



## **Some Properties of Nuclei**

Size - how big is a nucleus?

On the basis of many scattering *experiments*, it is found that most nuclei are approximately spherical and have an average radius given by:  $r = r_0 A^{1/3}$ 

where A is the mass number and  $r_0$  is a constant equal to 1.2 x 10<sup>-15</sup> m.

This suggests that the density of nuclei is approximately constant (*Why*?).

A *drop of liquid* also has a constant density and this has lead to the liquid drop model of the nucleus, which we will treat in some detail later.

Lecture 14





| Some Properties of Nuclei         |                                   |                                |                    |  |  |
|-----------------------------------|-----------------------------------|--------------------------------|--------------------|--|--|
|                                   | Masses in different units         |                                |                    |  |  |
| Particle                          | kg                                | Atomic mass<br>units<br>u      | MeV/c <sup>2</sup> |  |  |
| proton                            | <b>1.67262</b> x 10 <sup>27</sup> | 1.007276                       | 938.28             |  |  |
| neutron                           | <b>1.67493 x 10<sup>27</sup></b>  | 1.008665                       | 939.57             |  |  |
| electron                          | <b>9.10939 x 10<sup>31</sup></b>  | <b>5.486</b> x 10 <sup>4</sup> | 0.511              |  |  |
| $^{1}_{1}$ H atom                 | <b>1.67353 x 10<sup>27</sup></b>  | 1.007825                       | 938.783            |  |  |
| <sup>12</sup> <sub>6</sub> C atom | <b>1.99265</b> x 10 <sup>26</sup> | 12<br>by definition            | 11 177.9           |  |  |
| 1                                 | u = 931.4                         | 94 MeV/c                       | 2                  |  |  |



|    | Exercise 16                                                                                                                                                                                                                                          |   |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| 1. | Use the relation: $r = r_0 A^{1/3}$ to calculate the size (diameter) of the nuclei <sup>12</sup> C, <sup>140</sup> La, <sup>235</sup> U and <sup>238</sup> U. What are the ratios of the diameters of the others to the diameter of <sup>12</sup> C? |   |
| 2. | Do the same for the nucleus <sup>197</sup> Au and compare the answer<br>with the one you obtained previously by Rutherford<br>scattering.                                                                                                            |   |
| 3. | After a supernova explosion the core of the star that remains<br>can consist of pure nuclear material. This is known as a<br>neutron star. Calculate the mass of a volume of 10 cm <sup>3</sup> of a<br>neutron star.                                |   |
|    | Lecture 14                                                                                                                                                                                                                                           | 8 |