

HJETS MASS BUMP

G. Watts (UW/Seattle)

CPPM Seminar 27/6/2011

DISCLAIMER

$WW + WZ \rightarrow l\nu jj$

1 Lepton (e or μ)
Missing E_T 2 Jets

Background Subtracted

December 2010

Measurement of ww + wz production cross section and study of the dijet mass spectrum in the lnu + jets final state at CDF. Viviana Cavaliere (Siena)

A few theorists find the thesis...

April 2011

Invariant Mass Distribution of Jet Pairs Produced in Association with a W boson in ppbar Collisions at sqrt(s) = 1.96 TeV, arXiv:1104.0699

(60 citations)

June 2011

Study of the dijet invariant mass distribution in $p\overline{p} \rightarrow W(\rightarrow l\nu + jj)$ final states at $\sqrt{s} = 1.96$ TeV. arXiv:1106.1921

(1 citations)

Does DØ See it??

Can DØ rule it out?

THE TEVATRON

PEAK LUMINOSITY

THE DETECTORS

Silicon Tracking $|\eta| < 3$ Scintillating Fiber Tracker 1.9 T B Field, $|\eta| < 1.7$ LAr/DU Calorimeter $|\eta| < 2$ Jet Energy Scale 1-2%

Silicon Tracking $|\eta| < 2 - 2.5$ Open Drift Cell Tracker 1.4 T B Field, $|\eta| < 1.1$ Pb/Cu/Scint Calorimeter $|\eta| < 3.2$ Jet Energy Scale 2-3%

G. Watts (UW/Seattle)

THE DØ ANALYSIS

 $WX \rightarrow evjj$ $V \Rightarrow \mathbf{E_T}$

 $WX \to \mu \nu jj$

Thanks to J. Haley for figures

G. Watts (UW/Seattle)

Calorimeter

13

Electron

 $p_T \ge 20 \text{ GeV}, |\eta| < 1.0$

Isolation: track and EM shower

Electron Shower Shape Requirements

 $p_T \ge 20$ GeV, $|\eta| < 1.0$ Isolation: Calorimeter

Muon

 $p_T \ge 20 \text{ GeV}, |\eta| < 1.0$

Hits in all three muon layers

Isolation: track and Calorimeter

 $p_T \ge 20$ GeV, $|\eta| < 1.0$ Isolation: Calorimeter

(Isolation: kill off Heavy Flavor Decays)

The Missing E_T

Missing $E_T > 25$ GeV

 M_T^W Cuts

 $30 < M_T^W < 200 \text{ GeV}$ Reject events with more than one reconstructed lepton Missing $E_T > 25$ GeV

 $30 < M_T^W$ Reject events with second loose lepton an $76 < M_{ll} < 106$ GeV Reject events with good lepton $p_T > 10$ GeV

15

THE JETS

Reconstruction

DØ iterative mid-point cone algorithm

R = 0.5

Clean up cuts: hadronic, noisy cell removal

Vertex Confirmation: >2 tracks from IP

Fixed cone algorithm

R = 0.4

Selection

$$p_T > 30 \text{ GeV}$$

 $|\eta| < 2.5$

$$p_T^{jj} > 40$$
 GeV, $\left| \Delta \eta^{jj} \right| < 2.5$ $\Delta \phi > 0.4$ missing E_T and high p_T jet

Exactly 2 good jets

$$p_T > 30 \text{ GeV}$$

$$|\eta| < 2.4$$

Jets with μ or e R < 0.52 removed

$$p_T^{jj} > 40$$
 GeV, $|\Delta \eta^{jj}| < 2.5$

 $\Delta \phi > 0.4$ missing E_T and high p_T jet

Exactly 2 good jets

JET ENERGY SCALE

Both use $\gamma + jets$ and dijet events Correct for response, out of cone showering, overlap/pileup

J. BackusMayes Thesis

V. Cavaliere Thesis

Corrections similar in size

MODELING THE SM BACKGROUND

Background Shapes

Diboson: WW, WZ, ZZ

Single Top

 $t\bar{t}$

W+Jets, Z+Jets

Monte Carlo Based

QCD Multijet

Data Driven

Background Normalization

Diboson: WW, WZ, ZZ

Single Top

 $tar{t}$

Z+Jets

W+Jets

QCD Multijet

Theory NLO or NNLO cross sections

Fit to data

G. Watts (UW/Seattle)

GENERATORS

DØ: CDF: CDF:

Pythia: WW, WZ, ZZ, $t\bar{t}$, single top COMPHEP: Single Top ALPGEN+Pythia: W+Jets, Z+Jets

ALPGEN + Pythia: $t\bar{t}$, W+Jets, Z+Jets

	DØ	CDF
PDF Set	CTEQ6L1	CTEQ5L
Pythia	6.409	6.326
Pythia Tune	DØ Tune A (tune A, PDF corrected)	Tune A
ALPGEN	V2.11_wcfix	V2.1

Private GEANT3 based detector models + reconstruction software!

Our handling of systematic errors for the generators is almost certainly different as well.

REWEIGHTINGS

Luminosity Profile Interaction Region Profile

$Z p_T$ reweighting

We checked does not affect the dijet mass distribution

Also correct MC for object ID e.g. jet finding efficiency is too good

Detector Based Reweighting's

arXiv:0712.0803

GETTING W+JETS RIGHT

We have found region of low $p_T(W)$ badly modeled.

Jet η , $p_T(W)$, $\Delta R(j_1, j_2)$

However, CDF cuts mostly eliminate that region

No Other Reweightings Applied

But we take expected differences into account as uncertainties

We also cross-checked the effect of the reweightings on M_{jj} as well as completing the complete analysis with and without these reweightings.

QCD MULTIJET BACKGROUND

Includes all manner of sins

Jets faking a lepton (electrons)

Heavy Flavor not removed otherwise (
Instrumental Backgrounds

Difficult to simulate

QCD SIDEBAND SAMPLES

Muons

DØ: Reverse the μ isolation cut CDF: Reverse the μ isolation cut

Electrons

DØ: Matrix Method (remove EM shower shape cuts)

CDF: Anti-select on electron quality variables (low

statistics issue)

Gives us the shape (template) of the QCD multijet background

Overall shape and normalization:

DØ: Fits the M_T^W distribution

CDF: Fits the missing E_T distribution (release cut first!)

DØ explicitly removes W+Jets contributions from their QCD templates. CDF probably does, but couldn't find a reference.

NORMALIZATION FITS

Let both the W+jets and the QCD multijet background float

(taken from V. Cavaliere's thesis, but

G. Watts (UW/Seattle) referenced in CDF PRL)

Hypocrite!

FINAL BACKGROUND TALLY

Ele Channel	DØ	V. Cavaliere		
W+Jets	5620 ± 500	4719 ± 141		
Z+Jets	180 ± 42	92 ± 11		
Diboson	434 ± 38	403 ± 24		
Тор	600 ± 69	366 ± 37		
QCD	932 ± 230	394 ± 98		
Data	7763	5859		

Muon Channel	DØ	V. Cavaliere		
W+Jets	3850 ± 290	3341 ± 100		
Z+Jets	350 ± 60	162 ± 19		
Diboson	304 ± 25	301 ± 18		
Тор	363 ± 39	275 ± 28		
QCD	151 ± 69	117 ± 29		
Data	5026	4137		

- Both analyses use $4.3 fb^{-1}$
- Absolute yield larger @ DØ
- Fractionally, 20% better diboson yield for Cavaliere
- Fractionally, W+jets less than 10% diff, Z+jets about 25% diff
- QCD has dramatic differences in yield (fractionally 30%-50%)
- CDF's Muon QCD error 50% of DZEROs (electron the same)

QCD COMPARISON

J. Wacker
had this idea
originally, G.
Brooijmans
improved
upon it

CHANNEL COMPARISON

"Same Cuts"

