Part II: What we have learnt thus far

- QCD is a rich (yet very challenging) theory
- Interactions qualitatively depend on the scale
 - Long wavelength hadrons, npQCD
 - Short wavelength partons, pQCD
- Colour force is confining no free partons
 - Pulling out a parton causes it to hadronize
 - Not understood theoretically, just modelled
- How else can we try and understand QCD?
 - How do we understand other forces in nature?

The kinematical range accessible

Small x higher initial parton density qualitatively different matter produced at LHC mid-rapidity? tests of saturation phenomena? - bulk observables

- pt-spectra in scaling regime
- rapidity vs. $\sqrt{s_N}$ ependence

Large Q^2 abundant yield of hard probes precise tests of properties of produced matter

- color field strength
- collective flow
- viscosity

SppS Collisions (1980's)

proton $\sqrt{s} = 200, 546, 900 \text{ GeV}$ anti-proton 10's of particles

RHIC Collisions (2000 -)

Rapidity

Hadronic collisions are characterized by limited transfer of transverse momentum

- Most particles we observe carry only small fraction of (anti)proton longitudinal momentum (x = p_z/p_{z,max})
- "Rapidity" variable increases dynamic range (x<.1)
 - Lorentz boost changes y by a constant

$$y = \frac{1}{2} \ln \left(\frac{E + p_z}{E - p_z} \right) \sim \ln(x) \qquad \qquad \beta \qquad \qquad y \Rightarrow y + \frac{1}{2} \ln \left(\frac{1 + \beta}{1 - \beta} \right)$$

Pseudorapidity

- Rapidity requires complete characterization of 4-vector Conceptually easy, but requires a spectrometer
- Experiments with high multiplicities and limited resources use "pseudorapidity"

$$\eta = -\ln \tan \theta / 2$$
 θ

 dN/dη related to dN/dy, but not the same, especially for slower particles

$$\frac{dN}{d\eta d\mathbf{p}_T} = \beta \frac{dN}{dy d\mathbf{p}_T}$$

Pseudorapidity Distributions in pp

Geometry of AA Collisions

Some Measurables

 In nucleon-nucleon (NN) collisions, we study the height of the "plateau"

 $dN/d\eta|_{|\eta|}$

 In AA collisions, normalize by number of participant pairs to compare to NN

$$\frac{dN \, / \, d\eta \big|_{|\eta| < 1}}{N_{part} \, / \, 2}$$

Glauber model

- Nucleons are distributed according to a density function (e.g. Woods-Saxon)
- Nucleons travel in straight lines and are not deflected as they pass through the other nucleus
- Nucleons interact according to the **inelastic cross section** σ_{NN} measured in pp collisions, even after interacting
 - Participants counts nucleons which interact
 - Binary collisions counts collisions

AA normalized to equivalent NN

• Each effective nucleon-nucleon collision in central collisions of nuclei produces 50% more particles than pp!

Energy Density

Q: Is there a connection between height of plateau and the energy density

a *constant* amount of transverse energy(E_T) per particle, implying :

ϵ (200 GeV) = 4.6 x 1.14 = 5.2 GeV/fm³

QGP revisited

A **quark–gluon plasma** (**QGP**) or **quark soup** is a <u>phase</u> of <u>quantum</u> <u>chromodynamics</u> (QCD) which exists at extremely high <u>temperature</u> and/or <u>density</u>. This phase consists of asymptotically free <u>quarks</u> and <u>gluons</u>, which are several of the basic building blocks of matter

Energy loss by gluon radiation and elastic collisions - strong coupling of gluons w.r.t quarks - in dense media!

✓ Dead cone effect: gluon radiation from heavy q is suppressed @ angles < $M_q/E_q \Rightarrow$ small energy loss from heavier quark

✓ Casimir effect: $<\Delta E > ~\alpha_s C_R qL$, where $\alpha_s QCD$ coupling, C_R Casimir factor, 4/3 (3) for q(g), q transport coeffecient, L path length in the medium. →HF mainly from q fragmentation , light hadrons from g.

