Probing the Strong Interaction with Pion Electroproduction

Nucleon vs. Pion Form Factors

- Earlier, focused on nucleon (proton and neutron) form factors
- Motivation
 - Understand structure of the nucleon at short and long distances
 - Understand the nature of the strong interaction (Quantum Chromodynoamics) at different distance scales
- The pion provides a simpler system for trying to understand QCD
 - 2 quark system vs. 3 quarks (nucleon)
 - Asymptotic form of the pion form factor can be calculated exactly \rightarrow this is not true for nucleons

Pion Form Factor

Pion particularly attractive as a QCD laboratory

 \rightarrow Simple, 2 quark system

→ Electromagnetic structure (form factor) can be calculated exactly at large energies (small distances)

Drawbacks:

- \rightarrow No "free" pions
- → Measurements at large momentum transfer difficult

pQCD and the Pion Form Factor

At large Q^2 , pion form factor (F_{π}) can be calculated using perturbative QCD (pQCD)

pQCD and the Pion Form Factor

At large Q^2 , pion form factor (F_{π}) can be calculated using perturbative QCD (pQCD)

at asymptotically high Q^2 , the pion wave function becomes

and F_{π} takes the very simple form

 f_{π} =93 MeV is the $\pi^+ \rightarrow \mu^+ \nu$ decay constant.

G.P. Lepage, S.J. Brodsky, Phys.Lett. 87B(1979)359.

Thomas Jefferson National Accelerator Facility

Pion Form Factor at Finite Q²

At finite momentum transfer, higher order terms contribute

→ Calculation of higher order, "hard" (short distance) processes difficult, but tractable

There are "soft" (long distance) contributions that cannot be calculated in the perturbative expansion \rightarrow Understanding the interplay of these hard and soft processes is a key goal!

Measurement of π^+ **Form Factor – Low Q**²

At low Q^2 , F_{π} can be measured *directly* via high energy elastic π^- scattering from atomic electrons \rightarrow CERN SPS used 300 GeV pions to measure form factor up to $Q^2 = 0.25 \text{ GeV}^2$ [Amendolia et al, NPB277, 168 (1986)]

→ Data used to extract pion charge radius

 $r_{\pi} = 0.657 \pm 0.012$ fm

Maximum accessible Q² roughly proportional to pion beam energy

Q²=1 GeV² requires 1000 GeV pion beam

· 🕝

Measurement of π^+ Form Factor – Larger Q²

At larger Q^2 , F_{π} must be measured indirectly using the "pion cloud" of the proton via pion $p(e,e'\pi^+)n$

 $\Rightarrow |p\rangle = |p\rangle_0 + |n \ \pi^+\rangle + \dots$

 \rightarrow At small –*t*, the pion pole process dominates the longitudinal cross section, σ_L

 \rightarrow In Born term model, F_{π}^{2} appears as,

$$\frac{d\sigma_L}{dt} \propto \frac{-tQ^2}{(t-m_\pi^2)} g_{\pi NN}^2(t) F_\pi^2(Q^2,t)$$

Drawbacks of this technique

- 1. Isolating σ_L experimentally challenging
- 2. Theoretical uncertainty in form factor extraction

Pion Cross Section

$$2\pi \frac{d^2\sigma}{dtd\phi} = \epsilon \frac{d\sigma_L}{dt} + \frac{d\sigma_T}{dt} + \sqrt{2\epsilon(1+\epsilon)} \frac{d\sigma_{LT}}{dt} \cos\phi + \epsilon \frac{d\sigma_{TT}}{dt} \cos 2\phi$$

t = four-momentum transferred to nucleon

= (mass)² of struck virtual pion

W = total energy in virtual photontarget center of mass

- **Q²= -(mass)² of virtual photon**
- ε = virtual photon polarization, 0 \rightarrow 1

 ϕ = azimuthal angle between reaction plane and scattering plane

Pion Cross Section

At small -t, the pion pole process dominates σ_L

$$\frac{d\sigma_L}{dt} \propto \frac{-tQ^2}{(t-m_\pi^2)} g_{\pi NN}^2(t) F_\pi^2(Q^2,t)$$

 F^{2} in Born term model

Thomas Jefferson National Accelerator Facility

Extraction of π^+ **Form Factor in** $p(e,e'\pi^+)n$

Chew-Low extrapolation unreliable – FF depends on fit form

Fitting/constraining a *model* incorporating FF is a more robust technique \rightarrow *t-pole* "extrapolation" is implicit, but one is only fitting data in physical region

