Cover Your Bases

Asymptotic Distributions of the Profile Likelihood Ratio When Constraining Effective Field Theories in High-Energy Physics

F. U. Bernlochner, D. C. Fry, S. B. Menary, E. Persson

SciPost Phys. Core 6, 013 (2023) (doi: 10.21468)

Introduction

- **Effective Field Theories (EFTs)** are powerful tools in high-energy physics for exploring new physics beyond the Standard Model (SM).
- ▶ **Profile Likelihood Ratio (PLR):** A common test statistic used to perform hypothesis tests over EFT parameter space.
- ▶ **Wilks' Theorem:** Often assumed to apply, implying the PLR follows a χ^2 -distribution.

Motivation

▶ Wilks' theorem often assumed to hold for PLR tests

- \blacktriangleright When it holds, the PLR asymptotically follows a χ^2 distribution with degrees of freedom equal to the number of parameters profiled
- ▶ **This assumption is often violated in EFT analyses**
- Consequences:
	- ▶ Incorrect p-values
	- \blacktriangleright Inaccurate confidence intervals
	- ▶ Potential for over- or under-coverage

Why Wilks' Theorem Fails

\blacktriangleright Wilks' theorem assumes:

- ▶ Best-fit model lies in bulk of function space
- ▶ Not near boundaries of parameter space
- ▶ Quadratic EFT parameterization:
	- ▶ Cannot fit data fluctuations below SM hypothesis
	- \blacktriangleright Leads to non- χ^2 behavior

Profile Likelihood Ratio (PLR)

▶ Gaussian statistical model:

$$
p_x(x|c) = \frac{1}{\sqrt{2\pi|\Sigma|}}e^{-\frac{1}{2}\chi^2(x;c)}
$$

$$
\chi^2(x;c)=(x-\mu(c))^T\Sigma^{-1}(x-\mu(c))
$$

▶ Definition of PLR test statistic:

$$
q(x; c) = -2 \ln \left[\frac{p_x(x|c)}{\max_{c'} p_x(x|c')} \right] = \chi^2(x; c) - \min_{c'} \chi^2(x; c')
$$

EFT Parameterization

▶ General form of EFT-modulated cross section:

$$
\sigma(f;c)\propto \left|\mathcal{M}_{\mathrm{SM}}(f) + \sum_{c_\alpha\in c} c_\alpha \mathcal{M}_{\mathrm{NP}}^{(c_\alpha)}(f)\right|^2
$$

▶ Expanded form:

$$
\sigma(f;c)=s(f)+\sum_\alpha c_\alpha l_\alpha(f)+\sum_{\alpha,\beta\neq\alpha}c_\alpha c_\beta t_{\alpha,\beta}(f)+\sum_\alpha c_\alpha^2 n_\alpha(f)
$$

▶ In vector notation:

$$
\mu(c)=s+\sum_{\alpha}c_{\alpha}l_{\alpha}+\sum_{\alpha,\beta\neq\alpha}c_{\alpha}c_{\beta}t_{\alpha,\beta}+\sum_{\alpha}c_{\alpha}^2n_{\alpha}
$$

Consider two simple cases

Linear Case

- \blacktriangleright Model: $\mu(c) = c$
- ▶ Represents models where dependence on new physics is dominated by interference with Standard Model

Quadratic Case

- \blacktriangleright Model: $\mu(c) = c^2$
- ▶ Represents models where coupling is purely imaginary or interference is small compared with the pure new physics contribution

Illustration of violation of Wilks' theorem

Solution with One Parameter: Linear Case

For linear case
$$
(|n| = 0
$$
 and $|l| > 0$:

$$
q_{c_{\text{true}}}=\hat{\bar{Z}}_{l}^{2}
$$

where $\hat{\bar{Z}}_l$ is the projection of \bar{z} onto the unit vector $\hat{\bar{l}}$.

- ▶ For purely linear EFT contributions:
	- ▶ Wilks' theorem holds
	- \blacktriangleright PLR follows a χ^2 distribution with one degree of freedom

Solution with One Parameter: Quadratic Case

 \triangleright For quadratic case $(|l| = 0$ and $|n| > 0$:

$$
p_q(q_{c_{\rm true}}) = \begin{cases} p_{\chi^2}^{(1)}(q_{c_{\rm true}}) & q_{c_{\rm true}} < \bar{N}^2 c_{\rm true}^4 \\ \frac{1}{2} p_{\chi^2}^{(1)}(q_{c_{\rm true}}) + \mathcal{G}(q_{c_{\rm true}}; -\bar{N}^2 c_{\rm true}^4, 2\bar{N} c_{\rm true}^2) & q_{c_{\rm true}} \geq \bar{N}^2 c_{\rm true}^4 \end{cases}
$$

▶ For purely quadratic EFT contributions: \blacktriangleright PLR follows a mixture of χ^2 and Gaussian distributions ▶ Distribution depends on the true parameter value

Quadratic Case (1D) - Example

Quadratic Case (1D) - Example results

Key observations:

- When $c_{\text{true}}^2 = 0$, PDF is $\frac{1}{2}\delta(q_{c_{\text{true}}}) + \frac{1}{2}p_{\chi^2}^{(1)}(q_{c_{\text{true}}})$
- As c_{true}^2 increases, χ^2 -validity threshold moves upwards
- \triangleright For large c_{true}^2 , distribution follows χ^2 distribution
- \triangleright Our method agrees with pseudo-experiments for all c_{true}^2 values

▶ Coverage analysis:

- \triangleright Wilks' theorem fails to exclude c_{true}^2 in half of expected cases when c_{true}^2 close to zero
- ▶ Wilks' theorem leads to 97.5% coverage for hypotheses close to Standard Model
- \triangleright Our method provides correct 95% coverage for all c_{true}^2 values

Summary of Further Sections

▶ Section 4: Two-parameter cases

- ▶ Linear x Linear
- ▶ Linear x Quadratic
- ▶ Quadratic x Quadratic
- ▶ Section 5: One-parameter case with both linear and quadratic contributions
	- \triangleright Single-bin measurements
	- \blacktriangleright Multi-bin measurements

Linear plus quadratic example (one bin)

Linear plus quadratic example (multiple bins)

15 / 18

Future work

- ▶ Extend to more (or arbitrary number of) parameters
- ▶ Include interference terms
- ▶ Consider non-Gaussian nuisance parameters
- ▶ Improve the "linear plus quadratic" case
- ▶ Study "quadratic plus quartic" cases

Geometric interpretation

Geometric interpretation (explanation)

- ▶ Prediction (red line): straight for linear/quadratic, curved for lin+quad
- ▶ Prediction shape influences decomposition of $p(q)$ into χ^2 and Gaussian
- \blacktriangleright Problem: maximize likelihood (minimize χ^2)
- $\triangleright \ \chi^2 =$ Euclidean distance in uncorrelated normalized basis
- \blacktriangleright Linear case: prediction spans full space, χ^2 for all observations
- ▶ Quadratic case: prediction turns at $c = 0$, resulting in χ^2 + Gaussian
- ▶ Lin+quad: prediction curve complicates mode splitting
- \blacktriangleright Lin+quad requires solving complex integrals for $p(q)$, often via numerical methods
- ▶ Quadratic curve appears linear due to mathematical structure
- ▶ Lin+quad curve is curvy, blending linear and quadratic terms