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Goal

Describe the fundamental concepts of statistics for HEP

Explore these concepts with Root-Macros for hands-on experience
Usng the random number generator ... seeing some sampling theory ....

Finally be able to understand the following plot !
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Appreciate there is a lot more for you/us to learn about statistical techniques
In particular concerning the treatment of systematics
Apply these results to Discovery and Exclusion in ATLAS
So be patient and take some time to understand the techniques step by step...
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Disclaimer :
What this lecture is not going to be about...

- It will not be a lecture on the fundamental theory of statistics

- Multivariate techniques
- Bayesian confidence intervals
- Goodness of fit theory

- In depth discussion of systematics and their treatment

- Bayesian vs. Frequentist diatribe
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Why are Statistics so Important in Particle Physics ?

Because we need to give guantitative statements about processes that
have some inherent randomness...

... May this randomness be of measurement nature or quantum ...

How did it all start ?

-
-

Liber de ludo aleae T 4
\J
To study games of chance ! 2

G. Cardano (1501-1576)

And many others to follow (Pascal, Fermat, etc.. )

“La theorie des probabilités n’est, au fond,
que le bon sens reduit en calcul”

“The theory of probabilities is at ultimately
nothing more than common sense reduced to

iculation”
cACHEION T b s | aplace (1749-1824)
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We saw previously .....

From the very innocuous seeming assumption ....

“There is a random process characterised by a constant average event rate, .

... many significant and fundamental results follow — perhaps the prime
example of the dramatic yield of results from an assumption in all physics.

The random deviate represented by the waiting time between such events
may be shown to be drawn from the exponential probability density

distribution. -
P (t; 17) = e

The random deviate represented by the number of such
events within a time bin T is drawn from the Binomial
Distribution, well approximated by the Poisson Distribution.

_\_n
pp(n ) _Ie
nl
Where the expectation value n =117 a
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What Is a Statistical Error ?
Imagine | have a billion white © and blue @ golf balls

| decide to throw one million of them into a well and decide an admixture of 15 out
of one hundred blue ones...

| then know PRECISELY the
probability that if you pick one at
RANDOM, it will be blue...

»=15%

You of course don’t know this number
and you want to measure it...

All you have is a bucket...

Which contains exactly 300 balls
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This is approximately how the well looks like inside...
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You throw the bucket and pull out the following outcome

Aha! You have a measurement!

eocoOe@| _
C-09-C| n=300 The probability is. ..
.OOOOOOO k 36 12(y
= P =
O -Calh 0

... But how precise is it ?

R t to k the t lue!
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The difference between a measurement and the true value is the Statistical Error

Precise definition of statistical error

In this case it would be 3% absolute (20% relative), but since you don’t know the true
value you don’t know at all what your statistical error really is !

Of course had you thrown your bucket on a different spot, you would have probably
had a different measurement and the statistical error would be different...

What you want to know is your measurement error, or what the average statistical
variation of your measurement is...

This can be done provided that you know the law of probability governing the possible
outcomes of your experiment ... (and the true value of p, but assume that 12% is a close enough)

You want to know what the probability for an outcome of k golf balls to be blue is.
For one specific outcome the probability is:

pP=p* (1- p)*

What are all possible combination of outcomes of k blue balls out of n?
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What are all possible combination of outcomes of k blue balls out of n?

_{ For the first blue ball there are n choices, once this choice is made the second ball
has n-1 choices,... the k" ball has (n-k) choices.

In a simple case... n=10 and k=3 this can be seen as:

LN N HONONONONONONGC

B

THdhastinbashibsbha £ bthese s

So the number of combinationsis:  n = (n-1)" (n- 2)
Inthe generalcase: n (n-1)" (n-2)" (n-3)..." (n- k+1) =

nl

(n- k)!

—» Because we do not care about the order in which we have picked the balls

ON N HONON NONONONC ... avoid the double counting!
1 2 )

Each configuration is counted 6 times

P NDNWN®
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3
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This number corresponds in fact to the number of combinations of k blue balls out of k
balls and therefore :

ki (k-1 (k-2)" (k- 3)... 1=K
Aka the number of re-arrangements of the k blue balls.

In order to account for each combination only once you just need to divide by the
number of re-arrangements of the k blue balls.