Check of Pion Electroproduction Technique

- Does electroproduction really measure the physical formfactor?
- Test by making p(e,e'π⁺) measurements at same kinematics as π+e elastics
- Looks good so far
 - Electroproduction data at $Q^2 = 0.35 \text{ GeV}^2$ consistent with extrapolation of SPS elastic data

An improved test will be carried out after the JLAB 12 GeV upgrade

- \rightarrow smaller Q² (=0.30 GeV²)
- \rightarrow -t closer to pole (=0.005 GeV²)

$F_{\pi^+}(Q^2)$ Measurements before 1997

Data above Q²=1 GeV² questionable

→ Extracted F_{π} from *unseparated* cross sections, *no experimental isolation of* σ_L

→ Used extrapolation of σ_T fit at low Q² to calculate σ_L

→ Largest Q² points also taken at large $-t_{min}$

Theoretical guidance suggests non-pole contributions grow dramatically for -t_{min}>0.2 GeV² [Carlson and Milana PRL 65, 1717(1990)] Pole term may not dominate!

F_{π} Program at Jefferson Lab at 6 GeV

Two F_{π} experiments have been carried out at JLab

Expt Q^2 W E **t**_{min} (GeV) (GeV²) (Gev²) (GeV) **F**_π-1 0.6-1.6 1.95 0.03-0.150 2.45-4.05 **F**_π-2 1.6,2.45 2.22 0.093,0.189 3.78-5.25

F_{π}-1: Q²=0.6-1.6 GeV² F_{π}-2: Q²=1.6, 2.45 GeV²

 \rightarrow Second experiment took advantage of higher beam energy to access larger *W*, smaller -t

 \rightarrow Full deconvolution of *L/T/TT/LT* terms in cross section

→ Ancillary measurement of π'/π^+ (separated) ratios to test reaction mechanism

→ Both experiments ran in experimental Hall C: F_{π} -1 in 1997 and F_{π} -2 in 2003

JLab F_{π} Experiment Details

Electron ID in SOS:

→Threshold gas Cerenkov detector →Lead-glass detector ($E/p_{reconstructed}$)

Pion ID in HMS:

→Aerogel Cerenkov detector

Thomas Jefferson National Accelerator Facility

p(e,e'\pi^+)n Event Selection

Measuring σ_L

Simple extraction – no *LT/TT* terms

Model for F_{π} Extraction

Model is required to extract $F_{\pi}(Q^2)$ from σ_L

Model incorporates π^+ production mechanism and spectator neutron effects:

1. The experimentalist would like to use a variety of models to extract $F_{\pi}(Q^2)$ from the electroproduction data, so that the model dependence can be better understood.

2. The Vanderhaeghen-Guidal-Laget (VGL) Regge model *[Vanderhaeghen, Guidal, Laget, PRC 57, 1454 (1998)]* is the only reliable model available for our use at present.

3. It would be useful to have additional models for the pion form factor extraction.

The experimental $F_{\pi}(Q^2)$ result is not permanently "locked in" to a specific model.

F_{π} Extraction from JLab data

VGL Regge Model

Feynman propagator $replaced by \pi$ and ρ Regge propagators

 \rightarrow Represents the exchange of a <u>series</u> of particles, compared to a <u>single</u> particle

Model parameters fixed from pion photoproduction

Free parameters: Λ_{π} , Λ_{ρ} (trajectory cutoff)

Horn et al, PRL97, 192001,2006 dσ/dt (μb/GeV² $Q^2 = 1.60$ $Q^2 = 2.45$ 6 • σ, 2 σ_ 4 T 2 0 0 0.05 0.15 0.2 0.25 0.1 0.2 0.30.1 0.4-t (GeV²) -t (GeV²) Λ_{π}^2 =0.513, 0.491 GeV², Λ_{ρ}^2 =1.7 GeV²

Thomas Jefferson National Accelerator Facility

- Only true *L-T* separated data shown
- Trend suggested by extractions from unseparated cross sections still holds
 - Far from asymptotic limit
- Monopole curve reflects soft physics at low Q²
 - ~1 sigma deviation at $Q^2=2.5 \text{ GeV}^2$

Model/Intepretation Issues

VGL Regge model does not describe -tdependence of F_{π} -1 σ_{I} at lowest Q^{2}

> \rightarrow Leads to large systematic errors \rightarrow Underscores the need for

pQCD and the Pion Form Factor

Calculation including only perturbative contributions dramatically underpredicts form factor

Good agreement with data only achieved after including "soft" model dependent contribution

→Modeled using "local duality" – equivalence of hadronic and partonic descriptions

 $F_{\pi} = \int (\text{Freequark spectral density})$

A.P. Bakulev, K. Passek-Kumericki, W. Schroers, & N.G. Stefanis, PRD 70 (2004) 033014.

