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Monte Carlo Method
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What is it?
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The Monte Carlo method is:
A method to perform complex calculations using 
random numbers

 For example:
Integrate a complex function
Approximate a complex system for which is not possible to 
completely determine its behavior

In physics it has a “special” meaning:
A program or a toolkit to simulate a physical system (e.g. 
Pythia, Geant4)



An Example
Let’s assume we want to write an algorithm to 
write an approximation of the constant π
We can see the problem geometrically:
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R

Circle Area:
C=πR2

Square Area:
S=(2R)2

Ratio:
C/S=π/4



An Example
Let’s draw a point in a random position in the square
Probability being is inside the circle is C/S
Draw randomly N points, Ninside/Ntot≃C/S=π/4
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Circle Area:
C=πR2

Square Area:
S=(2R)2

Ratio:
C/S=π/4
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N=50

πapprox=3.04
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N=1000

πapprox=3.216
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N=10 000

πapprox=3.122
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What we have seen
At the increasing number of N we can get better 
and better approximations on π
At the price or longer execution time
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The accept-reject method

We use this method to:
Sample a number x distributed according to a general function f(x)

Throw a pair of random number x,y
Calculate f(x)
If y<f(x) accept x, otherwise repeat
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This is the simplest method, others can be more 
efficient
MC methods are “an art” per se and different 
algorithms exists:

[1] J.C. Butcher and H. Messel. Nucl. Phys. 20 15 (1960)
[2] H. Messel and D. Crawford. Electron-Photon shower 
distribution, Pergamon Press (1970)
[3] R. Ford and W. Nelson. SLAC-265, UC-32 (1985)
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The one used in G4
If the normalized PDF for x∈[x1,x2] can be written as:

With 0≤gi(x)≤1;Ni>0
x can be sampled with:

Select a random integer i∈{1,2,...n} with probability proportional to Ni

Select x0 with probability fi(x0)
Accept x=x0 with probability gi(x0)

With this method you need to throw 5 random 
numbers and calculate 2 functions, but:

The method can be fast if fi, gi are considerably simpler than f
12



A word on random numbers

Computers cannot generate pure random numbers
They are Turing machines (fully deterministic):

Each state is determined by the previous state and the operation to be 
performed

But you can generate a “pseudo” random number
A number that looks “random” at any practical purpose
Simply called “random number”

Given a function f:
Start from a “seed” x0: x1=f(x0) ; x2=f(x1) ; ... ; xn+1=f(xn)
f needs to have some properties: 

The period has to be large (the series of x repeats only after very large steps)
The correlation between two numbers has to be small

Simple functions involve mod operation and polynomial 

Example ex2.cpp in the “Mini C++ Tutorial”
13



For the purpose of our simulation programs:
Given a random seed
And in the absence of software bugs

Each time you run it will reproduce exactly the 
same results

This is a good property:
In case of problems you can re-run the simulation of a specific 
setup and debug your code
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Simulations
Particle-Matter interaction code
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This lecture is aimed to offer a simple and general 
introduction to detector simulation.

Geant4 will be considered as a concrete example but only to 
illustrate general aspects of detector simulation.

This lecture is not a tutorial on how to use Geant4 !

The best way to learn how to use any simulation package
 is by starting with an example

For Geant4: download the code and go in sub-dir example, read the 
files README
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Outline

1. Introduction
− Why do we need to simulate a detector?
− How does it work?

2. Geometry
− How do we describe an experimental apparatus?

3. Physics
− What is available and what to use?
− What are the challenges?



Introduction
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Simulation is a very useful, essential tool in modern
physics for :

designing an experiment/detector (e.g. medical irradiation facility, new HEP 
experiment)

analyzing the data (e.g. now ATLAS, CMS, LHCb)

Reminder (connection with P. Skands’ lecture)
For the HEP experiments, the simulation is made of
two distinct steps:

1. Simulation of the p-p collision

Monte Carlo event generators (see PYTHIA tutorial)

2.  Simulation of the passage of the produced particles
      through the experimental apparatus

Monte Carlo radiation transportation, or simply “detector simulation”
From the beam pipe to the end of the cavern
The output of 1. is the input of 2.
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Monte Carlo radiation transportation codes

The detector simulation is different for each setup. However, 
general codes exist that can be used for simulating any 
detector

An experimental apparatus can be modeled in terms of elementary 
geometrical objects 