So the number of combinations of k elements among n is given by :

v n!

" =
" K(n- k)

The probability to pick k blue balls among n, given a probability P that the a ball is
blue is thus :

P=C

This is an absolutely fundamental formula in probability and statistics!
It is the so called Binomial Probability!
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The Binomial Probability

Binomial coefficients were known since more than a thousand years...

... they were also the foundation of modern probability theory!

W 2 #F X 3 &

B. Pascal (1623-1662) The Pascal Triangle (~1000 AD)
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So what is the precision of your measurement ?

A good measure of the precision (not the accuracy) is the Root Mean Square Deviation
(square root of the variance) of possible outcomes of the measurement.

You will compute it yourself. To do so you need two steps...
(see next slide for the full derivation)

Step 1 : Compute the mean value of the binomial probability

= nP

Step 2 : Compute the variance of the binomial probability
Variance =nP(1- P)

So now you know the variance of your distribution for a given probability P...

In your case : P = ]_2% Assuming P is close enough to the true value, the precision is :
RMSD =+/nP(1- P) =5.6

The relative precision ~15% is rather poor and the accuracy questionable! (Remember, your

statistical error is 45 - 36 = 9, although you are not supposed to know it !)
ASP2012 : Stats for HEP 12




Step 1 : Compute mean value

Step 2 : Compute variance
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But wait...
Now you are curious to see what happens if you repeat your measurement!
You have noticed that the average binomial probability is the expected value!

Intuitively you will therefore try to repeat and average your measurements...

You will do it 50,000 times and meticulously plot the number of counts. This is what you get :

g r LB BN LA LA BN B B | N 50000
C " ] =
l_‘En' aunuz_ A .. .' _E throws
2500 . * —
zuuuz— _. . E The average number of blue
1500} - . - balls in 50,000 throws :
1000p : - E <Number > = 44,98
n . ] Blue
500 o . 5
D1_' ..|....|._4,_..|||‘*'|'“ll...|....|.....I.|I - <P>:14.99%
0 10 20 30 (40 50 60 70 80
Number of Blue Balls

Your initial measurement (36) ! See Binomial.C

Now you decide that your measurement is the average, what is its precision ?
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What is the variance of the average ?

Let’s start from one straightforward and general property of the Variance for two random
variables X and Y .

Var(aX +bY) :<(aX+ bY - (aX +bY)) > <[a(X X)) +b(Y - <Y>)]2>
=a’Var(X) + b*Var(Y) + 2abCov(X,Y)
Where the covarianceis:  Cov(X,Y) = <(X— <X>)(Y— <Y>)>

0 ¢ o
This formula generalizes to...  Varcd a X,+=a a;Var(X,)+ a a,a;,Cov(X, X )
el':o 4] i=0 OLi<jEn

Therefore assuming that each of the bucket throws measurement N’;Zue is independent from
the previous one, the mean value being a simple sum of the measurements divided by the
number of throws :

1 g
<Numbe Blue> a NBlue
Throws k=1
The ensemble variance then is :
e Nygeows O Nrgrows _
=Varg—— & Xr=—1— & Var(X)=——N,,, Var(x)="20D)
eN Throws k=1 1%} Throws k=1 Throws N Throws
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The precision being given by the Root Mean Square Deviation :

nP(1- P) _ RMSD,, i iduai = 0.01%
N Throws m

Very interesting behavior : Although you do not know the true value p, you see that the
average is converging towards it with increasing precision!

RMSD =

c=m5 481 T =
m - =
) - _
E 4E_ 11” 1 sTrTFIITTII T T T T T gprr e ® T | - - I
m —-- -H1]’TliT-T-r;.ET*.-;-;ﬁzi-::Ii}Tmfﬂ:'ﬁmmmh——_ «—— The line here is the true value !
o aal- ol HIppITTIITERITI -
o - “l ]
S af -
E = -
> N :
< a0 ]
Q) — —
2 [ ]
) 38| -
Z - g
36 ¢+ < - Your initial measurement
-l 1 1 I L 1 1 L I 1 1 L 1 I 1 L 1 1 I L 1 1 L I -]
0 10 20 30 40 50

See Binomial.C
Number of throws averaged (x10)

This is an illustration of the LAW of LARGE NUMBERS ! Extremely important, intuitive but
not trivial to demonstrate...
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What is the meaning of our first measurement N, = 36 ?

