Fission of \(^{235}\text{U}\)

Neither \(^{235}\text{U}\) nor \(^{238}\text{U}\) fission spontaneously.

Extra energy is necessary to surmount the Coulomb barrier.

Neutron-induced fission

Although \(^{235}\text{U}\) does not fission spontaneously, if a neutron, even a slow (thermal) neutron, interacts with it, fission does take place.

This is what happens in neutron-induced fission.

The first step is that a neutron interacts with a \(^{235}\text{U}\) nucleus to produce the compound nucleus \(^{236}\text{U}^*\)

In the case of a thermal neutron the excitation energy of the \(^{236}\text{U}^*\) is just the binding energy of the last neutron (+ \(\sim 0.025\text{eV}\) which is negligible)
Neutron-induced fission

Exercise 28.

1. If the binding energy of the last neutron in ^{236}U is 6.55 MeV, what is the excitation energy of the compound nucleus after it absorbs a thermal (slow) neutron (the average thermal energy is 0.025 eV).

2. What is its excitation energy after it absorbs a fast neutron, say with an energy of 2 MeV?

Fission in ^{235}U with a slow neutron.

The 6.5 MeV binding energy of the neutron in ^{236}U excites the compound nucleus - it distorts - first scission and finally fission occurs.
Neutron-induced fission

There are three naturally occurring isotopes of the element uranium. The two that are important as reactor fuels are 235U and 238U.

The natural abundance of 238U is 99.28%
The natural abundance of 235U is 0.72%

We have seen above that 235U fissions with slow neutrons. What happens in the case of 238U?

If a neutron interacts with 238U we would get the compound nucleus 239U*. It turns out that the binding energy of the last neutron in 239U is only 4.8062 MeV (Compared with 6.5452 MeV in the case of 236U).

This is not enough for the compound nucleus to overcome the fission barrier.

Reaction of 238U with a slow neutron.

238U + n - fission does not occur with a slow neutron.

238U + n (slow, i.e. its energy is negligible) \rightarrow 239U* (compound nucleus) \rightarrow 239U excited - excitation energy 4.8 MeV. 239U* de-excites by emitting a gamma-ray.

Radioactive 239U undergoes a β decay.

The 4.8 MeV binding energy of the neutron in 239U is not sufficient to overcome the fission barrier - we get radiative capture: 238U(n,γ)239U.
Neutron-induced fission

Reaction of 238U with a *fast* neutron.

238U + n - fission *does* occur when the neutron is *fast*.

- 238U + n
- 238U compound nucleus with sufficient energy to overcome the fission barrier.
- Various fission products
- Fission neutrons
- 239U excited - excitation energy 4.8 MeV plus the (kinetic) energy of the neutron.

The 4.8 MeV binding energy of the neutron in 239U together with the energy (kinetic energy) of the incoming fast neutron excites the compound nucleus - it distorts - scission and finally fission occurs.

The Liquid Drop Model and Fission

Exercise 29

Fission and the Coulomb barrier

1. Discuss why 235U fissions with thermal neutrons, while 238U will only fission if the neutrons are fast (with energies of several MeV).

Do not take more than a page to do this.