The African School of Physics

Lecture : Object Identification and Data Analysis

Version 2012
Slides from ASP2010 (Ketevi Assamagan, Daniel Froidevaux, Simon Connell)

The LHC Project

Large Hadron Collider 27 km circumference

On July $4^{\text {th }}$, CERN announced the discovery of a Higgs-like boson. What are its properties ... ? What else is out there ...?

ALICE: study of quark-gluon plasma

- L3 solenoid
- Large TPC
- Si microstrip, drift and pixels detectors
- Particle identification: RICH, TRD, TOF

ATLAS superimposed to the 5 floors of building 40

ATLAS Detector

45 m

CMS Detector

 \section*{CALORIMETERS}

 \section*{CALORIMETERS}}

Superconducting Coil, 4 Tesla

LHCb:

Study of B decays and CP Violation (indirect search for New Physics)

- Dipole magnet (4 T.m)
- Particle Identification (2 RICH)
- 21 layer of Si microstrip vertex locator (VELO)
- Tracking: Silicon + long straw tubes
- Shashlik (Pb/scint) em calorimeter
- HCAL (Fe/scint),
- MWPC muon system

Collisions at LHC

Physics at the LHC: the challenge

Small x-sections need highest luminosity

$$
\square L=10^{34-35} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}
$$

Orders of magnitude of event rates for various physics channels:

- Inelastic :
- W -> lv :
- tt production :
- Higgs (m=100 GeV) :
$10^{10} \mathrm{~Hz}$
- Higgs (m=600 GeV) : (and include branching ratios: $\sim 10^{-2}$)

Selection power for Higgs discovery $\approx 10^{14-15}$
i.e. 100000 times better than achieved at Tevatron so far for high- \mathbf{p}_{T} leptons!

Physics at the LHC: the challenge

 LHC is a "factory" for top, W/Z, Higgs, SUSY, black holes ... Expected event rates for representative (known and new) physics processes at "low" luminosity $\left(\mathrm{L}=10^{33} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}\right)$ in ATLAS/CMS| Process | Events/s | Events for $10 \mathrm{fb}^{-1}$
 (one year) | Total statistics collected
 elsewhere by 2008 (?) |
| :--- | :---: | :---: | :---: |
| $\mathbf{W} \rightarrow \mathbf{e v}$ | 30 | 10^{8} | $10^{4} \mathrm{LEP} / \mathbf{1 0}^{7}$ Tevatron |
| $\mathbf{Z} \rightarrow$ ee | 3 | 10^{7} | $\mathbf{1 0}^{6} \mathrm{LEP}$ |
| Top | 2 | 10^{7} | 10^{4} Tevatron |
| Beauty | 10^{6} | $10^{12}-10^{13}$ | 10^{9} Belle/BaBar |
| $\mathbf{H}(\mathbf{m}=\mathbf{1 3 0 ~ G e V})$ | 0.04 | 10^{5} | |
| Gluino
 $(\mathbf{m}=\mathbf{1 ~ T e V})$ | 0.002 | 10^{4} | |
| Black holes
 $\mathbf{m}>\mathbf{3} \mathbf{~ T e V}$ | 0.0002 | 10^{3} | |

Physics at the LHC: the environment

What do we mean by particle reconstruction and identification at LHC? Elementary constituents interact as such in "hard processes", namely:

Quarks and leptons as matter particles, and

Leptons	$\mathrm{e}(0.0005)$	$\mu(0.105)$	$\tau(1.777)$
	v_{e}	v_{μ}	v_{τ}
	$\mathrm{u}(<0.005)$	$\mathrm{c}(\sim 1.25)$	$\mathrm{t}(\sim 175)$
	$\mathrm{d}(<0.005)$	$\mathrm{s} \mathrm{(} \mathrm{\sim} \mathrm{0.1)}$	$\mathrm{~b}(\sim 4.2)$

Gluons and EW bosons as gauge particles

| Gluon(0) | Photon
 (0) | W^{+}, W^{-} |
| :---: | :---: | :---: | :---: |
| (80.42) | Z | |
| Colour octet | (91.188) | |

$\mathrm{e}, \mathrm{v}, \gamma:$	only rigorously stable particles
$\mu:$	at collider energies, do not decay in the detector
$\tau, \mathrm{c}, \mathrm{b}:$	Live long enough to travel a short distance, can see separated vertexes.

All other particles can only be seen through their stable decay products

Physics at the LHC: the environment

 Which type of particles does one actually see in the final state?LHC physics processes are dominated by strong interactions (QCD) :

+ Jets : hard processes: quarks and gluons materialise as hadronic jets, which consist mostly of charged and neutral hadrons (pions, kaons, and to a lesser extent protons and neutrons, which at these energies can be all considered as stable).
+ "soup" : soft processes: non-perturbative QCD processes with soft gluons materialising as almost uniform soup of charged and neutral π, \mathbf{K}, etc.
+ Heavy quarks with "long" lifetime are produced abundantly also
+ High- $_{\mathrm{T}}$ (above $\sim \mathbf{1 0} \mathbf{~ G e V}$) leptons are produced mostly in c , b decays.
$+\quad$ High $-p_{T}$ isolated leptons may be found in fraction of J / ψ and Y decays
+ For $\mathbf{p}_{\mathrm{T}}>\mathbf{2 5} \mathbf{~ G e V}$, dominant source of high- p_{T} leptons: W/Z/tt decays

Cross section, Luminosity, Reaction Rate

Luminosity

In scattering theory and accelerator physics, luminosity is the number of particles per unit area per unit time times the opacity of the target, usually expressed in $\mathrm{cm}-2 \mathrm{~s}-1$. The integrated luminosity is the integral of the luminosity with respect to time. The luminosity is an important value to characterize the performance of an accelerator.

The following relations hold

Depends on $f_{\text {rev }}$ revolution frequency
$\mathcal{L}=\frac{N^{2} f_{\text {rev }} n_{b}}{4 \pi \sigma^{* 2}}$ n_{b} number of bunches N number of particles/bunch σ^{*} beam size or rather overlap integral at IP
$N=\sigma \int L d t \quad$ Number of measured events
$\frac{d N}{d t}=L \sigma$
Rate
$\frac{d \sigma}{d \Omega}=\frac{1}{L} \frac{d^{2} N}{d \Omega d t} \quad$ Differential cross section

Luminosity measurements

CMS/TOTEM and ATLAS forward detectors for forward physics, heavy ion, ... and luminosity measurements ... forward / high η physics (elastic scattering, diffractive processes ...)