Heavy quarks in QGP medium

HF muon production @ the LHC?

machine	SPS	RHIC	LHC
√s _{NN} (GeV)	17	200	2760

- √s_{LHC} → best conditions to study QGP(S. Abreu, et al. arXiv:0711.0974) Access hard probe production cross sections
- Muon sources @ LHC
 - Light mesons decays: π , K,
 - Charm decays: $D,^{CC}$ mesons ($J/\psi \rightarrow \mu + \mu$ -) (~ 20 x RHIC)
 - Beauty decays: B, ^{bb} mesons ($\Upsilon \rightarrow \mu + \mu$ -) (~100 x RHIC)
 - W / Z decays
- Muon p_t distribution in HI *is sensitive* to b-quark energy loss effects $\rightarrow R_{AA}$ reduction due to nuclear shadowing of PDF
- W / Z yields expected to scale with $\langle N_{coll} \rangle$ in parton-parton scattering \Rightarrow calibration for HF R_{AA} & test of the binary scaling assumptions

Z.Conesa del Valle et al., arXiv:0712.0051v1

The ALICE Experiment

Size: 16 x 26 meters Weight: 10,000 tons Detectors: 18

Themba

LABS aboratory for Accelerato

- HI collisions: measure all known observables to characterise the medium formed in the collisions - pp collisions: baseline for A-A and intrinsic interest, test pQCD models J. Instrum. 3, S08002 (2008)

ALICE Collaboration

> 1000 Members from both NP and HEP communities 33 **Countries** 116 Institutes ~ 150 MCHF capital cost (+ 'free' magnet) **History** 1990-1996: Design 1992-2002: R&D 2000-2010: Construction 2002-2007: Installation 2008 -> : Commissioning **3 TP addenda along the way:** 1996 : muon spectrometer 1999 : TRD 2006 : EMCAL

ALICE Acceptance

• Forward muon arm: $2.5 < y < 4 \Rightarrow$ Probe small Bjorken-x ($10^{-5} - 10^{-3}$)

Resolution ($\Delta P/P$) goal: 1% @ 20 GeV/c, 4% @ 100 GeV/c absorber, 3 Tm dipole magnet 10 tracking + 4 trigger chambers *Quarkonia:* $\mu + \mu$ - channel <u>Heavy flavour</u>: semi-leptonic decays (μ +/-)

• <u>Backward + Forward small acceptance detectors</u>: multiplicity, centrality, luminosity & triggering

J. Instrum. 3, S08002 (2008)

Particle Identification

- stable hadrons (π , K, p): 100 MeV < p < 50 GeV
 - dE/dx in silicon (ITS) and gas (TPC) + Time-of-Flight (TOF) + Cerenkov (RICH)
- dE/dx relativistic rise => extend PID to several 10 GeV
- decay topology (K⁰, K⁺, K⁻, Λ, D⁺,...)
 - K and Λ decays up to > 10 GeV
- leptons (e, μ), photons, η , π^0

LHC: Plasma Energy Density; Lifetime

Energy density expected to increase by factor $\sim 2 - 3$

Lifetime of QGP by Factor $\sim 2 - 3$

LHC: extending the low-x Reach

RHIC as opened the low-x frontier finding indications for new physics (CGC ?)

LHC will lower the x- frontier by another factor 30

Can reach x = $3 * 10^{-6}$ in pp, 10^{-5} in PbPb

Managing the Data: Trigger, HLT, DCS, DAQ, ECS

- Central Trigger Processor (CTP)
 - Hierarchy of three Levels (L0, L1, L2)
- High-Level Trigger (HLT) : 1000 processors; scaleable to 20 000
 - sharpened trigger decisions; data pre-processing and compression;
- Detector Control System (DCS)
- Data Acquisition (DAQ): Bandwidth 500MBytes/ s; planned: 1.2 GBytes/s (following Luminosity increase)
- Experimental Control System (ECS)
 - top layer; interface to experiment operation

