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Goal 
Describe the fundamental concepts of statistics for HEP   

Explore these concepts with Root-Macros for hands-on experience 
Usng the random number generator … seeing some sampling theory …. 

Finally be able to understand the following plot ! 

Appreciate there is a lot more for you/us to learn about statistical techniques 

 

Apply these results to Discovery and Exclusion in ATLAS 

In particular concerning the treatment of systematics 

So be patient and take some time to understand the techniques step by step… 
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Disclaimer :  
What this lecture is not going to be about… 

- Bayesian confidence intervals 

- Goodness of fit theory 

- It will not be a lecture on the fundamental theory of statistics  

- Multivariate techniques 

- In depth discussion of systematics and their treatment 

- Bayesian vs. Frequentist diatribe 
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Why are Statistics so Important in Particle Physics ? 

Because we need to give quantitative statements about processes that 

have some inherent randomness… 

“La theorie des probabilités n’est, au fond, 

que le bon sens reduit en calcul” 

P. S. Laplace (1749-1824) 

Liber de ludo aleae 

… May this randomness be of measurement nature or quantum … 

How did it all start ? 

G. Cardano (1501-1576) 

To study games of chance ! 

And many others to follow (Pascal, Fermat, etc.. ) 

“The theory of probabilities is at ultimately 

nothing more than common sense reduced to 

calculation” 
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We saw previously ….. 

From the very innocuous seeming assumption ….  
 

“There is a random process characterised by a constant average event rate, m. 
 

… many significant and fundamental results follow – perhaps the prime 

example of the dramatic yield of results from an assumption in all physics.  

The random deviate represented by the waiting time between such events 

may be shown to be drawn from the exponential probability density 

distribution. 

pE (t;m) = me-mdt

The random deviate represented by the number of such 

events within a time bin T is drawn from the Binomial 

Distribution, well approximated by the Poisson Distribution. 

pP (n;n) =
n n

n!
e-n

n =TmWhere the expectation value 
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What is a Statistical Error ? 
Imagine I have a billion white     and blue     golf balls   

I decide to throw one million of them into a well and decide an admixture of  15 out 

of one hundred blue ones… 

  

p =15%

I then know PRECISELY the 

probability that if you pick one at 

RANDOM, it will be blue… 

You of course don’t know this number 

and you want to measure it…  

All you have is a bucket… 

Which contains exactly 300 balls 
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n = 300

  

k = 36

This is approximately how the well looks like inside… 

You throw the bucket and pull out the following outcome 

Aha! You have a measurement! 

  

P =12%

The probability is… 

… But how precise is it ? 

Remember you are not supposed to know the true value! 
ASP2012 : Stats for HEP 7 



Of course had you thrown your bucket on a different spot, you would have probably 

had a different measurement and the statistical error would be different… 

The difference between a measurement and the true value is the Statistical Error 

In this case it would be 3% absolute (20% relative), but since you don’t know the true 

value you don’t know at all what your statistical error really is ! 

Precise definition of statistical error 

This can be done provided that you know the law of probability governing the possible 

outcomes of your experiment … 

What you want to know is your measurement error, or what  the average statistical 

variation of your  measurement is…  

(and the true value of p, but assume that 12% is a close enough) 

You want to know what the probability for an outcome of k golf balls to be blue is. 

For one specific outcome the probability is: 

  

P = pk ´ (1- p)n-k

What are all possible combination of outcomes of k blue balls out of n? 
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What are all possible combination of outcomes of k blue balls out of n? 

For the first blue ball there are n choices, once this choice is made the second ball 

has n-1 choices,… the kth ball has (n-k) choices. 

In a simple case…  n=10 and k=3 this can be seen as:  

The first blue ball has n choices The second has n-1 choices The third has n-2 choices 

   

n

  

´  (n -1)

  

´  (n -2)So the number of combinations is : 

In the general case :  

  

n ´ (n -1) ´ (n -2) ´ (n- 3)...´ (n - k +1)

   

=
n!

(n - k)!

Because we do not care about the order in which we have picked the balls 

… avoid the double counting! 