- Initially from machine parameters

- Precision ~10-15\%
- Medium term from physics processes: W/Z \& $\mu \mu / \mathrm{ee}$
- Precision $\sim 5-10 \%$
- >= 2011 from Roman Pot detectors
- Precision ~2-3\%

Luminosity delivered to ATLAS since the beginning

Physics at the LHC: the environment

Extract number of inelastic collisions per bunch crossing

$$
<\mathbf{n}>=\sigma_{\text {inel }} \mathbf{x} \quad \mathbf{L} \quad \mathbf{x} \Delta \mathbf{t} \quad / \varepsilon_{\text {bunch }}
$$

LHC: $<\mathrm{n}>=70 \mathrm{mbx} \times 10^{34} \mathrm{~cm}^{-2} \mathrm{~s}^{-1} \times 25 \mathrm{~ns} / 0.8=23$
Big change compared to recent and current machines:

LEP:	$\Delta t=22 \mu \mathrm{~s}$	and	$<n>\ll 1$
SppS:	$\Delta t=3.3 \mu \mathrm{~s}$	and	$<n>\approx 3$
HERA:	$\Delta t=96 \mathrm{~ns}$	and	$<n>\ll 1$
Tevatron:	$\Delta \mathrm{t}=0.4 \mu \mathrm{~s}$	and	$<n>\approx 2$

Rapidity, pseudo-rapidity

In experimental particle physics, pseudorapidity, η, is a commonly used spatial coordinate describing the angle of a particle relative to the beam axis. It is defined as

$$
\eta=-\ln \left[\tan \left(\frac{\theta}{2}\right)\right],
$$

where θ is the angle between the particle momentum p and the beam axis. In terms of the momentum, the pseudorapidity variable can be written as

$$
\eta=\frac{1}{2} \ln \left(\frac{|\vec{p}|+p_{L}}{|\vec{p}|-p_{L}}\right)
$$

In the limit where the particle is travelling close to the speed of light, or in the approximation that the mass of the particle is nearly zero, pseudorapidity is numerically close to the experimental particle physicist's definition of rapidity,

$$
y=\frac{1}{2} \ln \left(\frac{E+p_{L}}{E-p_{L}}\right)
$$

In hadron collider physics, the rapidity (or pseudorapidity) is preferred over the polar angle θ because, loosely speaking, particle production is constant as a function of rapidity. One speaks of the forward direction in a hadron collider experiment, which refers to regions of the detector that are close to the beam axis, at high |n|.

Physics at the LHC: the environment

ATLAS/CMS: from design to reality One word about neutrinos in hadron colliders:

\checkmark since most of the energy of the colliding protons escapes down the beam pipe, one can only use the energy-momentum balance in the transverse plane
\rightarrow concepts such as E_{T} miss, missing transverse momentum and mass are often used (only missing component is $E_{z}{ }^{\text {miss }}$)
\rightarrow reconstruct "fully" certain topologies with neutrinos, e.g. $\mathrm{W} \rightarrow \mathrm{Iv}$ and even better $\mathrm{H} \rightarrow \tau \tau \rightarrow \mathrm{I} \nu_{\mathrm{l}} \nu_{\tau} \mathrm{h} \nu_{\tau}$
\checkmark the detector must therefore be quite hermetic
\rightarrow transverse energy flow fully measured with reasonable accuracy
\rightarrow no neutrino escapes undetected
\rightarrow no human enters without major effort
(fast access to some parts of ATLAS/CMS quite difficult)

Track Isolation: summed p_{T} of tracks in the specified ΔR Calo isolation: summed calorimeter energy deposits in ΔR

An example from the ATLAS detector
Reconstruction of a $2 e 2 \mu$ candidate for the Higgs boson - with $m_{2 е 2 \mu}=123.9 \mathrm{GeV}$
We need to understand the interaction of particles with matter in order to understand the design and operation of this detector, and the analysis of the data.

The ATLAS Inner Detector (barrel)

The ATLAS Inner Detector (one end-cap)

Figure 1.2: Cut-away view of the ATLAS inner detector.

Table 1.2: Main parameters of the inner-detector system.

Item		Radial extension (mm)	Length (mm)
Overall ID envelope Beam-pipe		$0<R<1150$	$0<\|z\|<3512$
		$29<R<36$	
Pixel	Overall envelope	$45.5<R<242$	$0<\|z\|<3092$
3 cylindrical layers	Sensitive barrel	$50.5<R<122.5$	$0<\|z\|<400.5$
2×3 disks	Sensitive end-cap	$88.8<R<149.6$	$495<\|2\|<650$
SCT	Overall envelope	$255<R<549$ (barrel)	$0<\|z\|<805$
		$251<R<610$ (end-cap)	$810<\|z\|<2797$
4 cylindrical layers	Sensitive barel	$299<R<514$	$0<\|z\|<749$
$2 \times 9 \text { disks }$	Sensitive end-cap	$275<R<560$	$839<\|z\|<2735$
TRT	Overall envelope	$554<R<1082$ (banel)	$0<\|z\|<780$
		$617<R<1106$ (end-cap)	$827<\|2\|<2744$
73 straw planes	Sensitive barrel	$563<R<1066$	$0<\|z\|<712$
160 straw planes	Sensitive end-cap	$644<R<1004$	$848<\|2\|<2710$

1.2 Tracking

Approximately 1000 particles will emerge from the collision point every 25 ns within $|\eta|<2.5$, creating a very large track density in the detector. To achieve the momentum and vertex resolution requirements imposed by the benchmark physics processes, high-precision measurements must be made with fine detector granularity. Pixel and silicon microstrip (SCT) trackers, used in conjunction with the straw tubes of the Transition Radiation Tracker (TRT), offer these features.

