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Applied relativity 



FOR THE SAME ENERGY EXTRACTED FROM THE FIELD, 

A PARTICLE WITH LOWER MASS IS MORE RELATIVISTIC 
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Beams of ultrarelativistic particles: 
e.g. a race to the Moon 

An electron with energy of a few GeV emits a photon... 

a race to the Moon! 
 

 

 

 

 

Electron will lose 
 

 by only 8 meters 
 

 the race will last only 1.3 seconds 
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Transformation of angles: collimation 

v ~ c 

qe q 
  

q = 1
  qe

Sound waves (non-relativistic) 
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Electron with velocity  emits a wave with period Temit 

while the observer sees a different period Tobs because 

the electron was moving towards the observer 

 

 

 

The wavelength is shortened by the same factor 

 

in ultra-relativistic case, looking along a tangent to the 

trajectory                              

                                                 since 

Time compression 
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Electromagnetism 
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Maxwell equations (poetry) 

War es ein Gott, der diese Zeichen schrieb 

Die mit geheimnisvoll verborg’nem Trieb 

Die Kräfte der Natur um mich enthüllen 

Und mir das Herz mit stiller Freude füllen. 

    Ludwig Boltzman 

Was it a God whose inspiration 

Led him to write these fine equations 

Nature’s fields to me he shows 

And so my heart with pleasure glows. 

          translated by John P. Blewett 
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Field of a charge 

 

At rest: Coulomb field 
 
 
 

Moving with constant velocity v = const. 
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Charge in an external electromagnetic field 

Lorentz force 

𝐹 = 𝑒(𝐸 + [𝑣x𝐵]) 



Introduction to Accelerators, African School of Physics, KNUST, Kumasi, Ghana; L. Rivkin, PSI & EPFL 

Particle motion in electromagnetic fields 

Lorentz force 

 Same force for: 

 Magnetic field B = 1 Tesla    (typical for magnets) 

 Electric field E = 3·108 V/m     (presently out of 
reach) 

Magnetic fields are used exclusively to bend and 

focus ultra-relativistic particles 

 

 Constant magnetic field 
 

 Magnetic rigidity 
 
or, in practical units 

    F = e E + v B

   
B =

p
e

   
T  m B = 1

0.29979
p GeV

c

B 

e 
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Fc 
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Roller derby in Los Angeles on 7 July 2012 
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Under the sign of the Higgs on 7 July 2012 
 

after 
 

the announcement on July 4, 2012 



Introduction to Accelerators, African School of Physics, KNUST, Kumasi, Ghana; L. Rivkin, PSI & EPFL 

Fields of a long bunch (linear charge density ) 

Transverse electric field: from Gauss law 

 
 
 
 
 

 

Transverse magnetic field: from Ampere law 
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Fields in the bunch 

 Round uniform distribution 
 
 
 
 
 
 

 Round Gaussian distribution 
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Using large magnetic fields of electron beam 
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Force seen by a test particle 

 “Fellow-traveler”: E and B nearly cancel 
 
 
 
 

 Particle travelling in the opposite direction: 
contributions from E and B add 
 
 
 

 For round Gaussian distribution 
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Synchrotron radiation 
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THEORETICAL UNDERSTANDING  

1873 Maxwell’s equations 

  made evident that changing charge densities would 

result in electric fields that would radiate outward 

1887 Heinrich Hertz demonstrated such waves: 

….. this is of no use whatsoever ! 
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Accelerated charges radiate EM waves 

   P  E2B2

   
C = 4

3
re

mec
2 3

= 8.858  10– 5 m
GeV 3

An electron of energy E in a magnetic field B 
Power emitted is proportional to: 

2
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2

4

2 




EcC
P 

The power is all too real! 
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Synchrotron radiation power 

   P  E2B2

   
PSR = 2

3
hc 2 4

2

   
PSR =

cC

2


E 4

2

   
C = 4

3
re

mec
2 3

= 8.858  10– 5 m
GeV 3

   
U0 = C 

E 4


   

U0 = 4
3

hc
 4



  
 = 1

137

   hc = 197 Mev  fm

Power emitted is proportional to: 

Energy loss per turn: 
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Charge at rest: Coulomb field, no radiation 

 

 

Uniformly moving charge  

does not radiate 

 

 

Accelerated charge: 

fields separate from the charge 

Why do they radiate? 

v = const. 