1    2                3 

1    3                2 

2    1                3 

3    1                2 

2    3                1 

3    2                1 

Each configuration is counted 6 times 
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This number corresponds in fact to the number of combinations of k blue balls out of k 

balls and therefore : 

  

k ´ (k -1) ´ (k -2) ´ (k - 3)...´1

  

= k!

In order to account for each combination only once you just need to divide by the 

number of re-arrangements of the k blue balls.  

Aka the number of re-arrangements of the k blue balls.  

So the number of combinations of k elements among n is given by : 

  

P =Cn
k ´ pk ´ (1- p)n-k

   

Cn
k =

n!

k!(n - k)!

The probability to pick k blue balls among n, given a probability P that the a ball is 

blue is thus : 

This is an absolutely fundamental formula in probability and statistics!  

It is the so called Binomial Probability! 
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The Binomial Probability 

Binomial coefficients were known since more than a thousand years… 

… they were also the foundation of modern probability theory!  

The Pascal Triangle (~1000 AD) B. Pascal (1623-1662) 
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So what is the precision of your measurement ? 

A good measure of the precision (not the accuracy) is the Root Mean Square Deviation 

(square root of the variance) of possible outcomes of the measurement. 

You will compute it yourself. To do so you need two steps…  

(see next slide for the full derivation) 

So now you know the variance of your distribution for a given probability P… 

In your case : 

  

P =12%

  

RMSD= nP(1-P) = 5.6

Assuming P is close enough to the true value, the precision is : 

Step 1 : Compute the mean value of the binomial probability 

Step 2 : Compute the variance of the binomial probability 

  

m = nP

  

Variance = nP(1-P)

The relative precision ~15% is rather poor and the accuracy questionable! (Remember, your 

statistical error is 45 - 36 = 9, although you are not  supposed to know it !) 

ASP2012 : Stats for HEP 12 



Step 1 : Compute mean value Step 2 : Compute variance 
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But wait… 

You have noticed that the average binomial probability is the expected value!    

Your initial measurement (36) ! 

The average number of blue 

balls in 50,000 throws : 

  

NumberBlue = 44.98

  

P =14.99%

Now you decide that your measurement is the average, what is its precision ? 

Nthrows = 1 Nthrows = 2 Nthrows = 6 Nthrows = 11 Nthrows = 100 Nthrows = 1000 Nthrows = 10000 Nthrows = 50000 

You will do it 50,000 times and meticulously plot the number of counts. This is what you get : 

Intuitively you will therefore try to repeat and average your measurements… 

See Binomial.C 

Now you are curious to see what happens if you repeat your measurement! 
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What is the variance of the average ? 

   

Var aiX i
i= 0

n

å
æ 

è 
ç 

ö 

ø 
÷ = ai

2Var(X i) + aia jCov(X i,X j )
0£ i< j£n

å
i= 0

n

å

  

Cov(X,Y) = (X - X )(Y - Y )

Let’s start from one straightforward and general property of the Variance for two random 

variables X and Y :  

   

Var aX + bY( ) = (aX + bY - aX + bY )2 = a(X - X ) + b(Y - Y )[ ]
2

= a2Var(X) + b2Var(Y ) + 2abCov(X,Y)

Where the covariance is : 

This formula generalizes to… 

Therefore assuming that each of the bucket throws measurement           is independent from 

the previous one, the mean value being a simple sum of the measurements divided by the 

number of throws : 

NumberBlue =
1

NThrows
NBlue
k

k=1

NThrows

å    

NBlue
k

The ensemble variance then is : 

ŝ 2 =Var
1

NThrows
Xi

k=1

NThrows

å
æ

è
ç

ö

ø
÷ =

1

NThrows
2

Var Xi( )
k=1

NThrows

å =
1

NThrows
2

NThrowsVar Xi( ) =
nP(1-P)

NThrows
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The precision being given by the Root Mean Square Deviation : 

   

RMSD =
nP(1- P)

NThrows
=
RMSDIndividual

NThrows
= 0.01%

Very interesting behavior : Although you do not know the true value p, you see that the 

average is converging towards it with increasing precision! 

This is an illustration of the LAW of LARGE NUMBERS ! Extremely important, intuitive but 

not trivial to demonstrate… 

See Binomial.C 

The line here is the true value ! 