The Inner Detector is immersed in 2T magnetic field generated by a central Solenoid which extends over a length of 5.3 m with a diameter of 2.5 m

ATLAS Calorimeter

Figure 1.3: Cut-away view of the ATLAS calorimeter system.

A view of the sampling calorimeters is presented in figure 1.3, and the pseudorapidity coverage, granularity, and segmentation in depth of the calorimeters are summarised in table 1.3 (see also chapter 5). These calorimeters cover the range $|\eta|<4.9$, using different techniques suited to the widely varying requirements of the physics processes of interest and of the radiation ervironment over this large η-range. Over the η region matched to the inner detector, the fine granularity of the EM calorimeter is ideally suited for precision measurements of electrons and photons. The coarser granularity of the rest of the calorimeter is sufficient to satisfy the physics requirements for jet reconstruction and $E_{T}^{\text {miss }}$ measurements.

Table 1.3: Main parameters of the calorimeter system.

	Barrel		Eind-cap	
EM calorimeter				
Number of liyers and $\|\eta\|$ coverage				
Presampler	1	$\|\eta\|<1.52$	1	$1.5<\|7\|<1.8$
Calorimeter	$\begin{aligned} & 3 \\ & 2 \end{aligned}$	$\begin{array}{r} \|\eta\|<1.35 \\ 1.35<\|\eta\|<1.475 \end{array}$	$\begin{aligned} & 2 \\ & 3 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.375<\|\eta\|<1.5 \\ & 1.5<\|\eta\|<2.5 \\ & 2.5<\|\eta\|<3.2 \\ & \hline \end{aligned}$
Ciranularity $\Delta \eta \times \Delta \phi$ versus $\|\eta\|$				
Presampler	0.025×0.1	$\|\eta\|<1.52$	0.025×0.1	$1.5<\|\eta\|<1.8$
Calorimeter Ist layer	$\begin{aligned} & \hline 0.025 / 8 \times 0.1 \\ & 0.025 \times 0.025 \end{aligned}$	$\begin{array}{r} \|\eta\|<1.40 \\ 1.40<\|\eta\|<1.475 \end{array}$	$\begin{aligned} & 0.050 \times 0.1 \\ & 0.025 \times 0.1 \\ & 0.025 / 8 \times 0.1 \\ & 0.025 / 6 \times 0.1 \\ & 0.025 / 4 \times 0.1 \\ & 0.025 \times 0.1 \\ & 0.1 \times 0.1 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.375<\|\eta\|<1.425 \\ & 1.425<\|\eta\|<1.5 \\ & 1.5<\|\eta\|<1.8 \\ & 1.8<\|\eta\|<2.0 \\ & 2.0<\|\eta\|<2.4 \\ & 2.4<\|\eta\|<2.5 \\ & 2.5<\|\eta\|<3.2 \end{aligned}$
Calorimeter 2nd layer	$\begin{aligned} & 0.025 \times 0.025 \\ & 0.075 \times 0.025 \end{aligned}$	$\begin{array}{r} \|\eta\|<1.40 \\ 1.40<\|\eta\|<1.475 \end{array}$	$\begin{aligned} & 0.050 \times 0.025 \\ & 0.025 \times 0.025 \\ & 0.1 \times 0.1 \end{aligned}$	$\begin{aligned} & 1.375<\|\eta\|<1.425 \\ & 1.425<\|\eta\|<2.5 \\ & 2.5<\|\eta\|<3.2 \end{aligned}$
Calorimeter 3nd layer	0.050×0.025	$\|7\|<1.35$	0.050×0.025	$1.5<\|7\|<2.5$
Number of readout channels				
Presampler Calorimeter	$\begin{aligned} & \hline 7808 \\ & 101760 \end{aligned}$		1536 (both sides) 62208 (both sides)	
LAr hadronic end-cap				
$\|\eta\|$ coverage Number of layers			$\begin{aligned} & 1.5<\|\eta\|<3.2 \\ & 4 \end{aligned}$	
Ciranularity $\Delta \eta \times \Delta \phi$			$\begin{aligned} & \hline 0.1 \times 0.1 \\ & 0.2 \times 0.2 \end{aligned}$	$\begin{aligned} & 1.5<\|\eta\|<2.5 \\ & 2.5<\|\eta\|<3.2 \end{aligned}$
Readoat channels			5632 (both sides)	
L.Ar forward calorimeter				
$\|\eta\|$ coverage Number of layers			$\begin{aligned} & 3.1<\|7\|<4.9 \\ & 3 \end{aligned}$	
Ciranularity $\Delta x \times \Delta y$ (cm)			$\begin{aligned} & \text { PCall: } 3.0 \times 2.6 \\ & \text { PCall: } \sim \text { four times finer } \\ & \text { PCal2: } 3.3 \times 4.2 \\ & \text { PCal2: } \sim \text { four times finer } \\ & \\ & \text { PCal3: } 5.4 \times 4.7 \\ & \text { PCal3: } \sim \text { four times finer } \end{aligned}$	$\begin{aligned} & 3.15<\|\eta\|<4.30 \\ & 3.10<\|\eta\|<3.15, \\ & 4.30<\|\eta\|<4.83 \\ & 3.24<\|\eta\|<4.50 \\ & 3.20<\|\eta\|<3.24, \\ & 4.50<\|\eta\|<4.81 \\ & 3.32<\|\eta\|<4.60 \\ & 3.29<\|\eta\|<3.32, \\ & 4.60<\|\eta\|<4.75 \\ & \hline \end{aligned}$
Readoat channels			3524 (both sides)	
Scimillator tile calorimeter				
	Barsel		Extended harrel	
$\|\eta\|$ cowerage Number of layers	$\begin{aligned} & \|\eta\|<1.0 \\ & 3 \end{aligned}$		$\begin{aligned} & 0.8<\|\eta\|<1.7 \\ & 3 \end{aligned}$	
Granularity $\Delta \eta \times \Delta \phi$ Last layer	$\begin{aligned} & \hline 0.1 \times 0.1 \\ & 0.2 \times 0.1 \\ & \hline \end{aligned}$		$\begin{aligned} & \hline 0.1 \times 0.1 \\ & 0.2 \times 0.1 \end{aligned}$	
Readoat channels	5760		4092 (both sides)	