Maris and Tandy, Phys. Rev. **C62**, 055204 (2000) → relativistic treatment of bound quarks (Bethe-Salpether equation + Dyson-Schwinger expansion)

Nesterenko and Radyushkin, Phys. Lett. **B115**, 410(1982) → Green's function analyticity used to extract form factor

Brodsky and de Teramond, hep-th/0702205 → Anti-de Sitter/Conformal Field Theory approach

Lattice QCD

Lattice calculations solve QCD from first principles, numerically

→Space-time is discretized on a finite grid
→Extrapolate to continuous system

Calculations extremely CPU intensive

→Calculation yields pion mass
of ~ 318 MeV (physical mass ~
140 MeV)

→Form factor agrees with experimental data, but error bars still large

F. Bonnet et al., hep-lat/0411028

Thomas Jefferson National Accelerator Facility

F_{π} Program at 6 GeV

JLab F_{π} program has built on pioneering $H(e,e'\pi^+)$ measurements of the 1970's

- \rightarrow Facilities at JLab (beam, spectrometers) improved precision of cross sections
- →Improved reliability of F_{π} extraction by isolating σ_{L} →Where possible, tested the "electroproduction technique" as a valid method for extracting F_{π}
- At 6 GeV, $Q^2=2.5 \text{ GeV}^2$ is the ultimate reach of the F_{π} program

Larger Q² requires the JLab 12 GeV upgrade

$F_{\pi}(Q^2)$ after JLAB 12 GeV Upgrade

JLab 12 GeV upgrade will allow measurement of F_{π} up to $Q^2=6$ GeV²

Will we see the beginning of the transition to the perturbative regime?

Additional point at $Q^2=1.6$ GeV² will be closer to pole: will provide constraint on t_{min} dependence

 $Q^2=0.3 \text{ GeV}^2$ point will be best direct test of agreement with elastic $\pi+e$ data

F_{π} at an Electron-ion collider

Accessible Q^2 for F_{π} measurement with "fixed target" $\rightarrow E_{beam}/2$ \rightarrow Giving the "target" some energy and momentum dramatically broadens the experimentally accessible phase space

Jefferson Lab

Thomas Jefferson National Accelerator Facility

F_{π} at EIC - Kinematic Reach

Assumptions:

- 1. High ε: 5(*e*⁻) on 50(*p*).
- 2. Low ε proton energies as noted.

3. Δε~0.22.

- 4. Scattered electron detection over 4π .
- 5. Recoil neutrons detected at $\theta < 0.35^{\circ}$ with high efficiency.
- 6. Statistical unc: $\Delta \sigma_L / \sigma_L \sim 5\%$
- 7. Systematic unc: $6\%/\Delta\epsilon$.
- 8. Approximately one year at $L=10^{34}$.

Excellent potential to study the **QCD transition** over nearly the whole range from the strong QCD regime to the hard QCD regime.

F_{π} at larger Q^2

- In the near future, 12 GeV JLab will yield the ultimate reach for the electroproduction technique for measuring F_{π}
- Can we extend measurements to larger Q² with "existing" accelerators?
- Beyond nucleon pole backgrounds, an additional concern has been pQCD backgrounds to the pion pole process
 - Keeping pQCD backgrounds small (in addition to the general philosophical goal of staying close to pion pole) partially dictates maximum Q² available at JLab
 - Relaxing this constraint would allow us to access significantly larger Q²
- Requires theoretical input AND supplemental experiments to help verify calculations

pQCD Contributions to $H(e,e'\pi^+)$

In addition to Born terms, pQCD processes can also contribute to π^+ production

Carlson and Milana [PRL 65, 1717 (1990)] calculated these contributions for Cornell kinematics \rightarrow Asymptotic form for F_{π} \rightarrow King-Sachrajda nucleon distribution