Now that we know (after 50,000 throws) to a high precision that the probability of a
blue ball is very close to 15%.

The frequency of an outcome as low as 12% is ~10% (not so unlikely!)

What difference would it make if you had known true value ?

Frequency at which the measurement is within the precision as estimated from the
truth :

P - pE+/np(l- p) = 70% (of the cases the measurement is
‘ e ‘ \/ within the true statistical RMSD)

Frequency at which the true value is within the precision as estimated from the
measurement :

P..- DE \/ nP,,..d- P,,) = 67% (of the cases the true value is
within the measured error)

See Coverage.C
The true value coverage is similar in the two cases, keep these values in mind...

Here all results are derived from a simulation in terms of frequencies...

Computing Binomial probabilities with large numbers of N can be quite difficult !
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The Gaussian or Normal Probability

Is there a way to simplify the computation ? Not so trivial to compute 300! directly...

A very nice approximation of the Binomial Probability can be achieved using
Stirling’s Formula !

nl» \/zpnaelci’ Inn!»ninn- n+iln2pn

ed
10°
10° F Formula is valid for large values of n...
10% b
(k- (K))*

103 - Ck k(l_ )n—k 5 1 B 2\<92>
102 nP P \/726

i 20S
10' b
100 L S :'\/I’lp(l- p)
10" : - : ! (See derivation in the next slide)

10° 10 102 10° 104 10°
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Binomial convergence towards Normal
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Validity of the Normal Convergence (Approximation)

Does the approximation apply to our bucket experiment (n=300 and p=15%) ?

See NormalConvergence.C
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C. F. Gauss (1777-1855)
Not bad (although not perfect) !

In practice you can use the normal law when approximately n>30 and np>5
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What is so “Normal” About the Gaussian?
The Central Limit Theorem... ... at Work !

When averaging various independent random variables (and identically
distributed) the distribution of the average converges towards a Gaussian

distribution
See CLT.C
45““;"”']"']" L L L L B T |1[||_|E
4000}~ 3
3500F- E
3000} N = 20 3
zsnug RMS = [O’l] g _:ﬂ.
2000} - 412 AR
1500 =
1000} =
500f 1 At N=10 an excellent agreement with a
bl . T gaussian distribution is observed
1

- bk Il Ll I Ll 1 1 I Ll | I Ll Il
0o 01 02 03 04 05 06 07 08 0.9
The CLT is one of the main reasons for the great success of the Gaussian law...

On the one hand the CLT is very powerful to describe all those phenomena that result from the
superposition of various other phenomena... but on the other hand it is just a limit...
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The Notion of Standard Error
(- m)’

25?2

Starting from the gaussian PDF : 1

Gopr (X, /S ) = \/2,0? e

Let’s give a first definition of a central confidence interval as the deviation from the
central value...

mas 1 ] (x- njz
Plas)= 0O \/72 e >° dx
o mas N20S
o Thenfor: -a=1:P(ac)=68.3%
° -a=2:P(ac) = 95.4%
S -a=3:P(ac) = 99.7 %
o See NormalCoverage.C

—-30 -20 -lg I 1o 20 30

If you knew the true value of the “error” () then you could say that the in the gaussian limit
that the true value has 68.3% probability to be within the 1s, but in many practical examples
(such as the well) the true value of the error is not known...
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How does the Bucket Experiment Relate to Particle Physics?

The bucket experiment is the measurement of an abundance (blue balls)...

This is precisely what we call in particle physics cross sections...

... except that the bucket contains all collisions collected in an experiment so...

- We try to fill it as much as possible (N is very large and not constant!)

- The processes we are looking for are very rare (p is very small)

The very large N makes it difficult to compute the binomial probability...
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The Poisson Probability

In the large n and small p limit and assuming that np = n is finite you can show
(see next slide) that ... [

k_k(_ n-k (np)k -(np)_ﬁ -n
Cip - pyt » e m = e

Much simpler formulation! In practice you can use the normal law when approximately n>30 and np<5

See PoissonConvergence.C
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e 3

S. D. Poisson (1781-1840)

Interesting to note that Poisson
developed his theory trying not to solve a
game of chance problem but a question
of Social Science !
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Poisson Intervals (or Errors)

Now how will you define a central confidence interval in a non symmetric case ?