Muon Spectrometer

The conceptual layout of the muon spectrometer is shown in figure 1.4 and the main parameters of the muon chambers are listed in table 1.4 (see also chapter 6). It is based on the magnetic deflection of muon tracks in the large superconducting air-core toroid magnets, instrumented with separate trigger and high-precision tracking chambers. Over the range $|\eta|<1.4$, magnetic bending is provided by the large barrel toroid. For $1.6<|\eta|<2.7$, muon tracks are bent by two smaller end-cap magnets inserted into bothends of the barrel toroid. Over $1.4<|\eta|<1.6$, usually referred to as the transition region, magnetic deflection is provided by a combination of barrel and end-cap fields. This magnet configuration provides a field which is mostly orthogonal to the muon trajectories, while minimising the degradation of resolution due to multiple scattering. The anticipated high level of particle flux has had a major impact on the choice and design of the spectrometer instrumentation, affecting performance parameters such as rate capability, granularity, ageing

Table 1.4: Main parameters of the muon spectrometer. Numbers in brackets for the MDT's and the RPC's refer to the final configuration of the detector in 2009. properties, and radiation hardness.

Monitored drift tubes	MDT
- Coverage	$\|\eta\|<2.7$ (innermost layer: $\|\eta\|<2.0)$
- Number of chambers	$1088(1150)$
- Number of channels	$339000(354000)$
- Function	Precision tracking
Cathode strip chambers	CSC
- Coverage	$2.0<\|\eta\|<2.7$
- Number of chambers	32
- Number of channels	31000
- Function	Precision tracking
Resistive plate chambers	RPC
- Coverage	$\|\eta\|<1.05$
- Number of chambers	$544(606)$
- Number of channels	$359000(373000)$
- Function	Triggering, second coordinate
Thin gap chambers	TGC
- Coverage	$1.05<\|\eta\|<2.7(2.4$ for triggering)
- Number of chambers	3588
- Number of channels	318000
- Function	Triggering, second coordinate

Particle ID and Kinematics

Tracking detector
-Measure charge and momentum of charged particles in magnetic field

Electro-magnetic calorimeter -Measure energy of electrons, positrons and photons

Hadronic calorimeter

-Measure energy of hadrons (particles containing quarks), such as protons, neutrons, pions, etc.

Neutrinos are only detected indirectly via 'missing energy' not recorded in the calorimeters

Muon detector
-Measure charge and momentum of muons

Alignment

Laurent Vacavant

Materials in the front of the ATLAS calorimeter

Figure 4.45: Material distribution $\left(X_{0}, \lambda\right)$ at the exit of the ID envelope, including the services and thermal enclosures. The distribution is shown as a function of $|\eta|$ and averaged over ϕ. The breakdown indicates the contributions of external services and of individual sub-detectors, including services in their active volume.

Figure 4.46: Material distribution $\left(X_{0}, \lambda\right)$ at the exit of the ID envelope, including the services and thermal enclosures. The distribution is shown as a function of $|\eta|$ and averaged over ϕ. The breakdown shows the contributions of different ID components, independent of the sub-detector.

Electron identification: Track/Cluster matching

Electron = track in the Inner Detector (direction measurement)
Matched to an EM cluster in the calorimeter (energy measurement). Need to know:

- material distribution in the Inner detector in the front of the EM calorimeter
- calibration of the energy response of the calorimeter
- rejection against jet faking electrons

Electronic calibration coratonts:
$\mathrm{p}=$ podestal
$a=$ optimal filtoring
$\mathrm{f}, \mathrm{g}=\mathrm{ADC} \rightarrow \mathrm{GoV}$

Cluster: sum of cell energies over all layers

Electron identification

Figure 10.46: Difference between measured and true energy normalised to true energy for electrons with an energy of 100 GeV at $\eta=0.325$.

Figure 10.50. Expected relative energy resolution as a function of energy for electrons at $|\eta|=0.3,1.1$, and 2.0 . The curves represent fits to the points at the same $|\eta|$ by a function containing a stochastic term, a constant term and a noise term.

Figure 10.47: Difference between measured and true energy normalised to true energy for electrons with an energy of 100 GeV at $\eta=1.075$.

Figure 10.51: Expected relative energy resolution as a function of energy for photons at $|\eta|=0.3,1.1$, and 2.0. The curves represent fits to the points at the same η by a function containing a stochastic term, a constant term and a noise term.

Figure 10.56: Overall reconstruction and identification efficiency of various levels of electron cuts loose, medium, and tight isol. as a function of E_{T} for single electrons (open symbols) and for isolated electrons in a sample of physics events with a busy environment (full symbols).

Figure 10.57: Jet rejection as a function of overall reconstruction and identification efficiency for electrons, as obtained using a likelihood method (full circles). The results obtained with the standard cut-based method are also shown in the case of tight TRT (open triangle) and tight isol. (open square) cuts.

Photon = no track in the Inner Detector and an EM cluster in the calorimeter However: because of materials in the Inner Detector and in front of the calorimeter, Photon may convert into e-e+ pair. \rightarrow photon may be reconstructed as single or double Track conversion

Photon identification

Figure 10.48: Difference between measured and true energy normalised to true energy for all photons with an energy of 100 GeV at $\eta=1.075$.

Figure 10.51: Expected relative energy resolution as a function of energy for photons at $|\eta|=0.3,1.1$, and 2.0 . The curves represent fits to the points at the same η by a function containing a stochastic term, a constant term and a noise term.

Figure 10.49: Difference between measured and true energy normalised to true energy for unconverted photons with an energy of 100 GeV at $\eta=1.075$.

Figure 10.59: For reconstructed photon candidates with $E_{T}>25 \mathrm{GeV}$ (left) and with $E_{T}>40 \mathrm{GeV}$ (right), jet rejection as a function of photon efficiency, as obtained using a likelihood method. The results obtained with the standard cut-based method are also shown for reference.

Muon: identified as tracks in the Inner Detector and the Muon Spectrometer. For muon with enough energy to pass through the calorimeter, then energy loss in the calorimeter must be corrected for.