But! Cerenkov! 
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Bremsstrahlung  
or  

breaking radiation 
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and the electromagnetic fields: 

(Lorentz gauge) 

Liénard-Wiechert potentials 
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Transverse acceleration 

v 
a 

Radiation field quickly 
separates itself from the 
Coulomb field 
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v 

a 

Radiation field cannot 
separate itself from the 
Coulomb field 

Longitudinal acceleration 



To store relativistic particles (v ≈ c) in a ring for ~ 10h 
they travel a distance of diameter of Pluto’s orbit 

 Trajectories are bent into a closed path 

 Beams need to be focused to keep  
particles close to ideal orbit 
(stability questions) 
 

Ideal orbit (usually in horizontal plane) 

 Smooth, roughly circular shape closed curve, 
consisting of arcs and straight sections 

 Magnets are placed along the ideal orbit, design 
fields adjusted, so that particles of nominal 
energy follow the ideal orbit for ever and ever 
and ever ... 

 

High Energy Storage Ring 
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Storage ring layout 
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Particle motion in electromagnetic fields 

Lorentz force 

 Same force for: 

 Magnetic field B = 1 Tesla    (typical for magnets) 

 Electric field E = 3·108 V/m     (presently out of 
reach) 

Magnetic fields are used exclusively to bend and 

focus ultra-relativistic particles 

 

 Constant magnetic field 
 

 Magnetic rigidity 
 
or, in practical units 

    F = e E + v B

   
B =

p
e

   
T  m B = 1

0.29979
p GeV

c

B 

e 

Fm 

Fc 
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Bending magnets (iron dominated) 

Iron saturates at 2 T 
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SLS dipole 
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Bending magnets (dipoles) 

Iron dominated magnets (B < 2 Tesla) 

h 
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B
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N turns coil 

   
0 = 4  10– 7 h

m
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   N  I = 20'000 Amp turns

  B = 1.6 Tesla
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System of coordinates 

Design orbit in horizontal plane 

 consists of arcs and straight segments 
 

Local curvilinear coordinates: 

 x, z transverse displacements from design orbit 

 s  measured along the design orbit 

 (s) local radius of curvature (depends on field) 
 
 

 Length element 

x 

z 

s 

 

dl
2  dx

2  dz
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Quadrupole lens 

Focusing in one plane 
 

Defocusing in the other 
plane 

   
 B = 0 

Bz

x
=

Bx

z

S 

N 

N 

S 

Focusing 

Defocusing 

Linear restoring force 
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Theoretical magnetism (after Bruno Touschek) 



Focusing elements 
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Focal length of a thin quad 

Particle off-axis in a quad 
 

 sees constant magnetic field (thin lens!) 
and is bent by it 
 

 the slope              changes by 
 
 
 
 

 Defining the focal length 

   
x  dx

ds

   
x = – l

 = – l
eBz
p  l

 x   x
 s f

   
x  – x

f

   
1
f

=
g  l

B

   
1
f

= e
pg  l with gradient g

Bz

x
[m-1] 

1 Dioptre = 1 m
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Hamiltonian dynamics 
(brief reminder) 
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A dynamical system is described by a Hamiltonian 

    q coordinate 

    p canonical momentum 

    t independent variable (time) 
 

The equations of motion: Hamilton‘s equations 

 tpqH ,,

q

H

dt

dp

p

H

dt

dq









 ,
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Phase space 

 xpx,  – canonical variables 
 

 – a point in 2-d phase space 

x 

x´ 

 xx ,

p

p
x x

'