For -t>0.2 GeV², pQCD contributions grow rapidly \rightarrow This helps set the constraint on maximum accessible Q² (fixed W, $-t_{min}$ grows w/Q²)

Q ² (GeV ²)	W(GeV)	-t (GeV²)	M _{pQCD} /M _{pole}
1.94	2.67	0.07	0.12
3.33	2.63	0.17	0.18
6.30	2.66	0.43	0.81
9.77	2.63	0.87	2.82

mmm

F_{π} at Larger Q^2 and larger $-t_{min}$

If larger $-t_{min}$ were useable, we could measure F_{π} up to $Q^2=9$ GeV² at 12 GeV \rightarrow E12-07-105, T. Horn and G. Huber, spokespersons

Even at 6 GeV, data at $Q^2=4$ GeV² already exist!

Needed:

 $\rightarrow L/T$ separated π^0 cross sections \rightarrow Transverse target asymmetries

 $-t_{min} = 0.45 \, \text{GeV}^2$

Horn et al, Phys.Rev.C78:058201 (2008)

 $H(e,e'\pi^0)$ and $H(e,e'\pi^+)$

Same diagrams/GPDs that contribute to π^+ production also contribute to π^0

Measurement of σ_L for π^0 could shed some light on non-pole contributions at large *-t*

$$\pi^{0} \qquad \begin{array}{c} A_{p\pi^{o}} \sim (e_{u}\widetilde{H}^{u} - e_{d}\widetilde{H}^{d}) \\ B_{p\pi^{o}} \sim (e_{u}\widetilde{E}^{u} - e_{d}\widetilde{E}^{d}) \end{array}$$

$$\pi^{+} \quad \begin{array}{l} A_{p\pi^{+}} \sim (\widetilde{H}^{u} - \widetilde{H}^{d})(e_{u} + e_{d}) \\ B_{p\pi^{+}} \sim (\widetilde{E}^{u} - \widetilde{E}^{d})(e_{u} + e_{d}) \end{array}$$

Thomas Jefferson National Accelerator Facility

Transverse Target Asymmetry

Non-pole contribution can also be constrained using the transverse target asymmetry

$$\begin{split} A_{p\pi^+} &\sim (\widetilde{H}^u - \widetilde{H}^d)(e_u + e_d) \\ B_{p\pi^+} &\sim (\widetilde{E}^u - \widetilde{E}^d)(e_u + e_d) \end{split}$$

Asymmetry measures interference between pole and non-pole contributions

Experimentally difficult → need "double" Rosenbluth separation to eliminate contributions from transverse photon

$$\sigma = \sigma_T + \epsilon_L \sigma_L + \sqrt{\frac{1}{2}\epsilon(\epsilon+1)\sigma_{LT}\cos\phi + \epsilon\sigma_{TT}\cos 2\phi}$$

$$\sigma_{Py} = -P_y \left[\sigma_{TT}^y + \epsilon\sigma_{TT'}^y \cos 2\phi + 2\epsilon\sigma_L^y + \sqrt{2\epsilon(1+\epsilon)}\sigma_{LT}^y \cos\phi\right]$$

A_{\Box} Measurement with ³He

Solid: asymptotic pion distribution amp. Dashed: CZ pion dist. amp.

t = -0.5 GeV² t = -0.3 GeV² t = -0.1 GeV² Polarized ³He target \rightarrow effective neutron target $e+n \rightarrow e'+p+\pi^{-}$

Proposed U. New Hampshire ³He target: Luminosity = $1.2 \ 10^{37}/\text{cm}^2/\text{s}$ P_{targ} = 65%

18 day measurement with conventional spectrometers

Q ² =4.0, W=2.8, x=0.365				
-t	R=	A_L^{\perp}	δA_L^{\perp}	
(GeV ²)	σ_L / σ_T			
0.2	1.0	0.2	0.04	
0.4	1.0	0.5	0.08	
0.6	1.5	0.6	0.10	

Thomas Jefferson National Accelerator Facility

Pion Form Factor Summary

- Recent data from JLab at 6 GeV improve interpretability and precision of moderate Q² data set
- JLab 12 GeV Upgrade will allow us to hopefully begin seeing the transition to the perturbative regime
- Studying this transition will give us insight into the best way to describe bound hadrons using effective models at low Q²
- Access to larger Q² requires,
 - Radical change in technology (electron-ion collider!)

and/or

Supplementary measurements of other reactions + theoretical input