Internal alignment of Muon chambers important and relative alignment of the inner Detector and Muon Spectrometer also important to match track segments From both detectors.

Magnetic field mapping also important

[^0]

Figure 6.1: Cross-section of the barrel muon system perpendicular to the beam axis (non-bending plane), showbeam axis (non-bending plane), show-
ing three concentric cylindrical layers of eight large and eight small chambers. The outer diameter is about 20 m .

Figure 6.2: Cross-section of the muon system in a plane containing the beam axis (bending plane). Infinite-momentum muons would propagate along straight trajectories which are illustrated by the dashed lines and typically traverse three muon stations.

Figure 10.35: Expected stand-alone and combined fractional momentum resolution as a function of p_{T} for single muons with $|\eta|<1.1$.

Figure 10.37: Efficiency for reconstructing muons with $p_{T}=100 \mathrm{GeV}$ as a function of $|\eta|$. The results are shown for stand-alone reconstruction, combined reconstruction and for the combination of these with the segment tags discussed in the text.

Figure 10.36: Expected stand-alone and combined fractional momentum resolution as a function of p_{T} for single muons with $|\eta|>1.7$.

Figure 10.38: Efficiency for reconstructing muons as a function of p_{T}. The results are shown for stand-alone reconstruction, combined reconstruction and for the combination of these with the segment tags discussed in the text.

Figure 10.39: For stand-alone muon reconstruction, reconstructed invariant mass distribution of dimuons from $Z \rightarrow \mu \mu$ decays for an aligned layout of the chambers and for a misaligned layout, where all chambers are displaced and rotated randomly by typically 1 mm and 1 mrad .

Muon Identification

Figure 10.40: For $H \rightarrow \mu \mu \mu \mu$ decays with $m_{H}=130 \mathrm{GeV}$, reconstructed mass of the four muons using stand-alone reconstruction. The results do not include a Z-mass constraint.

Figure 10.41: For $H \rightarrow \mu \mu \mu \mu$ decays with $m_{H}=130 \mathrm{GeV}$, reconstructed mass of the four muons using combined reconstruction. The results do not include a Z-mass constraint.

Correlation between Muon Spectrometer and Inner Detector track parameters

Hadronic tau identification

The transverse momentum range of interest spans from below 10 GeV up to $500 \mathrm{GeV} . \tau$ leptons decay hadronically in 64.8% of all cases, while in $\sim 17.8 \%(17.4 \%)$ of the cases they decay to an electron (muon) [1]. From the detection point of view, hadronic modes are divided by the number of charged $\pi \mathrm{s}$ among the decay products into single-prong (one charged π) and three-prong (three charged $\pi \mathrm{s}$) decays. The small fraction (0.1%) of five-prong decays is usually too hard to detect in a jet environment. The $\tau \rightarrow \pi^{ \pm} v$ mode contributes 22.4% to single-prong hadronic decays and the $\tau \rightarrow n \pi^{0} \pi^{ \pm} v$ modes 73.5%. For three-prong decays, the $\tau \rightarrow 3 \pi^{ \pm} v$ decay contributes 61.6%, and the $\tau \rightarrow n \pi^{0} 3 \pi^{ \pm} v$ mode only 33.7%. In general, one- and three-prong modes are dominated by final states consisting of $\pi^{ \pm}$and π^{0}.

Properties of hadronically decaying τ-leptons:
 > Collimated energy deposition in calorimeter
 > 1 or 3 charged decay products ($\pi^{ \pm}$)
 \geqslant Isolated EM clusters corresponding to π^{0} in τ-decay
 > Modest but significant proper lifetime
 > BR $(\tau \rightarrow$ hadrons $)=64.8 \%$

Thus also needs the tracks (Inner Detector) associated to a narrow Cluster. Need a strong rejection against jets, electrons, while maintaining high tau-jet reconstruction efficiency

Hadronic tau identification

Figure 10.89: Reconstruction efficiency for charged-pion tracks as a function of the pion transverse momentum for single- and threeprong hadronic τ-decays from $W \rightarrow \tau \nu$ and $Z \rightarrow \tau \tau$ signal samples.

Figure 10.93: Expected rejection against hadronic jets as a function of the efficiency for hadronic τ-decays for the track-based algorithm using a neural-network selection. The results are shown separately for single- and three-prong decays and for two ranges of visible transverse energy.

Figure 10.90: Reconstruction efficiency for the charged-pion track as a function of $|\eta|$ for three different ranges of pion $p r$, for single-prong hadronic τ-decays from $W \rightarrow \tau v$ and $Z \rightarrow \tau \tau$ signal samples.

Figure 10.94: Expected rejection against hadronic jets as a function of the efficiency for hadronic τ-decays for the calorimeter-based algorithm using a likelihood selection. The results are shown separately for single- and threeprong decays and for two ranges of visible transverse energy.

Figure 10.95: Track multiplicity distributions obtained for hadronic τ-decays with visible transverse energy above 20 GeV using the track-based τ-identification algorithm. The distributions are shown after reconstruction, after cut-based identification and finally after applying the neural network (NN) discrimination technique for an efficiency of 30% for the signal.

Figure 10.96: Track multiplicity distributions obtained for the background from QCD jets with visible transverse energy above 20 GeV using the track-based τ-identification algorithm. The distributions are shown after reconstruction, after cut-based identification and finally after applying the neural network (NN) discrimination technique for an efficiency of 30% for the signal.