''

o o

o

x x s x

x x
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Conservative  
Hamiltonian systems 

The equations of motion are: 
 

 
 
 

The Hamiltonian is conserved, ist value – energy 
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Phase space 

 – a point in 2-d  
phase space 

 

– velocity vector in 2-d 
phase space 

 

– the gradient of the 
Hamiltonian, 
orthogonal to velocity 


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

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
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H
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The motion is along the curves of H = const 
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The initial coordinates of a particle ensemble in the 

transverse phase plane are contained in the ellipse:   

ds

dx
'x 

x

)x,x(
'
oo )x,x(

'

'

''

o o

o

x x s x

x x

 



Focusing is needed to avoid beam blow up !   

DRIFT SECTION 

CHANGE OF PARTICLE DISTRIBUTION IN PHASE SPACE   

   

INITIAL COORDINATES 

FINAL COORDINATES 
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ds

dx
'x 

x
)x,x(

'
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)x,x(
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xx
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FOCUSING QUADRUPOLE 

CHANGE OF PARTICLE DISTRIBUTION IN PHASE SPACE   

   

INITIAL COORDINATES 

FINAL COORDINATES 
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PHASE SPACE: angle – action variables 

x

x





2
A

A
 

Linear transformation is a simple 

rotation in these coordinates 
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PHASE SPACE TRANSFORMATION in NON-linear element 
(sextupole magnet)  

 




A 



2m  
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Conservation of phase space: emittance 

Canonical transformations  

preserve phase space areas 

x

'x

x

'x
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The language of 
Accelerator Physics 
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Matrix notation 

Transfer matrices (as in geometric optics)  

 

 Describe canonical transformations 
i.e. phase space area is preserved 
(symplectic matrices) 
 

 

 Thin focusing lens 
 
 
 

 Drift of length L  

  
det M = 1

   
x
x out

=
1 0

– 1 f1 f 1
 x

x in

   
x
x out

= 1 L
0 1

 x
x in
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Strong focusing example 

This lens doublet focuses in both planes 

 

 The focal length is, of course, the good 
old lens makers equation 

 

 f   – f  f  – f

  
Mx =

1 0
1 f1 f 1

1 L
0 1

1 0

–1 f1 f 1

  
Mz =

1 0

–1 f1 f 1
1 L
0 1

1 0
1 f1 f 1

  

Mx =
1 – L fL f L

– L
f 2L
f 2 1 + L fL f

focusing for L « f

   1

f *
= 1

f1
+ 1

f2
– L

f1  f2
= L

f 2
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A sequence of focusing-
defocusing fields provides a 
stronger net focusing force. 

Quadrupoles focus 
horizontally, defocus vertically 
or vice versa. Forces are 
proportional to displacement 
from axis. 

A succession of opposed 
elements enable particles to 
follow stable trajectories, 
making small oscillations about 
the design orbit. 

Technological limits on 
magnets are high.  

SUMMARY:  Strong (Transverse)Focusing –  

  Alternating Gradient Principle 
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Equation of motion  

In horizontal plane 
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Equations of motion 

In individual elements K = const. : Harmonic Oscillator 
(KISS principle of accelerator building) 

 

Overall, K(s) is a piecewise constant, periodic function 
      

      Hill equation  

 
 
            (C - circumference or period) 

  K s = K s + C

s C 

K(s) 

   
x + K s  x = 0

   x + K  x = 0

z – K  z = 0

   
H =

p2

2
+

K s  x2

2
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Hill equation 

First used by an astronomer G. Hill in his studies of the 
motion of the moon, a motion under the influence 
of periodically changing forces 

1838 -- 1914 



Harmonic oscillator 

   
u + Ku = 0

 

+ A 

- A 

s 

u Solution: 

 
 
 
 

Amplitude:   constant  A 

 

Phase advance:  uniform: 

 

Phase space: 

 