Equiprobable boundaries

0.40— . . .
0.35} 1 ° A=l
030 | ° A=d

I| o }\. — ].U
% 0.25} | .
E__ 0.20F | ':':'.:. i
0.15t ' o | ® -
D g AP oo o X
0.10 i \ ! . - 1:LMD
. L !
1] St L LR L T o 2
/i A g » 0.

000 a0 na, RaaannadBons

U0 05 110 15 20
Lk
 68%

The integration needs to start from the most probable value downwards...

ASP2012 : Stats for HEP

26

Here is our first encounter with the necessity of an ordering !



What have we learned ?

..and a few by-products...

1.- Repeating measurements allows to converge towards the true value of an
observable more and more precisely ...
But never reach it with infinite precision !!!

Even more so accounting for systematics...
(what if the balls do not have an homogeneous distribution ?)

2.- Binomial variance is also useful to compute the so-called binomial error, mostly

used for efficiencies : < _Sm_ dl-9 nEmp
N N For an efficiency you must consider n fixed !

3.- We came across a very important formula in the previous slides

& 0 & , o
Varcal a X;+=a a;Var(X,)+ a aa,Cov(X,X))

el':o g i=0 O0Li<jEn
That generalizes (with a simple Taylor expansion) to...

var(f (5, )) =& (Lyvar(e)+ & LI cou(x, x))
i=0 Z&i OfLi<jEn i Z&j
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Likelihood

Unfortunately in High Energy physics experiments, events (balls) don’t come in
single colors (white or blue) ... Their properties are not as distinct !

For instance take this simple event :

Could be many things ...

) H Let alone that they can be
Higgs? L Background ? indistinguishable (quantum
interference)
@ O
ASP2012 : Stats for HEP Y 28 & )



How can we distinguish between the two ?

Very vast question, let’s first start with how to measure their properties

(Which is also a very vast question!)

One clear distinctive feature is that the signal is a narrow mass resonance, while
the background is a continuum !

}4[}[}_IIIIIr1r'|IlIIIIIII'|IIII|IIrI|IIII|Ilr1[1lllllll_
&  FATLAS Preliminary Bl signal x10 :
%350 (Simulation) H—yy (m, =120 GeV)3
2300__ 11 '\s =7 TeV [ ] v (Born & Brem) E
L= [ vy (Box) . L
2250:_ + B - et E To measure properties in
2 F [ Di- jet . general (a.k.a. parameter
I D —] . .
3200¢ B Drell Yan . estimation) among the most
= —— Toy sample (1fb) .
150F E commonly used tools is the
100 - maximum likelihood fit...
50

‘POO 105 110 115 120 125 130 135 140 145 150
M,, [GeV]
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What is a Likelihood ?

A simple way of defining a Likelihood is a Probability Density Function (PDF) which
depends on a certain number of parameters...

Simplistic definition is a function with integral equal to 1...

Let’s return to the well experiment but under a different angle this time...

(but this applies to any parameter estimate)

il N T LA L B L ™ . .
0.07}- = Under certain hypothesis :
D.HE;— — - Gaussian centered at 45 (p=15%)
0.05F E - Width equal to error for 1 bucket
F i (~6.2 blue balls)
0.04}- =
0.03f .
0.02f- «——— Here s its probability !
0.01F- = or Likelihood

o2 0 Fa 50 60 70

I Not so likely !

Here is your first measurement (36) !
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A
What happens when we throw more buckets ? L(m= O f(n,)
Mm\" "1

Then the probability of each bucket can be multiplied! =1
See Fit.C
SERAN RARAE REARE LARANRARY IRARAS RALLE RARRN RARAE RARE= Ll e e B L L
300} 8of- : . =
250} oE . g E
- 60 . ) E
200 s0f- . : :
150f aof- B . =
- 20F . N E
50(- 10F DR E
%35 30 35 40 45 50 55 60 65 70 Ty T ST T T S TR TT

This probability will soon be very very small (0(0.1))1%0-- It is easier to handle its log :

In(L() =& In(/,(n,)

Then to estimate a parameter one just has to maximize this function of the parameter
i (or minimize -2InL you will see why in a slide)...