Your initial measurement 
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What is the meaning of our first measurement Nblue = 36 ? 

Now that we know (after 50,000 throws) to a high precision that the probability of a 

blue ball is very close to 15%. 

The frequency of an outcome as low as 12% is ~10% (not so unlikely!) 

What difference would it make if you had known true value ? 

Frequency at which the true value is within the precision as estimated from the 

measurement : 

Frequency at which the measurement is within the precision as estimated from the 

truth :  

  

Pmeas - p £ nPMeas(1-PMeas)  

Pmeas - p £ np(1- p)

 67% (of the cases the true value is 

within the measured error)  

 70% (of the cases the measurement is 

within the true statistical RMSD)  

The true value coverage is similar in the two cases, keep these values in mind… 

Here all results are derived from a simulation in terms of frequencies… 

Computing Binomial probabilities with large numbers of N can be quite difficult ! 

See Coverage.C 
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 The Gaussian or Normal Probability 

Is there a way to simplify the computation ? Not so trivial to compute 300! directly… 

A very nice approximation of the Binomial Probability can be achieved using 

Stirling’s Formula ! 

   

n!» 2pn
n

e

æ 

è 
ç 

ö 

ø 
÷ 

n

lnn! » n lnn-n+ 1
2
ln2pn

(See derivation in the next slide)    

Cn
k pk (1- p)n-k »

1

2ps 2
e

-
(k- k )2

2s 2

  

s = np(1- p)

Formula is valid for large values of n… 
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Binomial convergence towards Normal  
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Validity of the Normal Convergence (Approximation) 

Does the approximation apply to our bucket experiment (n=300 and p=15%) ? 

Not bad (although not perfect) ! 

In practice you can use the normal law when approximately n>30 and np>5 

C. F. Gauss (1777-1855) 

See NormalConvergence.C 
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What is so “Normal” About the Gaussian? 

The Central Limit Theorem… … at Work ! 

When averaging various independent random variables (and identically 

distributed) the distribution of the average converges towards a Gaussian 

distribution 
See CLT.C 

RMS =  

   

[0,1]

12

   

´
1

2

   

´
1

3

   

´
1

10

At N=10 an excellent agreement with a 

gaussian distribution is observed 

N = 1 N = 2 N = 3 N = 10 

The CLT is one of the main reasons for the great success of the Gaussian law… 

On the one hand the CLT is very powerful to describe all those phenomena that result from the 

superposition of various other phenomena… but on the other hand it is just a limit…  
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The Notion of Standard Error 

   

GPDF (x,m,s) =
1

2ps 2
e

-
(x-m )2

2s 2Starting from the gaussian PDF : 

Let’s give a first definition of a central confidence interval as the deviation from the 

central value… 

   

P(as) =
1

2ps 2
e

-
(x-m )2

2s 2

m-as

m+as

ò dx

Then for :  - a = 1 : P(a) = 68.3%  

- a = 2 : P(a) = 95.4% 

- a = 3 : P(a) = 99.7 % 

See NormalCoverage.C 

If you knew the true value of the “error” () then you could say that the in the gaussian limit 

that the true value has 68.3% probability to be within the 1s, but in many practical examples 

(such as the well) the true value of the error is not known… 
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How does the Bucket Experiment Relate to Particle Physics? 

This is precisely what we call in particle physics cross sections… 

The bucket experiment is the measurement of an abundance (blue balls)… 

… except that the bucket contains all collisions collected in an experiment so… 

- We try to fill it as much as possible (N is very large and not constant!) 

- The processes we are looking for are very rare (p is very small)  

The very large N makes it difficult to compute the binomial probability… 
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The Poisson Probability 

   

Cn
k pk (1- p)n-k »

(np)k

k!
e-(np ) =

mk

k!
e-m

In the large n and small p limit and assuming that np = m  is finite you can show 

(see next slide) that …��  

Much simpler formulation! In practice you can use the normal law when approximately n>30 and np<5 

See PoissonConvergence.C 

N=100 and p=25% N=100 and p=15% N=100 and p=10% N=100 and p=2% N=100 and p=5% 
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S. D. Poisson (1781-1840) 

Interesting to note that Poisson 

developed his theory  trying not to solve a 

game of chance problem but a question 

of Social Science ! 
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Poisson Intervals (or Errors) 

Now how will you define a central confidence interval in a non symmetric case ? 