Independent of s: 

   u s = A  cos K  s

    s = K  s

u 

u’ 

 A

 A K

   u = – A K  sin K  s

   
A2 = u2 + u

K

2

   
u + Ku = 0



Solutions of the Hill equation 

“Pseudo-harmonic oscillator” solutions (here u stands for x or z) 
 
 
 

 We have introduced a periodic “envelope” function (s) 
the amplitude of the betatron oscillation is modulated by 
 
 
 

 the rate of phase advance at any point along the 
accelerator is related to the value of the  function at that 
point 

   
u + k s  u = 0

   u s = a  s cos  s – 0

   
 s = ds

 s
0

s

   s

  
 = 1





Hill equation (pseudo-harmonic oscillations) 

Solution: 

 
 
 

Amplitude: modulated with s: 

 

Phase advance:  non-uniform: 

 

Phase space: 

 
 

Depends on s: 

   u(s) = A (s)cos (s)

   A (s)

 

u 

s 

   
(s) = ds

(s)
0

s

   
u s = – 


u – 1


A sin 

u 

u’ 

   A (s)

  A


   
where  s  – 1

2
 s

   
A2 s = u 2 + u + u 2

   
u + K s u = 0



Sphere rolling in a gutter analogy 



Turn, after turn, after turn… 

Betatron oscillations within an envelope 

      0sin   sssx



Turn, after turn, after turn… 

Betatron oscillations within an envelope 

      0sin   sssx



Harmonic oscillator solutions (K = const.) 

For K(s) constant, “principal” solutions are (harmonic oscillator) 

 case of K > 0 
 

 case of K < 0 
 
 

 these are linearly independent solutions with initial conditions: 

 
 
 

 any other solution is a linear combination of these: 

u(s)  C(s)u0  S(s)  u 0

 u (s)   C (s)u0   S (s)  u 0

u(s)

 u (s)

 

 
 

 

 
 

C(s) S(s)

 C (s)  S (s)

 

 
 

 

 
 

u0

 u 0

 

 
 

 

 
 

C(s)  cos( Ks) and S(s) 
1

K
sin( Ks) for  K  0

C(s)  cosh( K s) and S(s) 
1

K
sinh( K s) for  K  0

C(0)  1;  C (0) 
dC

ds
 0 and S(0)  0 ;  S (0) 

dS

ds
 1



Harmonic oscillator solutions (matrix form) 

Transfer matrices for particular cases: 

 drift space ( K=0 ) 
 
 

 focusing magnet ( K > 0, const. ) of length l 
 
 
 

 defocusing magnet ( K < 0, const. ) of length l 
 
 
 

 the thin lens limit:   
lim l  0 keeping K  l 

1

f
= const.

u

 u 

 

 
 

 

 
 

out


1 L

0 1

 

 
 

 

 
 

u

 u 

 

 
 

 

 
 

in

u

 u 

 

 
 

 

 
 

out


cos( Kl )

1

K
sin( Kl )

 K sin( Kl ) cos( Kl )

 

 

 
 

 

 

 
 

u

 u 

 

 
 

 

 
 

in

u

 u 

 

 
 

 

 
 

out


cosh( Kl )

1

K
sinh( K l)

K sinh( K l) cosh( Kl )

 

 

 
  

 

 

 
  

u

 u 

 

 
 

 

 
 

in

0)(''

0)(''





ysKy

xsKx

y

x



K < 0  defocusing 

DRIFT: 

k = 0 

QUADRUPOLE: 

K > 0  focusing 

TRANSVERSE MOTION SUMMARY 

0)(''

0)(''





ysKy

xsKx

y

x

u

 u 

 

 
 

 

 
 

out


cos( Kl )

1

K
sin( Kl )

 K sin( Kl ) cos( Kl )

 

 

 
 

 

 

 
 

u

 u 

 

 
 

 

 
 

in

u

 u 

 

 
 

 

 
 

out


cosh( Kl )

1

K
sinh( K l)

K sinh( K l) cosh( Kl )

 

 

 
  

 

 

 
  

u

 u 

 

 
 

 

 
 

in

u

 u 

 

 
 

 

 
 

out


1 L

0 1

 

 
 

 

 
 

u

 u 

 

 
 

 

 
 

in



Stability of transverse (betatron) oscillations 

The transfer matrix of a beamline that consists of elements 
with individual matrices M1 , M2 , ... Mn  
(N.B. the order in which matrices are multiplied!) 