See how the accuracy translates in the sharpness of the minimum!
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In our simple (but not unusual) case we can see that :

(n m?

-2In(L(/7))—-2a In(f (7)) :-2a In(\/— S )= én

=1

— g
~—

2
Thisis also called C

+ cste

(n; - /772
s?

There is an exact equivalence between maximizing the Likelihood or minimizing
the 2 (Least Squares Method) in the case of a gaussian PDF

| = L B I LA S .
asE a See Fit C . 3 You can also see that_ the error on
: . . : the measured value will be given by
3 . . = . L. .
o . . - a variation of -2 In L of one unit :
B 5 3 A(=2In(L(u)) =1
I W S El m=44.95+0.06
05| . - E —
] A —— U S —
a8 1485 :'fu'.é ~da95 a5 2506 451 Which s precisely n
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What have we learned?

How to perform an unbinned likelihood fit :

For n=1000 the fit yields
m=4491+0.19

SD_||r|]|||'|r|1||r|1r T

1 Using a simple binned fit (as shown here
1 with 100 bins) in the same data yields :

- m=44.81+0.20
LSM between the PDF and the bin value

o

70

This can of course be applied to any parameter estimation, as for
instance the di-photon reconstructed mass !
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The y? value is itself a statistic (random variable).

One can repeat the measurement, (throw of the bucket, collection of the data),
and one would get a different data set, and then calculate a different 2.

This means that the value of 2 belongs to a distribution.

As we could write down the y? exactly when the single point distribution was
gaussian, it follows that the y2distribution is amenable to analysis, and can be
calculated as: u) - (u / 2)(v/2)-1e- ul?2

P(
2G(v/2)
We have used u = y? to avoid confusion with the exponent.
I"(v/2) represents the gamma function and v the degrees of freedom (see later).

1.0 " 1.0 "

0.8 0.8
0.6 0.6 I
0.4

0.4

0.2 02

0.0~

0.0
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Hypothesis Testing

How to set limits or claim discovery ?

Hypothesis Testing in HEP Boils Down to One Question :

Is there a Signal ?
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Exclusion, Observation or Discovery ?

The goal here is to assess guantitatively the compatibility of our observation with two
hypotheses :

No-Signal (H,) and presence of Signal (H,)...

We need to be able to have estimate whether an experiment is more Signal-like or
Background-Like.

Neyman construction (1933)

}400_ IIIIIII '| LU I IIIIIIII I IIIIIIIIIIIIIIII I LI .
3 -ATLAS F‘rehmmary I Signal x10 .
%350 (S|mu|at|un} H—yy {I"I"I =120 GeV }—
9‘3300'— 1fo'\s =7 TeV [ vy [Burn & Brem) _:
L= e [ vy (Box) :
?25[}:_+ B v- jet = , )
S7F B Di- jet : Let’s again take the example
5200:— Bl Drell Yan = of the H—gg analysis at LHC
- —=— Toy sample (1 fb } . (in ATI—AS)
150 =
100 E
50

‘POU 105 110 115 120 125 130 135 140 145 150

M,, [GeV]
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The Neyman-Pearson Lemma

The underlying concept in ordering experiments is really to quantify the compatibility
of the observation with the signal hypothesis (H1) ...

The problem of testing Hypotheses was studied in the 30’s by Jerzy Neyman and
Egon Pearson...

They have shown that the ratio of likelihoods of an observation under the two
hypotheses is the most powerful tool (or test-statistic or order parameter) to

E:P(H1|x)
P(H, | x)
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The F-Test

Consider the case where the test statistic is defined as

18 UCoihg)- vy

_ c?(H, |x) /v, _" s°
CH(H 0]y, 18 (1(x:9)-3)
v, s°

With reference to the High Energy Physics example, in H,, h is the height of a
(gaussian)peak (of assumed known width) on a smooth background characterised by
a function of parameters 6, and in H, there is only the smooth background.

The ratio of two 2 distributions will be well defined because the y? is well defined.
The ratio is the F statistic, which itself belongs to a distribution.

