic 

expansion

arXiv: 2411.16907
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EFT interpretation: Wilson coefficients in 2D

Other coefficients profiled

Λ = 1 TeV

Other coefficients fixed at 0Vector coupling
          vs.
Vector coupling

 With
  full quadratic

expansion

arXiv: 2411.16907
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EFT interpretation: Wilson coefficients in 2D

Other coefficients profiled

Λ = 1 TeV

Other coefficients fixed at 0

 With
  full quadratic

expansion

arXiv: 2411.16907Vector coupling
          vs.
Gauge coupling
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In K. Cranmer’s DESY Colloquium

ATLAS used simulation-based inference for off-shell H production
Neural network-based approach: arXiv: 2412.01548
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● Detailed effective field theory analysis in Higgs production in association with W/Z boson with full Run 2 data 

- Follow-up & complementary to cross section measurements

 
● Probed effects of both vector and gauge coupling operators

  
● First application of likelihood-free/simulation-based inference at colliders 

- Developed outside collaboration & technology available for any EFT analysis

 --- Road towards fully unbinned EFT analysis using optimal observables [see Schöfbeck (2024)]

● Results reported as constraints on Wilson coefficients

- in 1D  with other coefficients profiled or set to SM values

- in 2D  with other coefficients profiled or set to SM values

 ←  findings consistent with SM

 
● Best SMEFT sensitivity reported in VH(bb) channel till date

   

Summary

Documentation
arXiv: 2411.16907
(Accepted in JHEP)
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Linear term in SMEFT expansion

Gini index implemented in TMVA for classification

Node-split criterion maximizes Fisher information →Optimal in precision 

Integral replaced by summation

Fisher information = Variance of score (= derivative of log-likelihood)

Quadratic term in SMEFT expansion

Starting point of SC, N. Frohner, L. Lechner, R. Schoefbeck, D. Schwarz (2021)

Training phase
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 ← Goes on til l a pre-defined number B

Final outcome of algorithm

Separate training for each linear (‘a’) & quadratic terms (‘ab’)  →Total # of trainings  = n + n(n+1)/2  

Learning SMEFT likelihood with decision trees (2)

LLR to achieve LLR obtained

=
(in large sample limit)

Boosted information tree (BIT)

SC, S. Roshap, R. Schoefbeck, D. Schwarz (2022)

23 / 24

https://inspirehep.net/literature?sort=mostrecent&size=25&page=1&q=find%20eprint%202205.12976


  

Simulation strategy for SMEFT

Possible to encode SMEFT prediction in event weights

Store N(n) weights per event  obtain EFT prediction for any coefficient value→ solving one or many problems

 → solving one or many problems EFT operator changes helicity configuration

   SM: +-/-+        EFT: ++/-- 

Helicity-aware reweighting

Helicity-ignorant reweighting

SC & others (2024)
Robust option

Needs careful choice of reference point
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