 
 

 Full turn matrix M 
 
 
 
 

 After n turns must remain finite for arbitrarily large n 

Mtot  Mn   . ..   M2  M1

   
x
x n

= M n x
x 0



Stability condition 

Let v1 and v2 be eigenvectors and 1 and 2 eigenvalues of M 

 

 

 

 For stability   must not grow with n 

 since the product of eigenvalues is unity: 
  
 
we can write in general 
 

 For stability µ should be real! 

 

 

 

 

 

 

 

   
x
x 0

= Av1 + Bv2

   
M n x

x 0

= A1
n
v1 + B2

n
v2

   1
n
, 2

n

   det M = 1  1 2 = 1

   1 = e i, 2 = e– i

   Tr M = 1+2 = 2 cos

   
– 1  1

2
Tr M  1



Example 

Consider one period of FODO lattice: 

 

 

 

 

 

 

 

 applying the stability condition 
 

 The motion is stable, provided the focal 
length > 1/2 the lens spacing 

 f   – f

L L 

   
M = 1 L

0 1


1 0
1 f1 f 1

 1 L
0 1


1 0

– 1 f1 f 1

  

M =

1 – L
f
– L

f

2
2L + L2

f

– L

f 2
1 + L

f

   
– 1  1 – 1

2
L
f

2
 1

   L
2 f

 1



Solutions of the Hill equation 

“Pseudo-harmonic oscillator” solutions (here u stands for x or z) 
 
 
 

 We have introduced a periodic “envelope” function (s) 
the amplitude of the betatron oscillation is modulated by 
 
 
 

 the rate of phase advance at any point along the 
accelerator is related to the value of the  function at that 
point 

   
u + k s  u = 0

   u s = a  s cos  s – 0

   
 s = ds

 s
0

s

   s

  
 = 1





Courant - Snyder invariant 

At any point s along the accelerator for a given betatron 
oscillation the following combination of u and u’ has the same 
value 

 

 

 

Introducing some additional notation: 
 
 

 

Describing an ellipse in phase space {u,u’} with area ·  

 The parameters , ,  vary along the machine 

 The phase space area remains constant 

   
a 2 =

u 2


+ u –



2
u

2

  
 – 1

2


  
 

1 + 2

   
 = a2 =u2 + 2uu +u2



Betatron oscillation solution 

 Displacement 
 

 Slope 
 

 combining the two 
 
 
 
 

equation of an ellipse with area =  

      0cos   sssx

        0sin 



 sssxsx

   
22 xxx

22 2 xxxx  



Phase space ellipse: Courant – Snyder Invariant 

Single particle motion 

 At a place with  
Courant-Snyder  
parameters  
( , ,  ) 
 
 
 
 
 
 

 at a given point s 

x 

x’ 

Beam centroid 

  xmax = 

  
xmax

 = 

  
slope = – 



   
 s 

1 +  s 2

(s)

   
 s  – 1

2
 s

   
 =x2 + 2xx +x 2

  0cos   Lnsxn



Simple case: Upright ellipse 

2
2

x
x

 




For the simple case when 






11
0

2






the ellipse is upright x 

x’ 



Betatron oscillations 

• Particles in the beam execute betatron oscillations with 
different amplitudes. 