SYSTEMATIC UNCERTAINTIES

0 71	V. ,					
Source of systematic uncertainty	Diboson signal	$W\!+\!{ m jets}$	$Z{ m +jets}$	Top	Multijet	Nature
Trigger/Lepton ID efficiency	±5	±5	±5	±5		N
Trigger correction, muon channel	± 5	± 5	± 5	± 5		D
Jet identification	± 1	± 1	± 2	± 1		D
Jet energy scale	± 10	± 5	± 7	± 5		D
Jet energy resolution	± 6	± 1	± 3	± 6		D
Jet vertex confirmation	± 3	±3	± 4	± 1		D
Luminosity	± 6.1	± 6.1	± 6.1	± 6.1		N
Cross section		± 6.3	± 6.3	± 10		N
V+hf cross section		± 20	± 20			N
Multijet normalization					±20	N
Multijet shape, electron channel					± 1	D
Multijet shape, muon channel					±10	D
Diboson modeling	±8					D
Parton distribution function	± 1	±5	± 4	±3		D
Unclustered Energy correction	$\pm < 1$	± 3	± 3	$\pm < 1$		D
ALPGEN η and $\Delta R(jet1, jet2)$ corrections		$\pm < 1$	$\pm < 1$			D
ALPGEN W p_T correction		$\pm < 1$				D
Alpgen correction Diboson bias	± 1	±1	± 1	± 1		D
Renormalization and factorization scales		±1	±1			D
ALPGEN parton-jet matching parameters		±1	± 1			D
Parton shower and Underlying Event		± 2	± 2			D

^aThe cross section uncertainty on W+jets is not used when fitting (the W+jets normalization is a free parameter); however, it is necessary for generating pseudo-data used in the significance estimation.

G. Watts (UW/Seattle)

DOES OUR BACKGROUND MODEL WORK?

Fit the dijet mass distribution

$$\chi^{2}(\theta, S, B; D) = 2 \sum_{i=0}^{N_{bins}} (B_{i} + S_{i} - D_{i}) - D_{i} \ln \left(\frac{B_{i} + S_{i}}{D_{i}}\right) + \sum_{k=0}^{N_{sys}} \theta_{k}^{2}$$

Background, Signal, and observed Data

 θ_k is # of standard deviations systematic k has been pulled from nominal. Allows templates to vary with Gaussian prior.

The W+Jets and diboson cross sections are allowed to float for this fit (no θ_k).

DOES OUR BACKGROUND MODEL WORK?

COULD WE HAVE MISSED IT?

Dijet mass fit, with a $WX \rightarrow l\nu jj$ template, and set a limit

Narrow Bump @ Experimental Resolution

Simple mass scaling:

$$\sigma_{jj} = \sigma_{W \to jj} \times \sqrt{M_{jj}/M_{W \to jj}}$$

At 145 GeV, $\sigma_{ii} = 15.7 \text{ GeV}$

Cross Section

$$BR(X \rightarrow jj) = 1.0$$

Efficiency from WH ($M_H = 150$ GeV)

JES (changes mean by $\pm 1.5\%$)

JER (norm by 5%, width by 3%)

LIMIT SETTING

If we re-ran the experiment many times, how often would we see a "real" excess?

Frequentist

Generate ensembles of pseudo-experiments Allow statistical and systematic fluctuations

Re-run the dijet mass fit

$$LLR = -2\log\left(\frac{P(D;S+B)}{P(D;B)}\right) = \chi^{2}(D|S+B) - \chi^{2}(D|B)$$

Signal+Background Model

Background Model

Turn the LLR probability distributions into straight limits (95% CL).

D - Observed Events

S - Expected Signal

B - Expected Background

G. Watts (UW/Seattle)

LIMIT

Rule out $1.9 pb^{-1}$ or larger @ 95% CL

Rule out 4 pb^{-1} or larger @ 4 σ (99.9999%)

MOCK THE SIGNAL

Use the data plus the WX template Use the CDF 4 pb^{-1} cross section

LLR PLOT

There is no way we would have missed a $4 pb^{-1}$ signal!

WHAT ABOUT THE LHC?

WHAT COULD IT BE?