OF |vyv,)=1 ?— Lk,

v2+v2F 2 2 E

Where | is the incomplete beta function.
Note : We are asking if the two distributions (with and without the peak) are different.
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v, and v, are the degrees of freedom for H; and H, respectively.
H, is described by f(x,h,0) which has n data points and m free parameters.
Then, v, = n—-m. Hy will have one more degree of freedom than H,.

o _ o ]
(Q\] ~—
F PDF
© F CDF
ToN o | —
i — d1=1, d2=1 © | —
o | — d1=2, d2=1 S /
A di1=5, d2=2 <
d1=100, d2=1 S g]zg’ ggzl
L0 _ _ — =z, Q2=
S ‘\ d1=100, d2=100 g | 815 dpo
S— d1=100, d2=1

() , ()
) _ : . — d1=100, d2=100
© I | | I I T [ [ | [ |

0 1 2 3 4 5 0 1 2 3 4 5

I:CL

A confidence limit for the rejection (acceptance) of H,, the null hypothesis, that there is
no peak, corresponds to discovery (exclusion).

In this analysis, the confidence limit is set at CL%, and the F distribution is integrated
to the the F-value of F, . Based on the cumulate F distribution to the point F , we are
CL% certain that a measured F-value larger than F_ is not statistically acceptable as
being consistent with H,.
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This analysis is didactic and illustrative, but it suffers from several drawbacks. It does
not respect the “look elsewhere” effect, it assumes a normal distribution for the data, it
cannot easily take into account the full systematics of the measurement, amongst
other issues.

The “look elsewhere” effect considers that we do not know where the peak should be.
The estimated probability of the peak must be multiplied by the number of ways that it
could have been manifested (roughly the factor of the measurement interval divided
by the peak width — assuming the peak width is also not free).

}400-lll[lr|r'||'|||I|||||||||I|||||||||Ir|r|['||'||ll|l-
& FATLAS Preliminary B signal x10 ;
i i H =120 GeV . .
230 (Simulation) 5 ?T{:ggm . Ere:]}]? An improvement is to develop toy
[1}] L - — . .
§300F 1o Ns=7TeV = oy 4 Monte Carlo pseudo experiments
‘5250:_+ B - jet 1  forH,and H,.
8 F Bl Oi- jet .
5200:— B Drell Yan ]
1503_ —— Toy sample (1 b} —f
100 = [ = P(H, | x)
50F 3 P(H, | x)
| B e e e S T S R B
fbo 105 110 115 120 125 130 135 140 145 150
M,, [GeV]
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The “x2” statistic for H; and H, can be calculated using the synthetic data.
The toy MC pseudo experiment can be repeated many times, billions of times, and the
PDF’s of the “x2” statistic for H, and H, can be numerically assembled.

The same can be done for the statistic

107

| IIIIIIfI'l IIIII|'|T| TTTT

102
10

—
°'I'I'I'\| IIIIIIﬂl [ TTTI

| |
10 20 30

Mm | n
40

2*log(L__/L,) (MC simulation)
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E:P(H1|x)
P(H, | x)

The “look elsewhere” effect will be
accommodated if the peak
position is a free parameter, and it
could then range freely in the
position where the statistical
fluctuations allow it to be found
most favorably. Other effects
(width variations, systematics are
conceivably able to be included in
developing the PDF’s.

The process of setting a CL% and
determining a p-value from the
CDF can now follow based on
these distributions.



The Profile Likelihood

A very useful tool to compute limits, observation or discovery sensitivties and treat
systematics is the Profile Likelihood ... based on toy MC pseudo experiments.

Let's again take the example of the H—gg analysis at LHC (in ATLAS)

the signal :

400 TTT TTrTT TTTT rTTT TTTT L TTTT TTrTT TIrTT TTT

- - | I I I | I | [ I ] .

