

Now, doing a
Elastic scattering
Notice that we can get rid of the angle ϕ by squaring and adding the momentum equations, because $\cos^2 \phi + \sin^2 \phi = 1$.
First, it probably makes it easier if we express everything in terms of energies using: $E = \frac{1}{2}mv^2$ for non-relativistic speeds p = mv
so $p^2 = m^2 v^2 = 2m \frac{1}{2}mv^2 = 2mE$
and $p = mv = \sqrt{2mE}$
Using this we get for the two momentum equations $\sqrt{2mE_0} = \sqrt{2mE_f} \cos\theta + \sqrt{2ME_r} \cos\phi \frac{\text{Conservation of momentum in the}}{x \text{ direction}}$
We want to get rid of the ϕ terms, so lets put them on the $\int \sqrt{2ME_r} \cos\phi = \sqrt{2mE_0} - \sqrt{2mE_f} \cos\theta$
left hand side. $\sqrt{2ME_r}\sin\phi = -\sqrt{2mE_f}\sin\theta$
Squaring and adding: $2ME_r(\cos^2\phi + \sin^2\phi) = (\sqrt{2mE_0} - \sqrt{2mE_f}\cos\theta)^2 + 2mE_f\sin^2\theta$
58 Lecture 32 © J. Watterson, 2007

Doing the maths Elastic scattering In order to do this, we remember that if we have a quadratic equation: $ax^2 + bx + c = 0$ We can find x in terms of a, b and c: $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$	
So let's get $M(E_0 - E_f) = mE_0 - 2mE_0 - 2m\sqrt{E_0E_f}\cos\theta + mE_f$ $\int \frac{\sin t}{E_f} \frac{\sin t}{\cos \theta} \frac{\sin t}{\sqrt{E_f}} \frac{\sin t}{\cos \theta} \frac{\sin t}{\cos \theta} \frac{\sin t}{\sqrt{E_f}} \frac{\sin t}{\sqrt{E_f}} \frac{\sin t}{\cos \theta} \frac{\sin t}{\sqrt{E_f}} \sin$	vith e part
Move the terms to the left and group the factors or $(M+m)E_f + 2m\sqrt{E_0}\cos\theta\sqrt{E_f} + (M-m)E_0 = 0$ or $(M+m)E_f - 2m\sqrt{E_0}\cos\theta\sqrt{E_f} - (M-m)E_0 = 0$	
We can now apply the above formula for a quadratic to write: $\sqrt{E_f} = \frac{2m\sqrt{E_0}\cos\theta \pm \sqrt{4m^2E_0\cos^2\theta + 4(M^2 - m^2)E_0}}{2(M+m)}$	
$=\frac{2m\sqrt{E_{0}}\cos\theta\pm 2\sqrt{m^{2}E_{0}\cos^{2}\theta+(M^{2}-m^{2})E_{0}}}{2(M+m)}$	
Lecture 32 © J. Watterson, 2007	60

A neutron with an energy of 1 MeV is scattered by the moderator in a light water reactor. In other words in a reactor where the moderator
ordinary H ₂ O.
Suppose that it is scattered through an angle of 45°. Calculate:
. Its energy after scattering if it were scattered by the oxygen.
2. Its energy after scattering if it were scattered by the hydrogen.