Status: all systems installed; operational, commissioning continuing

High-Level Trigger(1)

• Data rate from central PbPb collisions (dN/dy~2000-4000):

200Hz*(30Mb-60Mb)= 6-12Gb/s

- Max mass storage bandwidth <u>~1.2Gb/s</u>
- Goal of HLT is to reduce the data rate without biasing important physics information:
 - Event triggering
 - "Regions of Interest"
 - Data compression

- Requirements:
 - Fast and robust online reconstruction
 - Sufficient tracking efficiency and resolution
 - Fast analysis of important physics observables

Off-line Data processing

Data Processing during 1st global Commissioning Run (Dec 2007:)

systematic reconstruction of all RAW data Reconstructed events made available

to collaboration

GRID operation during December Run

Talk by F. Carminati (QM08)

ALICE recent history

PID and vertexing

Resolution better than 75 μ m above 1 GeV/c, and very close to target performance, essentially the *same in PbPb and pp*

Identification of strange particles

ALICE data, p-p at 7 TeV (sel. runs / GRID pass1) - 8.53 Mevents

Charmonium and D mesons

ALI

E

Pb-Pb collisions

Pb+Pb @ sqrt(s) = 2.76 ATeV

2010-11-08 11:30:46 Fill : 1482 Run : 137124 Event : 0x0000000003BBE69

Recent PbPb runs @ the LHC

http://lpcc.web.cern.ch/LPCC/index.php?page=luminosity_charts

Increase in luminosity \Rightarrow statistics increase by ~ 18 times more than in 2010. High p_t reach for HF muon production, e.g. W and Z decay muons ?

Centrality determination

The collision geometry (i.e. the impact parameter) determines the number of nucleons that **participate** in the collision

Centrality measurements in PbPb collisions @ 2.76 TeV

Elliptic Flow

- Elliptic Flow: one of the most anticipated answers from LHC

 <u>experimental observation</u>: particles are distributed with azimuthally anisotropic around the scattering plane
 - Is the Hydro, interpretation correct ?

RHIC: "Perfect Liquid"?

First Elliptic Flow Measurement at LHC

- v₂ as function of p_t
 practically no change with energy !
 - extends towards larger centrality/higher p_t

- v₂ integrated over pt
 30% increase from RHIC
- − <p_t> increases with Vs
- Hydro predicts increased 'radial flow'
 - very characteristic
 p_t and mass dependence;
 to be confirmed !

Jet Quenching

- Jet quenching:
- jet E -> jet E' (=E-∆E) + soft gluons (∆E)
 modified jet fragmentation function via matter
 induced gluon radiation/scattering
 - ightarrow probe of QGP properties
 - how much energy is lost ?
 - may depend on jet cone R, p_t-cutoff, ..
 - how is it lost ?
 - (e.g. multiple soft or few hard gluons ?)
 - 'response of QGP'
 - shock waves, Mach cones

Both Atlas and CMS see very striking effects in the dijet-imbalance for central events !

Fragmentation function f(z)

Jet Quenching as seen by p_t spectra

Suppression of high p_{t} particles (~ leading jet fragments)

- Min. $R_{AA} \sim 1.5 2 x$ smaller than at RHIC
- Rising with p_t ! (ambiguous at RHIC !)
- accuracy limited by pp reference

Participation of SA in ALICE

- Cape Town in ALICE: currently 6 senior staff + several students
 - UCT joined 2001, became UCT-CERN research center in 2003
 - iThemba LABS joined in 2008
- Projects

Outlook on new study: W[±] production via single muon channel in the forward rapidity region of ALICE: 2.5 < y < 4.0

- Carried out by teams in SA

Exploring QCD Frontiers: from RHIC and LHC to EIC, 29 Jan - 3 Feb 2012, Stellenbosch, South Africa

Motivation

Initial study "W production in pp, PbPb & pPb collisions @ LHC

energies: W^{\pm} detection in the ALICE Muon Spectrometer"

Z.Conesa del Valle et al., Eur. Phys. J. C61 (2009) 729-733

Scientific motivation:

- W muons have a high $p_t \sim M_W/2 \Rightarrow W^{\pm}$ as reference for observing QGP induced effects on QCD probes, e.g. suppression of high p_t heavy quarks
- Probe PDF in the Bjorken-x:

 $x \in (10^{-4} - 10^{-3}) \Longrightarrow 2.5 < y < 4.0 @ Q² ~ M²_{W±}$

- study nuclear modification of quark distribution, validate binary scaling


```
M_{W} = 80.398 \pm 0.25 \text{ GeV/c}^{2},
electric charge: \pm 1 \text{ e},
spin = 1
weak interactions \rightarrow change
generation of a particle
(quark flavour change)
```

Measurements in the forward rapidity region of ALICE: 2.5 < y < 4.0, p_t >1 GeV/c, P > 4 GeV/c will be complimentary to those done by ATLAS & CMS @ central rapidity $|\eta| \le 2.5$, with large p_t > 3-4 GeV/c

Predictions with PYTHIA

Process: 2 \rightarrow 1, initial and final state radiation $f\bar{f} \rightarrow W^{\pm}$ Decay channels : W $\rightarrow \mu + \nu_{\mu}$ (10.57 \pm 0.15%), W \rightarrow cX $\rightarrow ... \rightarrow \mu$ Y (33.6 \pm 2.6 %)

<u>PbPb collisions @ $\sqrt{s} = 5.5$ TeV</u>: pp, nn & np combinations.

PDF → EKS98 shadowing parameterization K.J Eskola et al Euro. Phys. J. C, 9:61, 1999

Differential cross section - Frixione and Mangano, Hep-ph/0405130

$$\sigma^{th}(W) = \sigma^{\exp}(W) = \frac{1}{BR(W \to \mu)} \frac{1}{\int Ldt} \frac{N^{Obs}}{A_W}$$

 $(\sigma_W)_{PYTHIA} \times BR_{W \rightarrow \mu} = 17.3 \text{ nb}$, spectra *normalised to NLO* calculations: $\sigma^{th}(W)_{NLO} \times BR_{W \rightarrow \mu} = 20.9 \text{ nb}$ Lai et al, arXiv:hepph/9060399v2,10 Aug 996

Lowest & 2nd order diagrams for W production in hadron-hadron collisions

W muons have a high $p_t \cong M_W/2 \approx 30 - 50$ GeV/c. It is estimated that @ $p_t = (30, 50)$ GeV/c the reconstructed yield, $N_{\mu \leftarrow W} = 6.9 \times 10^3$ the forward rapidity range: 2.5 < y < 4.0. Z Conesa del Valle et al., arXiv:0712.0051v1

Strategy for $W^{\pm} \rightarrow \mu^{\pm}$ production in PbPb collisions with ALICE

 Measure differential cross sections as function of p_t and y in forward region:

 $2^{\circ} < \theta < 9^{\circ} \Longrightarrow 2.5 < y < 4$, pt >1 GeV/c, P > 4 GeV/c

- Subtract background in the p_t region below $p_t \approx M_w / 2 \approx 30-50$ GeV/c.
- Use high level trigger to reject
 background. J. Phys: Conf. Series 219 (2010) 02244
- Compare single muons ratios: μ^{+} / μ^{-}
- \Rightarrow charge asymmetry.
- Extract R_{AA}, R_{CP}.
- Compare with theoretical predictions.