Transverse beam distribution 

• Gaussian (electrons) 

• “Typical” particle: 1 -  ellipse 
(in a place where   = ’ = 0) 

 
 

Beam emittance 

x 

x’ 

x 

x’ 

  
Area =  

   
Units of  m  rad   

Emittance 
x

2

    
x =  

x =  /

   
 = x  x

   
 =

x

 x



2-D Gaussian distribution 

Area =  x 

x 

x’ 

x 

x 

Electron rings emittance definition 

 1 -  ellipse 
 
 
 
 
 
 
 
 

 Probability to be inside 1- ellipse 
 
 

 Probability to be inside n- ellipse 

   
n x dx = 1

2
e–x2 / 2 2

dx

  
P1 = 1 – e– 1 21 2 = 0.39

  
Pn = 1 – e–

n2
2n2
2



Courant - Snyder parameters: transfer matrices 

Consider a transfer matrix M for a full turn starting at some point 
 

 We know that it is symplectic, i.e.  det M = 1 
 

 Any such matrix with unit determinant can be 
parameterized: 
 
 
 
 
where in order to satisfy the condition of unit determinant 
 
 
we can regard this now as just a formal parameterization 

   
M =

cos +  sin  sin 

– sin  cos – sin 

   – 2 = 1



Phase space ellipse 

x 

x’ 

Beam centroid 

  xmax = 

  
xmax

 = 

  
slope = – 



   
 s 

1 +  s 2

(s)
   

 s  – 1
2

 s

   
 =x2 + 2xx +x 2



x

at smax/min where  = 0 

x



circle of radius 
everywhere 
in the machine 





Tune 

Transfer matrix for one complete turn: 

 

 

 

Phase advance over one turn is independent of location 

 

 

 

Tune Q is the number of betatron oscillations in one revolution 

   
M =

cos +  sin  sin 

– sin  cos – sin 

   
 = ds

 s

   
Q  1

2
ds

 s



Transfer matrix between two points  

The transfer matrix between two arbitrary point in the 
machine 

 

 

 

in terms of Courant - Snyder parameters at these points and 
the phase advance between them 

   
x
x 2

= M12
x
x 1

  
 2

 1

cos + 1sin   1 2 sin 

–
1 + 12 sin  + 2 –1 cos

 1 2

 1

 2

cos – 2sin 



Transforming C-S parameters between two points 

The transfer matrix between two arbitrary point in the machine 

 

 

 

The Courant - Snyder parameters at those points are related by 

 

 

 

 

And the phase advance between the points 

 
        or 

   
m

11
2 – 2m11 m12 m

12
2

– m11  m21 1 + 2m12 m21 – m12  m22

m
21
2 – 2m21 m22 m

22
2

  
 2

2

 2

=

  
 1

1

 1

   
x
x 2

= M12
x
x 1

   
M12 =

m11 m12
m21 m22

   
tan =

m12

m11  1 – m12  1

   
sin  =

m12

 1 2

   

 = ds
 s

1

2



Full turn transfer matrix 

Transfer matrix for one complete turn: 

 

 

 

 

Tune Q is the number of betatron oscillations in one revolution 

 

 

 

If the tune is an integer, i.e.  

 
s

ds
Q





2

1

2



















sincossin

sinsincos
M











10

01
M

n  2



Some simple cases and their phase advance 

Thin lens 
 

‘point to point imaging’ 
 
 
 
 
 

‘parallel to point imaging’ 
 
 
 
 
 
 

drift of length L 

021  ss








































 12212221

11

2

2 000

xrxrr

r

x

x   n

012 r

011 r




































 121

1

2221

12

2

2 0

0

0

xr

x

rr

r

x

x

2
01


  nfor

1

1
tan


 

Lr 12
21

sin



L



Proton therapy Gantry at PSI: point to parallel! 