- Gauged Barvon and Lepton Number in MSSM_4 Brane Worlds
- A two-Higgs-doublet interpretation of a small Tevatron \$Wjj\$ excess
- Subjects: High Energy Physics Phenomenology (hep-ph)
- Chiral Quirkonium Decays
- Subjects: High Energy Physics Phenomenology (hep-ph)
- Top condensation as a motivated explanation of the top forward-backward asymmetry
- Quirks at the Tevatron and Beyond
- Hermitian Flavor Violation
- A Higgsophilic s-channel Z' and the CDF W+2J Anomaly
- Dissecting the Wjj Anomaly: Diagnostic Tests of a Leptophobic 7'
- Theory and phenomenology of two-Higgs-doublet models
- Deriving the mass of particles from Extended Theories of Gravity in LHC era
- Direct detection and CMB constraints on light DM scenario of top quark asymmetry and dijet excess at Tevatron
- Measurements of top quark properties at the Tevatron collider
- Production of Charged Higgs Bosons in a 3-3-1 Model at the CERN LHC
- NLO predictions for a lepton, missing transverse momentum and dijets at the Tevatron
- An Explanation of the CDF Dijet Anomaly within a \$U(1)_X\$ Stueckelberg Extension
- Experimental proposal to study the excess at Mjj=150 GeV presented by CDF at Fermilab
- A light charged Higgs boson in two-Higgs doublet model for CDF \$Wjj\$ anomaly
- Colored Scalars And The CDF \$W+\$dijet Excess
- A Scalar Doublet at the Tevatron?
- Reconciling anomalous measurements in \$B_s-\bar{B}_s\$ mixing: the role of CPT-conserving and CPT-violating new physics
- Dijet Signature of Low Mass Strings in the Early LHC Data
- The Prediction and Evidence for a New Particle antiparticle Force and Intermediary Particle
- Color-Octet-Electroweak-Doublet Scalars and the CDF Dijet Anomaly
- Impact of extra particles on indirect Z' limits
- Z' from SU(6)\$\times\$SU(2)_h GUT, Wjj anomaly and Higgs boson mass bound
- Spontaneous Parity Violation in SUSY Strong Gauge Theory
- Anomaly Puzzle, Curved-Spacetime Spinor Hamiltonian, and

- String Phenomenology
- Dimuon CP Asymmetry in B Decays and Wjj Excess in Two Higgs Doublet Models
- Top quark asymmetry and Wjj excess at CDF from gauged flavor symmetry
- W plus two jets from a quasi-inert Higgs doublet
- Tevatron Signal for an Unmixed Radion
- The New Dijet Particle in the Tevatron IS the Higgs
- The CDF dijet excess and Z'_{cs} coupled to the second generation quarks
- A Possible Common Origin of the Top Forward-backward Asymmetry and the CDF Dijet Resonance
- An Effective Z'
- W+Jets at CDF: Evidence for Top Quarks
- Dijet resonance from leptophobic Z' and light baryonic cold dark matter
- Standard model explanation of a CDF dijet excess in Wjj
- B physics constraints on a flavor symmetric scalar model to account for the ttbar asymmetry and Wjj excess at CDF
- Dark Forces At The Tevatron
- Top quark asymmetry and dijet resonances
- Twelve massless flavors and three colors below the conformal window
- ~115 GeV and ~143 GeV Higgs mass considerations within the Composite Particles Model
- Weak-triplet, color-octet scalars and the CDF dijet excess
- Stringy origin of Tevatron Wij anomaly
- A unified, flavor symmetric explanation for the t-tbar asymmetry and Wjj excess at CDF
- A Possible Interpretation of CDF Dijet Mass Anomaly and its Realization in Supersymmetry
- New Color-Octet Vector Boson Revisit
- The CDF dijet excess from intrinsic quarks
- No like-sign tops at Tevatron: Constraints on extended models and implications for the t tbar asymmetry
- Baryonic Z' Explanation for the CDF Wjj Excess
- \$\mathscr{0}(100 GeV)\$ Deci-weak \$W^\prime/Z^\prime\$ at Tevatron and LHC
- Signatures of Resonant Super-Partner Production with Charged-Current Decays
- Technicolor at the Tevatron
- A Z' Model for the CDF Dijet Anomaly
- Light Z' Bosons at the Tevatron
- Forward-Backward t tbar Asymmetry from Anomalous Stop Pair Production
- Searching for string resonances in e^+e^- and γγcollisions

CONCLUSIONS

- With out DØ's normal reweightings, rule out CDF bump of $1.9\ pb$, with reweightings it is $1.5\ pb$
- Very hard to make the two experiments compatible
 - CDF had a huge upwards fluctuation
 - And DØ was very unlucky
- Someone goofed??? ©
 - Both CDF and DØ have done lots of cross checks
 - See CDF's recent update for answers to many initial questions
- There is now a task force trying to sort out the differences between the analyses
 - Officially composed of theorist Estia Eichten and Keith Eilis and members of both experiments
 - Meetings aiready have started
- This analysis is very similar to a low-mass Higgs analysis
 - Would be useful to compare background estimation techniques
- The next 6 months should be fun (for this an other reasons)