Profile likelihood ratio limits in quadratic dominated fits

Gianna Loeschcke Centeno on behalf of the ATLAS collaboration gianna.loeschcke.centeno@cern.ch

University of Sussex

03.10.2024

Likelihood fits with quadratic contributions

- In EFT fits: consider interference terms with SM (linear) and pure BSM terms (quadratic)
- Same-sign top analysis (\bullet arXiv:2409.14982 : no SM contribution \to only quadratic contribution
- Checked computed likelihood limits with toys:
 - no undercoverage
 - slight overcoverage (at most 9%) when Wilson coefficient is close to 0

• Performed further studies with a linear+quadratic case

linear EFT terms

analysis

Toy distributions

Generate 10k toys

All following studies are performed in the context of an ongoing

Look at toy distributions for different contributions of guadratic and

• Fit with linear only contribution: recover Gaussian shape (peak at 10 comes from negative bin yields for high WC values)

Gianna Loeschcke Centeno

Limits from toys

- Try to determine impact of violation of Wilk's theorem on LH limits
- If possible, compute corrected LH limits with toys

Method to compute these new limits:

- Compute toys around POIAsimov = μ_{test}
- Get likelihood ratio at μ_{test} for each toy
- $\bullet\,$ Determine at which value of the LH ratios, 68 % of the toy LH ratios are below this value
- This LH ratio value corresponds to the 1σ contour at this $\mu_{\textit{test}}$ value

Test of this method

 Test of this method with pedagogical example including linear and quadratic terms

quadratic model

• Perform fit with one WC (linear and quadratic dependence)

- Limit with default contour (0.5): [-1.11, 1.30]
- Limits with toy contour: [-1.16, 1.35]

1d case:

- Have working method
- Method can be computationally expensive when providing full 1σ line \rightarrow only show around crossing points?
- Not clear how to determine systematics ranking

More dimensional case:

- In many analyses several WCs fit at the same time
- Method does not scale for multiple dimensions
- Tried so far to look at 1d limits in multi-EFT fits

• Compare toy distributions in fit with 1 WC versus in fit with 4 WCs

• Constraining several WCs at the same time seems to remove the additional peaks

Toy results in fit with 2 WCs

- Consider c_1 results in fit with 2 WCs (c_1 and c_3)
- Correlation between c_1 and c_3 : 12 %

 c_1 and c_3 Graph c_1 and c_3 Graph c_1 and c_3 c_1 and c_4 c_1 and c_5 c_1 and c_5 c_1 and c_5 c_1 and c_2 c_1 and c_3 c_1 and c_4 c_1 and c_5 c_1 and c_5 c_1 and c_5 c_2 c_1 and c_2 c_1 and c_2 c_2 and c_3 c_1 and c_4 c_1 and c_5 c_1 and c_5 c_1 and c_2 c_2 and c_3 c_1 and c_5 c_1 and c_5 c_2 and c_5 c_2 and c_5 c_1 and c_2 and c_5 c_2 and c_5 c_1 and c_2 and c_5 c_1 and c_2 and c_5 c_2 and c_5 c_1 and c_2 and c_2 and c_5 c

- Limit with default contour (0.5): [-1.11, 1.30]
- Limits with toy contour: [-1.16, 1.35]

- Limit with default contour (0.5): [-1.12, 1.31]
- Limits with toy contour: [-0.98, 1.17]

Toy results in fit with 2 WCs

- Consider c_1 results in fit with 2 WCs (c_1 and c_2)
- Correlation between c_1 and c_2 : -2%

 c_1 and c_2 Graph $\frac{1}{2}$ $\frac{$

- Limit with default contour (0.5): [-1.11, 1.30]
- Limits with toy contour: [-1.16, 1.35]

- Limit with default contour (0.5): [-1.18, 1.32]
- Limits with toy contour: [-1.06, 1.23]

Toy distribution in fit with different correlations

• Fit different combinations of WCs which have different correlations

Gianna Loeschcke Centeno

PLR limits

Toy distribution in fit with low correlations

- Consider two operators c_5 and c_6
- Correlation between c_5 and c_6 : 0 %

ower 68% Ci limit

upper 68% Cillimit

50% Percentile (median)

÷.

с5

c5 and c6

-2 -1 0

Parameter Value

500

250

• Consider *c*₅ results in fit with 2 WCs

 c_5 and c_6 graph 35 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 1σ points 0σ point

- Limit with default contour (0.5): [-1.39, 1.59]
- Limits with toy contour: [-1.46, 1.67]

- Limit with default contour (0.5): [-1.39, 1.59]
- Limits with toy contour: [-1.46, 1.66]

- For 1d fits: toy results seem sensible
- Some remaining issues/open questions:
 - How many points to compute for modified 1σ or 2σ line?
 - How to compute systematics ranking?
- What to do for multi-dimensional fits?
 - Method does not scale to more dimensions (computationaly expensive, how to report multi-dimensional results)
 - 1*d* limits in multi-EFT fits behave counter-intuitively