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Introduction

▶ Effective Field Theories (EFTs) are powerful tools in
high-energy physics for exploring new physics beyond the
Standard Model (SM).

▶ Profile Likelihood Ratio (PLR): A common test statistic
used to perform hypothesis tests over EFT parameter space.

▶ Wilks’ Theorem: Often assumed to apply, implying the PLR
follows a 𝜒2-distribution.
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Motivation

▶ Wilks’ theorem often assumed to hold for PLR tests
▶ When it holds, the PLR asymptotically follows a 𝜒2 distribution

with degrees of freedom equal to the number of parameters
profiled

▶ This assumption is often violated in EFT analyses
▶ Consequences:

▶ Incorrect p-values
▶ Inaccurate confidence intervals
▶ Potential for over- or under-coverage
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Why Wilks’ Theorem Fails

▶ Wilks’ theorem assumes:
▶ Best-fit model lies in bulk of function space
▶ Not near boundaries of parameter space

▶ Quadratic EFT parameterization:
▶ Cannot fit data fluctuations below SM hypothesis
▶ Leads to non-𝜒2 behavior
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Profile Likelihood Ratio (PLR)

▶ Gaussian statistical model:

𝑝𝑥(𝑥|𝑐) = 1
√2𝜋|Σ|

𝑒− 1
2 𝜒2(𝑥;𝑐)

𝜒2(𝑥; 𝑐) = (𝑥 − 𝜇(𝑐))𝑇 Σ−1(𝑥 − 𝜇(𝑐))

▶ Definition of PLR test statistic:

𝑞(𝑥; 𝑐) = −2 ln [ 𝑝𝑥(𝑥|𝑐)
max𝑐′ 𝑝𝑥(𝑥|𝑐′)] = 𝜒2(𝑥; 𝑐) − min

𝑐′
𝜒2(𝑥; 𝑐′)
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EFT Parameterization
▶ General form of EFT-modulated cross section:

𝜎(𝑓; 𝑐) ∝ ∣ℳSM(𝑓) + ∑
𝑐𝛼∈𝑐

𝑐𝛼ℳ(𝑐𝛼)
NP (𝑓)∣

2

▶ Expanded form:

𝜎(𝑓; 𝑐) = 𝑠(𝑓) + ∑
𝛼

𝑐𝛼𝑙𝛼(𝑓) + ∑
𝛼,𝛽≠𝛼

𝑐𝛼𝑐𝛽𝑡𝛼,𝛽(𝑓) + ∑
𝛼

𝑐2
𝛼𝑛𝛼(𝑓)

▶ In vector notation:

𝜇(𝑐) = 𝑠 + ∑
𝛼

𝑐𝛼𝑙𝛼 + ∑
𝛼,𝛽≠𝛼

𝑐𝛼𝑐𝛽𝑡𝛼,𝛽 + ∑
𝛼

𝑐2
𝛼𝑛𝛼
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Consider two simple cases

Linear Case
▶ Model: 𝜇(𝑐) = 𝑐
▶ Represents models where dependence on new physics is

dominated by interference with Standard Model

Quadratic Case
▶ Model: 𝜇(𝑐) = 𝑐2

▶ Represents models where coupling is purely imaginary or
interference is small compared with the pure new physics
contribution
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Illustration of violation of Wilks’ theorem
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Solution with One Parameter: Linear Case

▶ For linear case (|𝑛| = 0 and |𝑙| > 0):

𝑞𝑐true
= ̂̄𝑍

2
𝑙

where ̂̄𝑍𝑙 is the projection of ̄𝑧 onto the unit vector ̂̄𝑙.
▶ For purely linear EFT contributions:

▶ Wilks’ theorem holds
▶ PLR follows a 𝜒2 distribution with one degree of freedom
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Solution with One Parameter: Quadratic Case

▶ For quadratic case (|𝑙| = 0 and |𝑛| > 0):

𝑝𝑞(𝑞𝑐true
) = {𝑝(1)

𝜒2 (𝑞𝑐true
) 𝑞𝑐true

< ̄𝑁2𝑐4
true

1
2 𝑝(1)

𝜒2 (𝑞𝑐true
) + 𝒢(𝑞𝑐true

; − ̄𝑁2𝑐4
true, 2 ̄𝑁𝑐2

true) 𝑞𝑐true
≥ ̄𝑁2𝑐4

true

▶ For purely quadratic EFT contributions:
▶ PLR follows a mixture of 𝜒2 and Gaussian distributions
▶ Distribution depends on the true parameter value
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Quadratic Case (1D) - Example
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Quadratic Case (1D) - Example results

▶ Key observations:
▶ When 𝑐2

true = 0, PDF is 1
2 𝛿(𝑞𝑐true

) + 1
2 𝑝(1)

𝜒2 (𝑞𝑐true
)

▶ As 𝑐2
true increases, 𝜒2-validity threshold moves upwards

▶ For large 𝑐2
true, distribution follows 𝑐ℎ𝑖2 distribution

▶ Our method agrees with pseudo-experiments for all 𝑐2
true values

▶ Coverage analysis:
▶ Wilks’ theorem fails to exclude 𝑐2

true in half of expected cases
when 𝑐2

true close to zero
▶ Wilks’ theorem leads to 97.5% coverage for hypotheses close to

Standard Model
▶ Our method provides correct 95% coverage for all 𝑐2

true values
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Summary of Further Sections

▶ Section 4: Two-parameter cases
▶ Linear x Linear
▶ Linear x Quadratic
▶ Quadratic x Quadratic

▶ Section 5: One-parameter case with both linear and quadratic
contributions

▶ Single-bin measurements
▶ Multi-bin measurements
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Linear plus quadratic example (one bin)
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Linear plus quadratic example (multiple bins)
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Future work

▶ Extend to more (or arbitrary number of) parameters
▶ Include interference terms
▶ Consider non-Gaussian nuisance parameters
▶ Improve the “linear plus quadratic” case
▶ Study “quadratic plus quartic” cases
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Geometric interpretation
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Geometric interpretation (explanation)

▶ Prediction (red line): straight for linear/quadratic, curved for
lin+quad

▶ Prediction shape influences decomposition of 𝑝(𝑞) into 𝜒2 and
Gaussian

▶ Problem: maximize likelihood (minimize 𝜒2)
▶ 𝜒2 = Euclidean distance in uncorrelated normalized basis
▶ Linear case: prediction spans full space, 𝜒2 for all observations
▶ Quadratic case: prediction turns at 𝑐 = 0, resulting in 𝜒2 +

Gaussian
▶ Lin+quad: prediction curve complicates mode splitting
▶ Lin+quad requires solving complex integrals for 𝑝(𝑞), often via

numerical methods
▶ Quadratic curve appears linear due to mathematical structure
▶ Lin+quad curve is curvy, blending linear and quadratic terms
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