The integration needs to start from the most probable value downwards… 

Here is our first encounter with the necessity of an ordering ! 

Equiprobable boundaries  

68% 
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What have we learned ?  

3.- We came across a very important formula in the previous slides  

   

Var aiX i
i= 0

n

å
æ 

è 
ç 

ö 

ø 
÷ = ai

2Var(X i) + aia jCov(X i,X j )
0£ i< j£n

å
i= 0

n

å

That generalizes (with a simple Taylor expansion) to… 

   

var( f (x1,..., xn )) = (
¶f

¶xi
)2 var(xi) +

¶f

¶xi

¶f

¶x j
cov(xi,x j )

0£ i< j£n

å
i= 0

n

å

…and a few by-products… 

1.- Repeating measurements allows to converge towards the true value of an 

observable more and more precisely …    

But never reach it with infinite precision !!! 

Even more so accounting for systematics…  

(what if the balls do not have an homogeneous distribution ?) 

2.- Binomial variance is also useful to compute the so-called binomial error, mostly 

used for efficiencies :  

   

se =
sm

N
=

e(1-e)

N

  

m = np
For an efficiency you must consider n fixed ! 
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Unfortunately in High Energy physics experiments, events (balls) don’t come in 

single colors (white or blue) … Their properties are not as distinct ! 

Background ? 
Let alone that they can be 

indistinguishable (quantum 

interference) 

For instance take this simple event : 

g 

g 

Likelihood 

Higgs ? 

Could be many things … 
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How can we distinguish between the two ? 

Very vast question, let’s first start with how to measure their properties 

(Which is also a very vast question!) 

One clear distinctive feature is that the signal is a narrow mass resonance, while 

the background is a continuum ! 

To measure properties in 

general (a.k.a. parameter 

estimation) among the most 

commonly used tools is the 

maximum likelihood fit…   
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What is a Likelihood ? 

A simple way of defining a Likelihood is a Probability Density Function (PDF) which 

depends on a certain number of parameters… 

Simplistic definition is a function with integral equal to 1… 

Here is your first measurement (36) ! 

Here is its probability ! 

Under certain hypothesis : 

- Gaussian centered at 45 (p=15%) 

- Width equal to error for 1 bucket 

(~6.2 blue balls) 

or Likelihood 

Let’s return to the well experiment but under a different angle this time… 

Not so likely ! 

(but this applies to any parameter estimate) 
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What happens when we throw more buckets ? 

This probability will soon be very very small (O(0.1))100... It is easier to handle its log : 

   

ln(L(m)) = ln( fm (ni))
i=1

n

å

Then the probability of each bucket can be multiplied! 

   

L(m) = fm (ni)
i=1

N

Õ

Then to estimate a parameter one just has to maximize this function of the parameter 

m  (or minimize -2lnL you will see why in a slide)… 

See how the accuracy translates in the sharpness of the minimum! 

See Fit.C 

N=100 N=1000 N=10000 
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-2ln(L(m)) = -2 ln( fm (ni))
i=1

n

å

In our simple (but not unusual) case we can see that :  

   

= -2 ln(
1

2ps
e

-
(n i -m )2

2s 2

)
i=1

n

å

   

=
(ni - m)2

s 2

i=1

n

å + cste

This is also called        

   

c 2

There is an exact equivalence between maximizing the Likelihood or minimizing 

the 2 (Least Squares Method) in the case of a gaussian PDF 

You can also see that the error on 

the measured value will be given by 

a variation of -2 ln L of one unit : 

  

m = 44.95 ± 0.06

   

s

n
Which is precisely 

See Fit.C 
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How to perform an unbinned likelihood fit : 

What have we learned? 

For n=1000 the fit yields 

  

m = 44.91± 0.19

Using a simple binned fit (as shown here 

with 100 bins) in the same data yields : 

  

m = 44.81± 0.20

LSM between the PDF and the bin value  

This can of course be applied to any parameter estimation, as for 

instance the di-photon reconstructed mass ! 