The physics processes are detector independent

These general codes are called
 “Monte Carlo radiation transportation codes”

Non-deterministic (e.g. do not solve equations); 
use random numbers to reproduce distributions

Transport particles through matter
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How does it work?
Treat one particle at the time

Treat a particle in steps

For each step

the step length is determined by the cross sections of the physics processes and the 
geometrical boundaries; if new particles are created, add them to the list of particles to be 
transported

local energy deposit; effect of magnetic and electric fields

if the particle is destroyed by the interaction, or it reaches the end of the apparatus, or its 
energy is below a (tracking) threshold, then the simulation of this particle is over;
else continue with another step

Output

new particles created (indirect)

local energy deposits throughout the detector (direct)
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Algorithm
Next particle

Still alive
Ekin > cut

Inside World

Find step
(physics process or
volume boundary)

Continuous part
(along the step)

Find next step
(physics process or
volume boundary)

Discrete part
(post step)

Create new 
particles

Energy 
deposits

Fields effects

End of the Event

End of the particle

Yes

No

Yes
No
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“Digitization”
Besides the geometry, another experiment-specific aspect 
of the detector simulation is the “digitization”

It is not part of the general radiation transportation codes

It consists of producing the detector response in terms of 
electric current & voltage signals, as it would happen in the real 
world

 The same reconstruction chain can be applied for both
  real and simulated data

The general radiation transportation codes provide
 energy deposits in the whole detector; from these, the 
“digitization” simulates the electrical signals  induced in the 
sensitive parts of the detector

It is an optional step (i.e. we will not do any “digitization” in 
Geant4 exercises)
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Accuracy  vs.  Speed

Huge samples (billions) of simulated events are often 
needed

The number of simulated events is limited by CPU

Tradeoff between accuracy and speed of the
detector simulation

More precise physics models are slower and, more importantly, 
create more secondaries and/or steps

Smaller geometrical details slow down the simulation
Never model explicitly screws, bolts, cables, etc.
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Application domains	



Domains where the same radiation transportation codes are 
successfully used:

High Energy Physics

Nuclear physics

Accelerator science

Astrophysics

Space engineering

Radiation damage

Medical physics

Industrial applications

So, detector simulation is a multi-disciplinary field!



Geometry
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Geometry
The way to describe the geometry varies widely between
 the different simulation engines

In Geant4, you need to write some C++ code
Geometry objects are instances of classes
Geometry parameters (e.g. dimensions) are arguments of the constructors

The geometry can be “flat” or “hierarchical”
In Geant4, it is hierarchical: a volume is placed in its
mother volume; there are mother-daughter relationships

A material should be assigned to each volume



32

CGS (Constructed Geometry) Solids
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Other CGS solids
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BREP 
(Boundary REPresented Solid)

Polycone



Physics
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Particle interactions
Each particle type has its own set of physics processes

Only electromagnetic effects are directly measurable  

2
4
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Main electromagnetic processes
Gamma

l Conversion :
γ  ->  e+  e- ,  µ+  µ-

l Compton scattering : 
γ  (atomic)e-  ->  γ  (free)e-

l Photo-electric
γ  material  ->  (free)e-

l Rayleigh scattering
γ  atom  ->  γ  atom 

Electron, Positron
l Bremsstrahlung

e- (atom)  ->  e- γ
l MSC (Coulomb scattering): 

e-  atom  ->  e- atom
l Ionization :

e- atom  ->  e- ion+ e-
l Positron annihilation

e+ e-  ->  γ  γ 

Muon
l Pair production

µ- atom  ->  µ- e+ e- 
l Bremsstrahlung

µ- (atom)  ->  µ- γ
l MSC (Coulomb scattering) : 

µ-  atom  ->  µ- atom
l Ionization :

µ- atom  ->  µ- ion+ e- 

Charged hadron, ion
l (Bremsstrahlung

  h- (atom)  ->  h- γ )
l MSC (Coulomb scattering): 

h-  atom  ->  h- atom
l Ionization :

h- atom  ->  h- ion+ e- 

Total cross section:
step length

Differential & partial
cross sections :

final state 
(multiplicity & spectra)
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Production and tracking cuts

Ionization and bremsstrahlung processes produce an 
increasing number of secondaries as the secondary energy 
decreases, so we need to set a production cut