2 [ATLAS Preliminary B signal x10 : We have a simple model for the

23%0%  (Simulation) H—yy (m, =120 GeV)- background :

&300‘_ 1fb'\s=7TeV %TT[Bﬂm&Br&m}j b g,m
N 1Y (Box) . — -2
- ] m — e

S ot —pa E (m.q)=q

3 F I Di- jet - _

iﬁ_,ggg:_ B Drell Yan E Relies only on two parameters
- —— Toy sample (1 fo . ]

150 E Assume a very simple model for

s(m,m=m" Gauss(m)

fbo 105 110 115 120 125 130 135 140 1439150 The Gaussian is centered at 120 GeV/c?
My, [GeV] and a width of 1.4 GeV/c?
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The Profile Likelihood

The overall fit model is very simple :

L(mq| data) = O (s(m,.m+ b(m, )

This model relies essentially only on two types of parameters :

- The signal strength parameter (i) It is essentially the signal normalization

- The nuisance parameters (0) Background description in the “side bands”

Test of a given signal hypothesis u

_ L(mg(n) | data)
1= L(/q | data)

Best fit of the data
Prescription similar to the Feldman Cousins

Usually work with the estimator: ¢, = - 2 In(/ (I?)) Because ...
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Wilks’ Theorem

Under the H Signal hypothesis the PL is distributed as a y* with 1 d.o.f. !

(v.i.z a well know analytical function)

To estimate the overall statistical behavior, toy MC full experiments are simulated and fitted !

19, medlq, ']

/ Yoos | f(q )

Signal-plus-background
Toy experiments

D Background-likeliness >
Background only
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05% CL Limits

The observed 95% CL upper limit on p is obtained by varying p until the p value :

+¥
e medlq, ] 1- CL,, =p= Of(q,|mdq,=5%
/ Gos | flg, ) g
/ Analytically simple
p-value

This means in other words that if there
IS a signal with strength p, the false
exclusion probability is 5%.

qU

The 95% CL exclusion sensitivity is obtained by varying p until the p value :

+¥
r= 0f(q,lmdq,=5%

med(qmlo)
%_J

Background only experiments
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Exclusion Results

Performing this analysis for several mass hypotheses and using CL_,, the exclusion
has the same problem as the simple Poisson exclusion with background...
No-Signal (H,) and presence of Signal (H,)...
l.e. a signal of 0 can be excluded with a fluctuation of the background

- B BRNLELELAY B AN B NN LR LR LR BN B
O . ATLAS Prelimina E
& - (Simulation) Madiar ]
o = .
R H— -==== Madian (no systamatics) 1
@ Eu_ 5=?-|1:;U I:lm 4 ]
E : i goilant ks :
"'m.—“: = 110 |:| Madian+ 2o N
- - ]
- 15— .
T n ]
< 10| -
o - ]
i3] - ]
e — .
L #] 5__ ]
u_l I L L 1 L I L L I I I I L L L I L L L L I L L L L I ! I I Il I I_

110 115 120 125 130 135 140
My, [GeV]

We thus apply the (conservative) “modified frequentist” approach that requires :

+¥
CL =CL,,ICL, =5%  where CL, = (\)f(qmm)dqﬂ
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Observation and Discovery

The method is essentially the same, only the estimator changes...we now use q,

In this case the f(q,|0) will be distributed as a x? with 1 d.o.f. (Wilks’ theorem)

+¥

p= 0f (g, 10)dg,

49 obs
- To claim an observation (3 o) : the conventional p-value required is 1.35 103

- To claim an observation (5 o) : the conventional p-value required is 2.87 10/

This means in other words that in
absence of signal, the false discovery
probability is p.

« a probability of 1 in 10 000 000 is almost

—Zo— X Impossible to estimate »
Corresponds to the “one sided” convention

R. P. Feynman

(What do you care what other people think?)
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Conclusion

We went through an overview of the fundamental concepts of statistics for HEP

If possible take some time to play with the Root-Macros for hands-on experience

You should now be able to understand the following plot !

s ‘ ' ' —
n 6 T \ T T 1
L 1ok ATLQbS de ) _ | 2011 + 2012 bata i ATLAS Preliminary 2011 + 2012 Data
= g e }tg: IRPoNE — Obs. 5=7TeV: [Lot=46481"
= W10 it ] -+ Exp. Vs=8TeV: |Ldt=585.9 "
E - [J=*20 i
|l ]
$)
L |y | TETRESEeEReNee——— i
N : ]
@ T .
107E . E
i CLs Limits - .
100 200 300 400 500 600 260 3(‘)0 460 5[')0 660

my [Gev] m, [GeV]

There is a lot more for you/us to learn about statistical techniques
In particular concerning the treatment of systematics
So be patient and take some time to understand the techniques step by step...

... and follow Laplace’s advice about statistics !
ASP2012 : Stats for HEP 48