Courant - Snyder parameters: transfer matrices  

The eigenvalues of this matrix are related to µ: 

 

We can also write our matrix M as 
 

 

  where 

 

The powers of matrix M can be written simply as: 

 

 

And the elements of Mk are bounded for all k if µ is real 

    = e i  Tr M = 2cos

   M = I cos + J sin

   
J =

 

– –
and J 2 = – I

   
M k = I cos k + J sin k

   Tr M  2

   
M = e J



FODO cell lattice 



CIRCULAR ACCELERATOR 

BENDING MAGNET 

DIPOLE 

FOCUSING/DEFOCUSING MAGNET 

QUADRUPOLE 

ACCELERATING CAVITY 
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SECTOR BENDING MAGNET 

B

ox

ox

Positive displacement xo of the initial coordinate from the center axis 

leads to a longer path inside the magnet, i.e. more deflection 

Negative displacement -xo of the initial coordinate from the center axis 

leads to a shorter path inside the magnet, i.e. less deflection 

In both cases the trajectory comes closer to the central orbit  FOCUSING 
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Off-energy particles 



Off-momentum particles 

Particle with an energy deviation d  

 
 
 
 
 

 Will be bent and focused differently 
 
 

 The equation of motion: non-homogeneous Hill equation 
 
 
 
 

 

Design orbit 

d  0 

d  0 

ρ

δ
)(  xskx



Off-momentum particles 

Particle with an energy deviation d  

 
 
 

 Will be bent and focused differently 
 

 The equation of motion: non-homogeneous Hill equation 
 
 
 
 

 The motion is a sum of the  
solution of homogeneous equation + a particular solution 

 

Design orbit 

d  0 

d  0 

ρ

δ
)(  xskx



Dispersion function 

Particle deviation from ideal orbit 

 

D(s)  - dispersion function 

 Periodic solution of the inhomogeneous Hill equation 
 
 
 
 
 

 New equilibrium orbit of a particle with energy deviation d  

 Betatron oscillations are executed around this new 
equilibrium 
 

 

   x = x + x = x + D s  d

   

D + k s D = 1
 s

= 0 in straights

= 1
 in bends



Matrix notation: extended to 3 by 3 case 

Taking into account particle energy deviation, particle position 
 
 
   and     

 

 

 

 

 

 

 

 

 

where D and D’ are the solutions of inhomog. equation  



















d

x

x

x


 

 

 



































dd

0

0

x

x

Msx

sx

sx
 we usually assume 

that d  

does not change 

     

     


















100

sDsSsC

sDsSsC

M



Examples of 3 by 3 transfer matrices 

For simple cases of piece-wise constant K(s), (s) 
 

 



























100

sin
1

cossin

cos1
1

sin
1

cos











K
K

KK

 0

0

ssK

K







 
 





























100

sinh
1

coshsinh

1cosh
1

sinh
1

cosh











K
K

KK

 0

0

ssK

K









Bending magnet transfer matrix 

Pure dipole field:  

 k = 0 

 q – bending angle 
 
 
 
 
 
 
 
 
 

 

In the vertical plane - drift 
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Dispersion: periodic solution 

Let the matrix for one full period be 
 
 
 

Dispersion being a periodic solution: 
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FODO cell lattice 



Beam size 

 

 When the beam energy spread is d 
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Full turn transfer matrix 

Transfer matrix for one complete turn: 

 

 

 

 

Tune Q is the number of betatron oscillations in one revolution 

 

 

 

If the tune is an integer, i.e.  
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Full turn transfer matrix: special cases 

 

The tune is half-integer, i.e.  

 

 

 

 
 

The tune is quarter-integer, i.e. 
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Errors, errors, errors 

Suppose at some point along the accelerator 

 extra field B over some length l 

 it will kick a particle by an angle q 
 

 

 

 

 

If the tune Q is close to an integer, 

the kicks will add up in phase each turn 

driving the particle out of the machine 
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Betatron oscillation solution 

 Displacement 
 

 Slope 
 

 combining the two 
 
 
 
 

 e.g. if we start a particle with x0
‘ at a place whith 0 
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Field error 

In the presence of such a kick 

 x = 0 is no longer a solution 

 there will be a new closed orbit 
 
 
 
Particles perform betatron oscillations around this new 
closed orbit 
 
 

  function is a measure of sensitivity to errors 
 

 when Q approaches an integer value, the new closed 
orbit becomes very large 

   
x s =
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Focusing error 

A gradient error over a short distance 
 
 

 a thin lens 
 
 
 
 

 transfer matrix for full turn becomes 
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Comparing the traces of the two matrices, the new tune: 

 

Focusing error (algebra) 
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Stability 

The motion remains stable in the presence of focussing errors, 
if the new tune remains a real number, i.e. 
 