See Fit.C 
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P(u) =
(u / 2)(v/2)-1e-u/2

2G(v / 2)

The 2 value is itself a statistic (random variable). 

 

One can repeat the measurement, (throw of the bucket, collection of the data), 

and one would get a different data set, and then calculate a different 2. 

This means that the value of 2 belongs to a distribution. 

As we could write down the 2 exactly when the single point distribution was 

gaussian, it follows that the 2distribution is amenable to analysis, and can be 

calculated as: 

We have used u = 2 to avoid confusion with the exponent. 

G(v/2) represents the gamma function and v the degrees of freedom (see later).  

2 PDF 

2 CDF 
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Hypothesis Testing 

How to set limits or claim discovery ? 

Hypothesis Testing in HEP Boils Down to One Question :  

Is there a Signal ? 
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Exclusion, Observation or Discovery ? 
The goal here is to assess quantitatively the compatibility of our observation with two 

hypotheses : 

We need to be able to have estimate whether an experiment is more Signal-like or 

Background-Like.  

Neyman construction (1933)  

No-Signal (H0) and presence of Signal (H1)… 

Let’s again take the example 

of the Hgg analysis at LHC 

(in ATLAS) 
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The Neyman-Pearson Lemma 

The underlying concept in ordering experiments is really to quantify the compatibility 

of the observation with the signal hypothesis (H1) … 

The problem of testing Hypotheses was studied in the 30’s by Jerzy Neyman and 

Egon Pearson… 

They have shown that the ratio of likelihoods of an observation under the two 

hypotheses is the most powerful tool (or test-statistic or order parameter) to  

   

E =
P(H1 | x)

P(H0 | x)
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The F-Test 
Consider the case where the test statistic is defined as 

With reference to the High Energy Physics example, in H1, h is the height of a 

(gaussian)peak (of assumed known width) on a smooth background characterised by 

a function of parameters q, and in H0, there is only the smooth background. 

The ratio of two 2 distributions will be well defined because the 2 is well defined. 

The ratio is the F statistic, which itself belongs to a distribution.   

F =
c 2(H1 | x) / v1

c 2 (H0 | x) / v2

=

1

v1

( f (xi;h,q )- yi )
2

s 2å

1

v2

( f (xi;q )- yi )
2

s 2å

Q(F | v1,v2 ) = I v2

v2+v2F

v2

2
,
v1

2

æ

è
ç

ö

ø
÷

Where I is the incomplete beta function. 

Note : We are asking if the two distributions (with and without the peak) are different. 
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v1 and v2 are the degrees of freedom for H1 and H0 respectively. 

H1 is described by f(x,h,q) which has n data points and m free parameters. 

Then, v1 = n – m. H0 will have one more degree of freedom than H1.   

A confidence limit for the rejection (acceptance) of H0, the null hypothesis, that there is 

no peak, corresponds to discovery (exclusion). 

In this analysis, the confidence limit is set at CL%, and the F distribution is integrated 

to the the F-value of FCL. Based on the cumulate F distribution to the point  FCL, we are 

CL% certain that a measured F-value larger than FCL is not statistically acceptable as 

being consistent with H0. 

F PDF 
F CDF 

FCL 
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This analysis is didactic and illustrative, but it suffers from several drawbacks. It does 

not respect the “look elsewhere” effect, it assumes a normal distribution for the data, it 

cannot easily take into account the full systematics of the measurement, amongst 

other issues.  
 

The “look elsewhere” effect considers that we do not know where the peak should be. 

The estimated probability of the peak must be multiplied by the number of ways that it 

could have been manifested (roughly the factor of the measurement interval divided 

by the peak width – assuming the peak width is also not free). 

 

 

An improvement is to develop toy 

Monte Carlo pseudo experiments 

for H1 and H0. 

 

 

   

E =
P(H1 | x)

P(H0 | x)
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The “2 ” statistic for H1 and H0 can be calculated using the synthetic data. 

The toy MC pseudo experiment can be repeated many times, billions of times, and the 

PDF’s of the “2 ” statistic for H1 and H0 can be numerically assembled. 