Contributions by the iTL/UCT group to the CERN-SPS experiments Physics goals of the NA61 experiment (I):

Physics of strongly interacting matter

Discovery potential:

Search for the critical point of strongly interacting matter

Precision measurements:

Study the properties of the onset of deconfinement in nucleus-nucleus collisions

Measure hadron production at high transverse momenta in p+p and p+Pb collisions as reference for Pb+Pb results

Searching for the critical point

1st order phase transition

The NA61/SHINE Collaboration:

122 physicists from 24 institutes and 13 countries:

University of Athens, Athens, Greece University of Bergen, Bergen, Norway University of Bern, Bern, Switzerland **KFKI IPNP, Budapest, Hungary** Cape Town University, Cape Town, South Africa Jagiellonian University, Cracow, Poland Joint Institute for Nuclear Research, Dubna, Russia Fachhochschule Frankfurt, Frankfurt, Germany University of Frankfurt, Frankfurt, Germany University of Geneva, Geneva, Switzerland Forschungszentrum Karlsruhe, Karlsruhe, Germany Institute of Physics, University of Silesia, Katowice, Poland Jan Kochanowski Univeristy, Kielce, Poland Institute for Nuclear Research, Moscow, Russia LPNHE, Universites de Paris VI et VII, Paris, France Faculty of Physics, University of Sofia, Sofia, Bulgaria St. Petersburg State University, St. Petersburg, Russia State University of New York, Stony Brook, USA KEK, Tsukuba, Japan Soltan Institute for Nuclear Studies, Warsaw, Poland Warsaw University of Technology, Warsaw, Poland University of Warsaw, Warsaw, Poland Rudjer Boskovic Institute, Zagreb, Croatia ETH Zurich, Zurich, Switzerland

Detector

NA49 facility +

TPC read-out (x10) ToF (x2) PSD (x10) Beam pipe (x10)

NA49: Nucl. Instrum. Meth. A430, 210 (1999) NA61 upgrades: CERN-SPSC-2006-034, SPSC-P-330

energy (A GeV)

Search for the onset of the horn in collisions of light nuclei

Precision measurements following the NA49 discovery

Searching for the critical point

Search for the hill of fluctuations

Discovery potential

Revised data taking schedule with ion beams

The first 2D scan in history of A+A collisions

The NA61 revised data taking plan

	Beam Primary	Beam Secondary	Target	Energy $(A \text{ GeV})$	Year	Duration days/MDs	Physics	Status
	р	р	р	400 158	2010	77 d	High \mathbf{p}_T	recommended
FR test-1	Pb	¹¹ B	none	20,80 20,80	2010	10 MDs	FS test-1	to be discussed
	р	р	Pb	400 158	2011	77 d	High p_T	recommended
secondary (FR test-2)	Pb	¹¹ B	С	10,20,30,40,80,158 10,20,30,40,80,158	2011	20 d	FS test-2	to be discussed
	р	р	Pb	400 10,20,30,40,80,158	2012	$6\mathrm{x8~d}$	CP,OD	recommended
primary	Ar		Ca	10,20,30,40,80,158	2012	6x8 d	CP,OD	recommended
(secondary)	Pb	¹¹ B	С	10,20,30,40,80,158 10,20,30,40,80,158	2013	6x10 d	CP,OD	to be discussed
primary	Xe		La	10,20,30,40,80,158	2014	$6\mathrm{x8~d}$	CP,OD	to be discussed

iThemba LABS comes into the party

Grenoble Test Source 2 (GTS2)at iThemba LABS

iThemba LABS is in the process of assembling an electron cyclotron resonance ion source (ECRIS GTS2) that was designed by CEA in Grenoble, France, but not manufactured by them, because that division closed down. iThemba LABS bought the design drawings of the source from them and is now in the final stage of assembling the source. This source is the only other source that is based on the same design as the heavy-ion ECRIS used at the Large Hadron Collider (LHC) facility at The European Organization for Nuclear Research (CERN) facility in Europe, and subsequently a collaboration agreement was proposed by CERN. A Letter of Intent was signed between iThemba LABS and CERN to outline the terms and conditions of the collaboration agreement, which involves the initial commissioning of the GTS2 ECRIS at iThemba LABS, followed by the study of specific heavy-ion beams as requested by the fixed target experiment (NA61) group at CERN. The aim will be to find the optimal source settings and to characterize the source behavior for these specific ion species..

From the Bevelac to the LHC:

SPS

Heavy lons at LHC

RHIC

Hoping to see some of you joining (and /or) working with some of you across the African continent