 
 
 
and when the unperturbed tune is not near an integer or 
half-integer resonance and the perturbation is sufficiently 
small 
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Focusing error 

Tune near half-integer: 

 

 

 

 

 

 

 

 

the kicks will add up in phase every two turns 

driving the particle out of the machine 
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Tune shift 

 A small gradient error leads to a change in tune: 
 
 
 
 
 

 A distribution of gradient errors leads to a tune shift 
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This is how the tunes are adjusted 
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Focusing depends on particle energy 

Equivalent to an error in gradient 
 
 
 
 

Causes a tune shift of: 
 

We define chromaticity x 
 

In strong focusing rings x ~ -100 ! For energy spread d ~1% 

 

Need positive chromaticity to prevent “head-tail” instability 

Chromaticity 
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Chromaticity correction 

How can we adjust chromaticity? We need  

gradients (focusing) that changes with energy deviation d 
 
 

In horizontal plane  
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Sextupoles to correct chromaticity 

Two ingredients are needed: 
 

 Sextupoles placed in a region of  
finite dispersion: sort particles  
according to their energy deviation 

 

 
 

 Gradients that depend  
on particle position 
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DYNAMIC APERTURE 

Having corrected chromatic aberrations we introduced 
geometric aberrations: 
 

 we increased energy acceptance 
 

 but particles with large transverse amplitudes are no 
longer stable! 
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Longitudinal dynamics 
 

Phase stability 



 RF cavity provides accelerating field  
with frequency 

• h – harmonic number 
 

 The energy gain: 
 
 

 Synchronous particle:  

• has design energy  

• gains from the RF on the average as 
much as it loses per turn U0 

Longitudinal motion:  
compensating radiation loss U0 

 RFRF eVU 

0fhfRF 

 

VRF 

U0 



 

VRF 

U0 

 Particle ahead of synchronous one 

• gets too much energy from the RF 

• goes on a longer orbit (not enough B) 
   >> takes longer to go around 

• comes back to the RF cavity closer to synchronous part. 
 

 Particle behind the synchronous one  

• gets too little energy from the RF 

• goes on a shorter orbit (too much B) 

• catches-up with the synchronous particle 

Longitudinal motion:  
phase stability 



Orbit Length 

Length element depends on x 
 
 

Horizontal displacement has two parts: 
 
 

 To first order x does not change L 

 x – has the same sign around the ring 
 

Length of the off-energy orbit 
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Something funny happens on the way around the ring... 

Revolution time changes with energy 

 

 

 Particle goes faster (not much!) 
 

 while the orbit length increases (more!) 
 

 The “slip factor” 
 
 
 

 Ring is above “transition energy”  
 
isochronous ring: 
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Longitudinal motion: energy-time oscillations 

energy deviation from the design energy, or 
the energy of the synchronous particle 

longitudinal coordinate measured from the 
position of the synchronous electron 



During one period of synchrotron oscillation: 

 when the particle is in the upper half-plane, it loses more 
energy per turn, its energy gradually reduces 
 
 
 
 

 when the particle is in the lower half-plane, it loses less 
energy per turn, but receives U0 on the average, so its 
energy deviation gradually reduces 

The synchrotron motion is damped 

 the phase space trajectory is spiraling towards the origin 

Longitudinal motion:  
damping of synchrotron oscillations 
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  U > U0

  U < U0
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