Wilks' theorem in EFT CMS report

Brent R. Yates

brent.yates@cern.ch

Issue with EFT and Wilks' theorem

Quadratic terms in EFT fits can cause issues

Certain WC values cannot be explored because c^2 is positive, no longer lie within the parameter space Density of x Density of MLE of c

Linear only

Wilks' theorem is valid

Quadratic dominant

Wilks' theorem can overcover Quadratic and linear comparable

Wilks' theorem can undercover

Figure 1: Visualisation of how Wilks' theorem is violated when a parameterisation cannot fit data fluctuations which fall beyond some boundary. This behaviour is observed in quadratic EFT fits (bottom row), which cannot access data below the SM hypothesis.

Wilks' Theorem

Theorem – *As the sample size approaches* ∞*, the distribution of the test statistic (*−2 [∗] ln *likelihood ratio) asymptotically approaches the* ² *distribution under the null hypothesis*

$$
\lim_{N\to\infty}-2\ln(\Lambda)\sim\chi^2_{ndf}
$$

 $\Lambda =$ likelihood null model likelihood alterative modle

"Wilks' theorem assumes that the 'true' but unknown values of the estimated parameters lie within the interior of the supported parameter space"

Possible solutions

Possible solutions

The LHC EFT WG can simply agree to continue using Wilks' theorem

Pros

- Simplest path forward
- Consistent analysis results with previous publications

Cons

- Not fully correct; ignores issues presented today
- Potentially rule out new physics before $n \sigma$ is reached

Possible solutions

Each analysis can do a case-by-case exploration of their WCs

- 1. In an analysis fitting *only* linear components, Wilks' theorem is perfectly valid
- 2. If the WCs are quadratically dominated, Wilks' theorem will report an interval *larger* than it needs to be \rightarrow a conservative estimate
- 3. If the WCs are in a region where the linear *and* quadratic terms are comparable, the interval *could* be smaller than it needs to be
	- If the test statistic q is sufficiently "stable" (i.e., not a large change in the shape) at the best fit point and the limits, it *may* be safe to use toys to extract the CIs
- 4. Estimate confidence intervals based on toys

Please contact your experiment's statistics committee

Neyman interval

[https://indico.cern.ch/event/1383972/contributions/5825309/](https://indico.cern.ch/event/1383972/contributions/5825309/attachments/2882605/5050900/CombineTutorial_Stats.pdf) [attachments/2882605/5050900/CombineTutorial_Stats.pdf](https://indico.cern.ch/event/1383972/contributions/5825309/attachments/2882605/5050900/CombineTutorial_Stats.pdf)

Updating software

The paper in <u>[arXiv:2207.01350](https://arxiv.org/abs/2207.01350)</u> gives an examples and algorithm to compute the correct intervals

This could be incorporated into statistical packages (combine, phyhf, etc.)

The final algorithm $5.2.8$

The final method for computing the PDF $p_q(q_{c_{\text{true}}})$ is summarised as follows: use Gaussian quadrature summation to compute the integral of Eq 88 over an arbitrarily wide interval of e.g. μ_{Δ_0} - $5\sigma_{\Delta_0}$ $\leq \Delta_0$ $\leq \mu_{\Delta_0}$ + $5\sigma_{\Delta_0}$, where the set " $\Delta_1|q_{c_{\text{true}}},\Delta_0$ " is obtained using Algorithm 1. The Jacobian factor is calculated as the reciprocal of $\frac{dq_{c_{\text{true}}}}{d\Delta_1}$, which is obtained by applying the JAX auto-differentiation package to the forwards transformation.

Algorithm 1 Identify all values of Δ_1 consistent with a given $(q_{c_{\text{true}}}, \Delta_0)$ -pair **Input:** $(q_{c_{\text{true}}}, \Delta_0)$ and configurable constants $n_{\sigma} \sim 5$, $s_{\text{min}} \sim 5e - 3$ and $\delta_{\text{min}} \sim 1e - 3$ **Returns:** List of Δ_1 values of length 0, 1 or 2 1: Create empty list 2: for all Δ_1^{hyp} in a broad linear scan between $\mu_{\Delta_1} - n_{\sigma} \sigma_{\Delta_1}$ and $\mu_{\Delta_1} + n_{\sigma} \sigma_{\Delta_1}$ do for first two c_{MLE} solutions of quartic equation $q_{c_{true}}\left(c_{MLE}, \Delta_0, \Delta_1^{hyp}\right)$ do $3:$ Obtain Δ_1^{reco} using inverse transformation of (c_{MLE}, Δ_0) $4:$ Calculate score $s \leftarrow |\Delta_1^{\text{hyp}} - \Delta_1^{\text{reco}}|$ $5:$ **Require:** s is in a local minimum (refine Δ_1^{hyp} using iminuit optimisation) 6: **Require:** $s < s_{\min}$ $7:$ **Require:** Δ_1^{hyp} solution satisfies Class A, B, C(c₀) or C(c₁) conditions 8: **Require:** $|\Delta_1^{hyp} - \Delta_1^i| > \delta_{min} \cdot \sigma_{\Delta_1}$ for all Δ_1^i already in list $9:$ Add $\Delta_1^{\rm hyp}$ to list $10:$ end for $11:$ EFT and Wilks' the $\frac{12.6 \text{ cm}}{12.8 \text{ atm}}$ Let