Jet and Missing ET identification

ATLAS calorimeters

Main features for jet and E_{T} Miss reconstruction and calibration:

- Non compensating (e/h>1):
- Response to hadrons, isonctromagnatc lower than that to electrons and photons
- Developed specific calibrations
- Dead material:
- Energy loss before EM calorimeter and between EM and HAD barrel calorimeters:
- dead material corrections
- Different technologies and many transition regions:
- "Crack" regions: $\eta \approx 1.4,3.2$
- Magnetic field bending

ATLAS Fiducial Regions

- Hadronic Calorimeter:
- Barrel: $|\eta|<1.7$
- Endcap: $1.5<|\eta|<3.2$
- Electromagnetic Calorimeters
- Barrel: $|\eta|<1.4$
- Endcap: $1.375<|\eta|<3.2$
- Forward: $3.2<|\eta|<4.9$

$$
\eta=-\log (\tan (\theta / 2))
$$

Jet and Missing ET identification

- Topo-Clusters: group of calorimeter cells topologically connected
- Noise suppression via noise-driven clustering thresholds:
- Seed, Neighbour, Perimeter cells $(S, N, F)=$ $(4,2,0)$
- seed cells with $\left|E_{\text {cell }}\right|>S \sigma_{\text {molee }}(S=4)$
- expand in 3D; add neighbours with $\left|E_{c e l}\right|>N \sigma_{\text {make }} \quad(N=2)$

3. merge clusters with common neighbours ($\mathrm{N}<\mathrm{S}$)

- add perimeter cells with $\left|E_{\text {cat }}\right| P P \sigma_{\text {moke }}$ ($P=0$)
- Attempt to reconstruct single particles in calorimeter
- Towers: thin radial slice of calorimeters of fixed size
- Topo-Tower. selecting only the cells in the tower with a significant signal

Jet Reconstruction

Sequential process:

- Input signal selection:
- TopoClusters, Towers, TopoTowers
- Jet finding:
- The jet finding algorithm groups the collection of clusters(towers) according to geometrical and/or kinematic criteria.
- Many algorithms studied in ATLAS: \Rightarrow recently concentrated on AntiKt algorithm
- Jet calibration:
- depending on detector input signal definition, jet finder choices...
- Jet selection:
- apply cuts on kinematics to select
 jets of interest

Track jets use tracks as input to the jet finding and reconstruction. This would Miss the neutral component of the jet. However track jets are useful in a Number of applications

Missing ET Reconstruction

Transverse Missing Energy:

$$
\mathrm{E}_{\mathrm{T}} \mathrm{miss}=\sqrt{\mathrm{E}_{\mathrm{X}} \mathrm{miss}^{2}+\mathrm{E}_{\mathrm{Y}} \mathrm{miss}^{2}}
$$

E_{T} miss is a complex event quantity:

- It is calculated adding all significant signals from all detectors:
- Calorimeter input signals (Cells, TopoClusters):
- in physics objects
- not used in physics objects
- Muons
- Tracks in regions where Calorimeter/Muon Spectrometer are inefficient
- Correction for energy lost in dead material

Fake Missing ET

- Fake muons can be caused by jet punch-through detected as excess activity in Muon Chambers.
- Cleaning criteria: count of muon hits and of muon segments within a cone around jet axes.
- Missing muons due to detector features
- $\mathrm{n}=0$: holes in Muon Spectrometer for cables, services to Inner Detector \& Calorimeter.
- |n| ~ 1.2 : middle muon station missing for initial data taking
- $|n|>2.7$: no muon coverage
- use calorimeter and track information to recover missing muons used in $\mathrm{E}_{\mathrm{T}}{ }^{\text {miss }}$ calculation

Fake Missing ET

Fake E_{T} miss in calorimeter can also be produced by mis-measurements of jets due to cracks, gaps, transition regions used for services.

Crack" regions: $\eta \approx 1.4,3.2$

- Leakage of jets entering 'crack' region $1.3<|n|<1.6$ can be detected:
- looking for large deposits in the outermost layers of the calorimeter
- checking the E_{T} mbs calculated from tracks found in the Inner Detector that can provide a complementary information
- checking if E_{T} miss is closely associated with one of the leading jets in the transverse (φ) plane
- Cleaning cuts based on those criteria could be applied \Rightarrow analysis dependent

Di-jet QCD sample $580 \mathrm{GeV}<\mathrm{p}_{\mathrm{T}} 1120 \mathrm{GeV}$

Jet energy scale

- Factorized multi-step approach
- Flexibility to understand corrections individually and use different techniques as they become validated with data within a same framework
- Combination of "in-situ" and Monte Carlo (MC) methods

Hadronic Calibration:

- correct for calorimeter effects: non-compensation, dead material
- ATLAS developped two different strategies: Global and Local calibration

Jet Energy Scale

Offset correction for pile-up:

- subtract the average contribution to the jet energy not originating from the primary interaction

Response correction:

- Eta intercalibration: equalization of the jet response as a function of in
- Absolute energy scale: in-situ correction from gamma/Z-jet balance

Other optional corrections to improve resolution (scale unchanged):

- Layer Fraction: EM-scale jets + layer fraction, exploit longitudinal shower development
- Tracking corrections: fraction of jet momentum carried by charged tracks associated with the jet

Jet energy response linearity

- Global Cell weights within 2%
- largest non linearity coming from low energies

Jet energy resolution

- Global Cell weights $\sim 4 \%$ at high energy

Figure 10.76: Efficiency of jet reconstruction in VBF-produced Higgs-boson events as a function of $p r$ of the truth-particle jet for conetower and cone-cluster jets with $\Delta R=0.7$.

Figure 10.77: Purity of jet reconstruction in VBF-produced Higgs-boson events as a function of $p r$ of the reconstructed jet for conetower and cone-cluster jets with $\Delta R=0.7$.

Missing ET Reconstruction

Basic E_{T} mlsa from all calorimeter cells applying two possible noise suppression approaches:

- from all Cells with \mid ㅌ| $>2 \sigma$ noise
- from all Cells inside TopoClusters
\Rightarrow NO calibration, usable since day 1

Final E_{T} mlss obtained adding:

- Calibration step: two different calibrations approaches (coherent with jets):
- Global cell energy density calibration and local hadron calibration applied
- Contribution from muons: Flywn $_{x}=-\sum E_{x y}$.
- Correction for energy lost in cryostat between EM and Had calorimeters from jets:

$$
E_{j u}^{n e w}=w^{p o w} \sqrt{E_{B A B} \times E_{M A D}}
$$

Refined $E_{T}{ }^{\text {mlas }}$ original approach by ATLAS based on event signal ambiguity resolution:

- sequential decomposition of reconstructed objects: electrons, photons, taus, jet, muons into basic constituents (calorimeter cells or TopoClusters) and veto of multiple contribution to guarantee no double counting in E_{T} mlss calculation
- Calibration weights applied to basic constituents depend on the type of reconstructed object
- Also TopoClusters not associated with any reconstructed objects taken into account
\Rightarrow Most complex schema, usable after validation of reconstructed objects

Missing ET performance

$\mathrm{E}_{T}{ }^{\text {miss }}$ Refined Calibration provides best performances in terms of Linearity and Resolution (resolution less sensitive to calibration):

- $E_{T}{ }^{\text {mlss }}$ Linearity within $\sim 3 \%$ over wide $E_{T}{ }^{\text {mlss }}$ range for different processes
- $E_{T}{ }^{\text {mlss }}$ Resolution: mainly depend on $\Sigma E T$ in calorimeters, well described by. Resolution $=k^{*} \sqrt{\overline{\Sigma E_{T}}}(\mathrm{k} \sim 0.5)$

Hard fragmentation of b quarks $x_{B} \sim 70 \%$

High mass $\mathrm{m}_{\mathrm{B}} \sim 5 \mathrm{GeV}$
Lifetime of B hadrons:
$\mathrm{C} \tau \sim 470 \mu \mathrm{~m}$ (mixture $\mathrm{B}^{+} / \mathrm{B}^{0} / \mathrm{B}_{\mathrm{s}}$), $\sim 390 \mu \mathrm{~m}\left(\Lambda_{\mathrm{b}}\right)$ for $\mathrm{E}(\mathrm{B}) \sim 50 \mathrm{GeV}$, flight length $\sim 5 \mathrm{~mm}, \mathrm{~d}_{0} \sim 500 \mu \mathrm{~m}$
\rightarrow Spatial tagging:

- Signed impact parameter of tracks (or significance)
- Secondary vertex

(limited by Br: around 20% each)

Vertexing and b-jet tagging

- The innermost silicon detector must provide the required b-tagging efficiency

Good vertex resolution is achieved by placing the innermost (B) layer close to the beam pipe, and the next layer farer to it (lever arm), and by an excellent B-layer resolution

Small multiple scattering term: $\sigma_{\mathrm{MS}} \sim \frac{1}{p} \sqrt{X / X_{0}}$

Expected transverse IP resolution $\sim 13 \mu \mathrm{~m}$ for 100 GeV track

Simpler b-taggers

\rightarrow Relying on transverse impact parameter:
\rightarrow TrackCounting: \# of tracks with large d_{0} / σ
\rightarrow JetProb: measuring compatibility of tracks with primary vertex, using a resolution function derived from data: it can be derived already with the 900 GeV data.
\rightarrow Relying on secondary vertex:

- inclusive secondary vertex

Track compatibility with primary vertex

Normalized distance PV-SV

Simpler b-taggers

Test sample:

- 500k ttbar events (10 TeV)
- rather central jets
- average p_{T}.
- 70 GeV for b-jets
- 55 GeV for light jets
- selection: $\mathrm{p}_{\mathrm{T}}>15 \mathrm{GeV},|\boldsymbol{\eta}|<2.5$

Estimators: light jet rejection (inverse of mis-tagging rate) vs b-tagging efficiency.

	$\epsilon_{\mathrm{b}}=50 \%$	$\epsilon_{\mathrm{b}}=60 \%$
TrackCounting	96	38
JetProb	114	44
SV0	173	89

(errors stat.: ± 1)

Combining Tracking with PID: the ATLAS TRT

■ e/ π separation via transition radiation: polymer (PP) fibres/foils interleaved with DTs

Electrons radiate \rightarrow higher signal PID info by counting high-threshold hits

Charged particle

Total: 370k straws
Barrel ($|\eta|<0.7$): $36 r-\phi$ measurements / track
Resolution $\sim 130 \mu \mathrm{~m} /$ straw
18 end-cap wheels ($|\eta|<$ 2.5): 40 or less $z-\phi$ points

Momentum Measurement in Tracking Device

- Charged particles deflection in magnetic field:
- Lorentz force \perp to B-field and to particle direction
- Particle trajectory projected onto plane \perp to B-field is circle with radius: $r[\mathrm{~m}]=\frac{p_{T}[\mathrm{GeV}]}{0.3 \cdot B[T]}$
\Rightarrow For $p_{T}=10 \ldots 1000 \mathrm{GeV}$ and $B=2 \mathrm{~T} \rightarrow R=17 \ldots 1700 \mathrm{~m}\left(c f, R_{\mathrm{ID}} \sim 1\right.$
m)

Si clusters / drift circles
$\Rightarrow \ldots$ and if $p_{T}<0.5 \mathrm{GeV}$, the particle is trapped in solenoi

- Obtain r and p_{T} from measurement of sagitta:

$$
r \approx \frac{L}{8 s} \text { (if } s \square L \text {) } \Rightarrow p_{T} \propto \frac{1}{s} \text { and } \frac{\sigma\left(p_{T}\right)}{p_{T}} \propto p_{T}
$$

- Track fitting in LHC environment challenging

■ Must handle ambiguities, hit overlaps, multiple scattering, bremsstrahlung, multiple vertices, ...

- Track fitters take Gaussian noise (Kalman) and non-Gaussian noise (GSF) into account
- Fitter must be fast, used in high-level trigger

The ATLAS Muon Spectrometer (Active Material)

The ATLAS Muon Spectrometer

- Outer layer of LHC detectors, only reached by $\mathrm{WI}(\mathrm{M}) \mathrm{Ps}(\nu, \chi)$ or EM MIPs (μ)
- Good containment of jets requires $\sim 11 \lambda$ before muon systems
- ATLAS opted for good stand-alone tracking if too high-backgrounds in ID
- Huge magnetic volume
\square ATLAS has 8 (barrel) $3 T_{\max }$ and 2×8 (endcap) $6 T_{\text {max }}$ superconducting toroid magnets
- Huge active detectors area
- Open structure minimises multiple scattering
- Dedicated trigger chambers
- Huge mechanical structure

- Challenging tolerances for mechanical stability, positioning and alignment (optical sensors)

ATLAS Toroid Fields

Momentum Measurement

- Toroid fields bend tracks in \boldsymbol{z} direction, instead of $R-\phi$ as in the inner detector
$\sigma(z)=35 \mu \mathrm{~m}$ per chamber $\rightarrow \sigma(s) \square(3 / 2)^{1 / 2} \cdot \sigma(z)=43 \mu \mathrm{~m}$
$\rightarrow 1 \mathrm{TeV}$ track has $s=500 \mu \mathrm{~m}$ at $\eta \square 0 \rightarrow<10 \%$ precision on momentum measurement

Triggering Muons

- Ultra-fast L1 trigger requires coincident hits in 3 RPC (barrel) or 3 TGC (end-caps) layers within "roads" corresponding to predefined momenta (thresholds)

Cosmic Commissioning of ATLAS, CMS, ALICE and LHC-b

Commissioning Example: CMS - 25 Performance papers published

Collisions at 7 and 8 TeV !

 between 30 GeV and 70 GeV and are well separated in the detector.