 

The same can be done for the statistic    

 

   

E =
P(H1 | x)

P(H0 | x)

The “look elsewhere” effect will be 

accommodated if the peak 

position is a free parameter, and it 

could then range freely in the 

position where the statistical 

fluctuations allow it to be found 

most favorably. Other effects 

(width variations, systematics are 

conceivably able to be included in 

developing the PDF’s. 

 

The process of setting a CL% and 

determining a p-value from the 

CDF can now follow based on 

these distributions. 
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The Profile Likelihood 

A very useful tool to compute limits, observation or discovery sensitivties and treat 

systematics is the Profile Likelihood … based on toy MC pseudo experiments. 

Let’s again take the example of the Hgg analysis at LHC (in ATLAS) 

We have a simple model for the 

background :  

  

b(m,q) = q1e
-q 2m

Relies only on two parameters 

Assume a very simple model for 

the signal : 

  

s(m,m) = ms´Gauss(m)

The Gaussian is centered at 120 GeV/c2 

and a width of 1.4 GeV/c2 
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The Profile Likelihood 

   

L(m,q | data) = (s(mi,m) + b(mi,q
iÎdata

Õ ))

The overall fit model is very simple : 

   

This model relies essentially only on two types of parameters :  

- The signal strength parameter (m) 

- The nuisance parameters (q) 

It is essentially the signal normalization 

Background description in the “side bands” 

  

   

l(m) =
L(m,

  
q (m) | data)

L(
 

m ,
 

q | data)

Test of a given signal hypothesis m 

Best fit of the data 

Prescription similar to the Feldman Cousins 

  

qm = -2ln(l(m))Usually work with the estimator :  Because … 
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Wilks’ Theorem 
Under the Hm Signal hypothesis the PL is distributed as  a 2 with 1 d.o.f. ! 

(v.i.z a well know analytical function) 

Signal-plus-background 

Toy experiments 
Background only 

 Toy experiments (m’=0) 

Background-likeliness 

To estimate the overall statistical behavior, toy MC full experiments are simulated and fitted ! 
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95% CL Limits 

The observed 95% CL upper limit on m  is obtained by varying m until the p value :  

   

1-CLs+b = p = f (qm

qobs

+¥

ò | m)dqm = 5%

The 95% CL exclusion sensitivity is obtained by varying m until the p value :  

   

p = f (qm

med (qm |0)

+¥

ò | m)dqm = 5%

Background only experiments 

This means in other words that if there 

is a signal with strength m, the false 

exclusion probability is 5%. 

Analytically simple 
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Exclusion Results 
Performing this analysis for several mass hypotheses and using CLs+b the exclusion 

has the same problem as the simple Poisson exclusion with background… 

i.e. a signal of 0 can be excluded with a fluctuation of the background 

We thus apply the (conservative) “modified frequentist” approach that requires :  

   

CLb = f (qm

qobs

+¥

ò | 0)dqm

  

CLs =CLs+b /CLb = 5% where 

No-Signal (H0) and presence of Signal (H1)… 
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Observation and Discovery 

The method is essentially the same, only the estimator changes…we now use q0  

In this case the f(q0|0) will be distributed as a 2 with 1 d.o.f. (Wilks’ theorem) 

   

p = f (q0

qobs

+¥

ò | 0)dq0

- To claim an observation (3 ) : the conventional p-value required is 1.35 10-3 

- To claim an observation (5 ) : the conventional p-value required is  2.87 10-7 

Corresponds to the “one sided” convention 

This means in other words that in 

absence of signal, the false discovery  

probability is p. 

« a probability of 1 in 10 000 000 is almost 

impossible to estimate » 

R. P. Feynman 

 (What do you care what other people think?) 
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Conclusion 
We went through an overview of the fundamental concepts of statistics for HEP   

If possible take some time to play with the Root-Macros for hands-on experience 

You should now be able to understand the following plot ! 

There is a lot more for you/us to learn about statistical techniques 

In particular concerning the treatment of systematics 

So be patient and take some time to understand the techniques step by step… 

… and follow Laplace’s advice about statistics ! 
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