Combined effective field theory interpretation of Higgs boson, electroweak vector boson, top quark, and multi-jet measurements

CMS-SMP-24-003

List of operators

Analyses in combination

Intervals based on test statistic and toys

Lin+Quad, asymptotic

Lin+Quad, pseudo-data

Comparison of coverage in full fit

Lin+Quad, asymptotic

Comparison of coverage in full fit

Summary

Wilks' theorem is often used to extract asymptotic limits from likelihood ratios

Quadratic parameterizations of WCs can break the Wilks' theorem $(N \sim c^2 \rightarrow c > 0)$

Interval coverage is no longer guaranteed

CMS-SMP-24-003 has explored this issue using toys

 Variations in coverage observed, with roughly half having correct coverage

THE OHIO STATE UNIVERSITY

Backup

Overview

Most analyses measure some sort of rate or parameter

- Cross section σ
- Differential cross-section $\frac{d\sigma}{dx}$ $dp_{\rm T}$ $\int \frac{d\sigma}{d\sigma}$ $d|\eta|$ $\frac{d\sigma}{\sigma}$ d cos χ , etc.
- Top mass m_t
- Fragmentation shape $r_{\rm b}$
- EFT Wilson coefficients c_i

We typically extract these quantities using statistical inference

- Provide templates and/or parametric functions that model the data
- Find best-fit values

The profiled likelihood ratio has become the most common method of inference at the LHC

Probability and likelihood

Probability of observing the data (x) given parameter(s) (θ)

Likelihood is product of probabilities of parameter(s) *given* the data

$$
\mathcal{L}(\theta) = p(\theta | x) = \prod_{\theta \in \Theta} \frac{p(x | \theta)}{p(x)} * p(\theta)
$$

 $p(x|\theta)$

Bayes theorem

where Θ is the entire parameter space

 $p(x)$ is a normalization term and is typically ignored in the frequentist interpretation (when we compute $\max(\Delta \ln \mathcal{L}(\theta))$ the normalization isn't important)

Priors

Prior probabilities come from previous measurements of a certain quantity

- Usually nuisance parameters (NPs) in LHC analyses
- WCs have "flat priors" \rightarrow no assumption is made on the possible values ($p(c) = 1$)

It is a penalty score in the likelihood to prevent the optimization step from pulling a particular parameter too far from its previously measured value

Example

We typically use a log-normal prior for the luminosity

A given CMS analysis is unlikely to measure the luminosity (e.g., Run 2 138 fb⁻¹) more accurately than the official delivered/recorded values

We allow the luminosity to vary *slightly* to accommodate correlations in the analysis*,* and the lognormal term prevents it from going below 0

The profiled likelihood ratio

Easier to minimize $-\ln \mathcal{L}$

In general, the test statistic is defined as

$$
q = -2 \ln \frac{\mathcal{L}(c_i, \hat{\hat{\theta}})}{\mathcal{L}(\hat{c}_i, \hat{\theta})}
$$

where \hat{c}_i and $\hat{\theta}$ minimizes $-\ln \mathcal{L}$ ("best fit point" or MLE), and $\hat{\theta}$ minimizes $-\ln \mathcal{L}$ for a particular value of c_i (often the SM $c_i = 0$)

Statistical inference using the test statistic

The test statistic q is a measure of how compatible the data is with the model at some reference point (e.g., the SM)

The value(s) of the WCs c_i which minimize q are know as the "best fit values"

To give an uncertainty on the values, we typically use Wilks' theorem to extract confidence intervals around the best fit value

- Often quoted as 68, 95, and 99.7% (or 1σ , 2σ , and 3σ for 1D fits)
- The intervals are $q = 1,4,9$ for 1D, $q = 2.30, 6.18, 11.83$ for 2D, etc.

 $q = -2 \ln$ $\mathcal{L}(c_{\dot{t}},\hat{\hat{\theta}})$ $\mathcal{L}(\widehat{c}_i,\hat{\theta})$

Confidence intervals

In the frequentist interpretation, the confidence interval is a statement about *repeated* experiments

Example

A confidence interval of 95% means if the *same* experiment were repeated *a large number of times* $(N \rightarrow \infty)$, 95% of those intervals would contain the true value

It is *not* a statement on the probability of observing a particular result

https://en.wikipedia.org/wiki/Confidence_interval

Example from [TOP-19-001](https://link.springer.com/article/10.1007/JHEP03(2021)095)

Wilks' theorem states
$$
-2\Delta \ln \left(\mathcal{L}(\vec{c}, \vec{\theta}) \right) \stackrel{N \to \infty}{\longrightarrow} \chi^2_{ndf}
$$

Degrees of freedom – Difference between number of parameters in the best fit and the evaluated point

Example $(c_{t\omega})$

In a **1D** profiled scans, we compare the best fit point (16 WCs profiled) to a specific value of $c_{\rm to}$ (15 WCs profiled), giving **1 degree of freedom**

Likelihood scan Set $c_{t\varphi}$ to specific values **Profile** the other WCs or **fix** to 0 Profile all NPs

Rotations for PCA