CMS Experiment at the LHC, CERN Data recorded: Data rec
Run: Run:
Event: Lumi section: Oibit: Orbit: Crossing:

2010-Mar-30 11:04:14.111090 GMT(13:04:14 CEST) 132440 132440
3087931

LHC Detectors are well-described in simulation e.g. Tracking - Material

CMS Preliminary 2010, $\sqrt{s}=7 \mathrm{TeV}$

Amount of material gamma conversions data-MC

Commissioning with Beam : Tracking- Resonances

Magnetic field, momentum scale, track reconstruction efficiency; all remarkably well understood

Commissioning with Beam : Tracking-ECALs

Electromagnetic calorimeters "out of the box" calibration at $\mathbf{> \approx} \mathbf{1 \%}$

Commissioning with Beam:

 Understanding Muons, b-tagging, Triggers

Muons remarkably well understood, b-tagging progressing well, newer triggers being rapidly understood as luminosity increases

Combining All Information: Particle Flow

Combining Calorimetry and Tracking

Particle Flow -reconstruct all stable particles in the event
-2
PFMET (1.9 GeV)

$$
-4 \quad-2
$$

0
2
4

Analysing Complex Events

PFJet 1 pt $41.5 \mathrm{GeV} / \mathrm{C}$

PFJet 3 рт $21.8 \mathrm{GeV} / \mathrm{c}$

-2

$$
\text { PFMET (} 1.9 \mathrm{GeV} \text {) }
$$

(η, φ) view of a particle-flow reconstructed event. Reconstructed particles are represented as circles with a radius proportional o their PT . The direcTin of the MET com? from all particles? drawn as a solid horizontal straight line. Particle-baseaf jets with pT> $20 \mathrm{GeV} / \mathrm{c}$ are shown as thinmer circles representing the extension of the jet in the (η, φ) coordinates.

Beam Commissioning: Calorimetry

MET distributions exponential over >5 orders of magnitude; augurs well for searches

50 Years of Particle Physics; e.g. CMS

Sophisticated software and computing systems in place and functioning

Rediscovering the SM and Beyond

Study of track-based missing pT

- Provide an alternative measurement to Calo-based MET
- Different detector, has different un-correlated systematic effect
- Can associate tracks to primary vertex, can calculate pTmiss and SumPt based on primary vertex of the event, thus more correlated to the true MET of the main physics process
- Should deteriorate less than calorimeter based variables as instantaneous luminosity increases (as long as our vertex resolution is good)
- Has less effect due to cosmic muons and beam background

vertex-based missing $p T$

Number of vertices

- Several presentations in the ATLAS jet-Etmiss group and group meetings
- Work in collaboration with Academia Sinica

"Putting it all together...

SM Higgs production and decay modes

(a) $g g \rightarrow H$

(c) VH

(b) VBF

(d) $\bar{t} \bar{H}$

$\mathrm{H} \rightarrow \gamma \gamma$

4μ candidate with $m_{4 \mu}=125.1 \mathrm{GeV}$

p_{T} (muons) $=36.1,47.5,26.4,71.7 \mathrm{GeV} \quad \mathrm{m}_{12}=86.3 \mathrm{GeV}, \mathrm{m}_{34}=31.6 \mathrm{GeV}$
15 reconstructed vertices

4 e candidate with $\mathrm{m}_{4 \mathrm{e}}=124.6 \mathrm{GeV}$

p_{T} (electrons)= 24.9, 53.9, 61.9, 17.8 GeV $\mathrm{m}_{12}=70.6 \mathrm{GeV}, \mathrm{m}_{34}=44.7 \mathrm{GeV}$
12 reconstructed vertices

BATLAS

 http://atlas.chRun: 203602
Event: 82614360
Date: 2012-05-18 Time: 20:28:11 CEST
$2 e 2 \mu$ candidate with $\mathrm{m}_{2 e 2 \mu}=123.9 \mathrm{GeV}$
$\mathrm{p}_{\mathrm{T}}(\mathrm{e}, \mathrm{e}, \mu, \mu)=18.7,76,19.6,7.9 \mathrm{GeV}, \quad \mathrm{m}\left(\mathrm{e}^{+} \mathrm{e}^{-}\right)=87.9 \mathrm{GeV}, \mathrm{m}\left(\mu^{+} \mu^{-}\right)=19.6 \mathrm{GeV}$
12 reconstructed vertices

H $\rightarrow 4$ leptons combined

ATLAS "Excess"

5б Confidence limit --DISCOVERY!

SA-CERN Programme

SA-CERN would like to receive applications for students.
There are a limited number of positions available within SA-CERN for applications originating from Africa.
Please send

1. Letter of Motivation
2. CV
3. Degree Transcripts
4. Two Referee Reports in support of the application.

SA-CERN has groups involved in

1. Theory (Particle Physics, Nuclear Physics) contact Steven Karataglides stevenka@uj.ac.za
2. ISOLDE (Materials Science), ISOLDE (Nuclear Physics) contact Krish Bharuth-Ram kbr@tlabs.ac.za
3. ALICE contact Jean Cleymans < Jean.Cleymans@uct.ac.za>
4. ATLAS contact Simon Connell shconnell@uj.ac.za

[^0]: Figure 1.3: Cut-away view of the ATLAS calorimeter system.