Above the cut, new particles (e-, γ) are created

Below the cut, “continuous” energy loss of the primary

Once a charged particle is created, it can be reliably transported 
down to Ekin ~ 1 keV 

Either, stop it below a tracking cut and deposit its energy locally

Or, go down to Ekin -> 0 using its approximated range

Production and tracking cuts can be expressed directly
as kinetic energy thresholds or indirectly as equivalent 
range thresholds



150 MeV protons (blue)
100 μm Si
Default parameters

1mm “cut”
550 keV δ threshold in Si

δ (red) and γ (green)
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150 MeV protons (blue)
100 μm Si
Default parameters

1mm “cut”
550 keV δ threshold in Si

δ (red) and γ (green)
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100 μm “cut”
120 keV δ threshold in 
silicon
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10 μm “cut”
32 keV δ threshold in 
silicon
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1 μm “cut”
1 keV δ threshold in 
silicon
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Multiple (Coulomb) scattering (MSC)

Charged particles traversing a finite thickness of matter suffer a 
huge number (millions) of elastic Coulomb scatterings

The cumulative effect of these small angle scatterings is mainly a 
net deflection from the original particle direction

In most cases, to save CPU time, these multiple scatterings 
are not simulated individually, but in a 
“condensed” form

Various algorithms exist, and new ones under development. One 
of the main differences between codes
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Electromagnetic physics

Typical validity of electromagnetic physics  ≥ 1 keV ;
 for a few processes, extensions to lower energies

CPU performance of electromagnetic physics is critical : continuous 
effort to improve it

Typical precision in electromagnetic physics is ~1%
QED is extremely precise for elementary processes,
but atomic and medium effects, important for detector simulations, introduce 
larger uncertainties...

Moreover, the “condensed” description of multiple scattering introduces 
further approximations...

Continuous effort to improve the models
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Hadrons (π±, K±, K°L , p, n, α, etc.), traverse the detectors 
(H,C,Ar,Si,Al,Fe,Cu,W,Pb...)

Therefore we need to model hadronic interactions
    h+A →X

In principle, QCD is the theory that describes all 
hadronic interactions; in practice, perturbative 
calculations are available only for a tiny phase-space 
region

the hard scattering at high transverse momentum

whereas for the rest, i.e. most of the phase space
soft primary scattering, re-scattering, and nucleus de-excitation

 Only approximate models are available

Hadronic models are valid for limited combinations of

particle type - energy - target material

Hadronic interactions
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Physics configuration

No “unified” hadronic model: need to choose a set of hadronic 
models able to cover all possible interactions

The choice depends on the use-case, because of:
The energy scale involved

The compromise between accuracy and CPU speed

In the case of Geant4
These physics configurations are called “physics lists”

The particles to be considered in the simulation are also specified

There is no default 
Ready-to-use “physics lists” exist, for different use-cases

Users can also tailor/modify any of these, or write their own
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String model Intra-nuclear cascade model

Pre-equilibrium (Precompound) model Equilibrium (Evaporation) model
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An interesting complication: Neutrons

Neutrons are abundantly produced, mostly by
hadron-nucleus interactions

It is typically the 3rd most produced particle (after e-, γ)

Before a neutron “disappears” via an inelastic interaction,
it can have many elastic scatterings with nuclei, and 
eventually it can “thermalize” in the environment

The CPU time of the detector simulation can vary by orders of 
magnitudes according to the physical accuracy of the neutron 
transportation simulation

For typical high-energy applications, a simple treatment is enough 

For activation and radiation damage studies, a more precise, data-
driven and isotope-specific treatment is needed, 
especially for neutrons of kinetic energy below ~ MeV



Validation
Note: the following slides refer to Geant4 simulation 
code
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Model-level thin-target test

3
7
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Model-level thin-target test

3
9
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Model-level thin-target test
Preco validation, 22 MeV p – Fe  ->  n

4
0
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Summary

MC simulations are one of the main tools of modern physics (in 
HEP is fundamental)

The main challenges of detector simulation are:

Physics accuracy

CPU performance

Validation

Suggestions for you:
Learn by studying and playing with existing examples

Be critical and pragmatic when using simulations

Contribute to the validation and provide feedback
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Other codes

General
Fluka

Geant3

MARS

MCNP / MCNPX

Dedicated to electromagnetic physics
ETRAN

EGS4

EGS5 

EGSnrc

Penelope
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