Slowing down the neutrons

Clearly, an obvious way to make a reactor work, and to make use of this characteristic of the ${ }^{235} \mathrm{U}(\mathrm{n}, \mathrm{f})$ cross-section, is to slow down the fast, fission neutrons. This can be accomplished, for example, when the neutrons collide with nuclei and scatter in some substance (a moderator).

If this could be achieved, neutron-induced fission would be very much more likely.

Slowing down the neutrons

Say that the neutrons could be slowed down until they are in thermal equilibrium with the surrounding material in the reactor.

They would then have the same distribution of energies as the molecules in the material.

This is the same distribution of energies as for the atoms or molecules of a gas, say, in thermal equilibrium at the same temperature.

What would such a distribution look like?

Thermal neutron distribution

Originally Boltzmann analysed the statistics of a number of particles at different energies in thermal equilibrium (actually for the molecules in a gas).

This produced the Maxwell-Boltzmann distribution.

Lecture 32
© J. Watterson, 2007

Thermal equilibrium

Once again, to express this as a flux distribution we multiply by v.

Maxwell-Boltzmann flux distribution at 300K.

Slowing neutrons down

So, we have decided that we have to slow the neutrons down from the fission spectrum energy distribution to something like the thermal distribution.

In order to see how this can be done let's consider what happens in an elastic collision (elastic scattering).

Let's work out the energy of a particle of mass m after it collides with a stationary particle of mass, M.

We will examine this process in some detail remembering that the momentum and the kinetic energy are both conserved in such an elastic collision.

Now, doing the maths
Elastic scattering

Elastic scattering

Our last equation was: $\quad 2 M E_{r}\left(\cos ^{2} \phi+\sin ^{2} \phi\right)=\left(\sqrt{2 m E_{0}}-\sqrt{2 m E_{f}} \cos \theta\right)^{2}+2 m E_{f} \sin ^{2} \theta$

$$
\begin{aligned}
& \text { Now since: } \quad \cos ^{2} \phi+\sin ^{2} \phi=1 \quad \text { for any angle. } \\
& \text { We have: } \quad \begin{aligned}
2 M E_{r} & =\left(2 m E_{0}-2 \sqrt{2 m E_{0}} \sqrt{2 m E_{f}} \cos \theta+2 m E_{f} \cos ^{2} \theta\right)+2 m E_{f} \sin ^{2} \theta \\
& =2 m E_{0}-2 \times 2 m \sqrt{E_{0} E_{f}} \cos \theta+2 m E_{f}
\end{aligned} \\
& \text { using } \quad \cos ^{2} \theta+\sin ^{2} \theta=1 \quad \text { as well }
\end{aligned}
$$

Remember, we want E_{f} in terms of E_{0} and θ (as well as M and m) so we have to get rid of E_{r}.
We do this by going back to the original equations and $E_{0}=E_{f}+E_{r} \quad$ so $\quad E_{r}=E_{0}-E_{f}$
using the one for conservation of energy:
Then substituting for E_{r} and $\quad M\left(E_{0}-E_{f}\right)=m E_{0}-2 m \sqrt{E_{0} E_{f}} \cos \theta+m E_{f}$
cancelling out the 2 , we have:

Now we have an equation that only contains E_{f}, E_{0} and $\cos \theta$ (as well as M and m) but it is not in a convenient form - we would like to have E_{f} by itself on one side.

[^0]
Elastic scattering Doing the maths

$\begin{gathered}\text { Continuing to simplify } \\ \text { this equation: }\end{gathered} \quad \sqrt{E_{f}}=\frac{m \sqrt{E_{0}} \cos \theta \pm \sqrt{m^{2} E_{0} \cos ^{2} \theta+\left(M^{2}-m^{2}\right) E_{0}}}{(M+m)}$
step-by-step.

$$
=\frac{m \sqrt{E_{0}} \cos \theta \pm \sqrt{E_{0}} \sqrt{m^{2} \cos ^{2} \theta+\left(M^{2}-m^{2}\right)}}{(M+m)} \begin{gathered}
\text { Take } \sqrt{E_{0}} \text { out of the } \\
\text { square root. }
\end{gathered}
$$

$=\frac{\sqrt{E_{0}}}{M+m}\left[m \cos \theta \pm\left(m^{2} \cos ^{2} \theta+M^{2}-m^{2}\right)^{1 / 2}\right]$
$=\frac{\sqrt{E_{0}}}{M+m}\left[m \cos \theta \pm\left(m^{2}\left\{1-\sin ^{2} \theta\right\}+M^{2}-m^{2}\right)^{1 / 2}\right]$
$=\frac{\sqrt{E_{0}}}{M+m}\left[m \cos \theta \pm\left(m^{2}-m^{2} \sin ^{2} \theta+M^{2}-m^{2}\right)^{1 / 2}\right]$
$=\frac{\sqrt{E_{0}}}{M+m}\left[m \cos \theta \pm\left(M^{2}-m^{2} \sin ^{2} \theta\right)^{1 / 2}\right]$
$=\frac{m \sqrt{E_{0}}}{M+m}\left[\cos \theta \pm\left(\left\{\frac{M}{m}\right\}^{2}-\sin ^{2} \theta\right)^{1 / 2}\right]$

Elastic scattering Finally, the result

Thus we obtain:

$$
\sqrt{E_{f}}=\frac{m \sqrt{E_{0}}}{M+m}\left[\cos \theta \pm\left(\left\{\frac{M}{m}\right\}^{2}-\sin ^{2} \theta\right)^{1 / 2}\right]
$$

$$
E_{f}=\frac{m^{2} E_{0}}{(M+m)^{2}}\left[\cos \theta+\left(\left\{\frac{M}{m}\right\}^{2}-\sin ^{2} \theta\right)^{1 / 2}\right]_{\mathrm{Se}}^{2}
$$

For a neutron scattering off a nucleus with mass number A we can take:

$$
m=1
$$

Because the masses always

$$
M=A
$$

$$
E_{f}=\frac{E_{0}}{(A+1)^{2}}\left[\cos \theta+\left(A^{2}-\sin ^{2} \theta\right)^{1 / 2}\right]^{2}
$$

Elastic scattering

If we plot: $\quad E_{f}=\frac{E_{0}}{(A+1)^{2}}\left[\cos \theta+\left(A^{2}-\sin ^{2} \theta\right)^{1 / 2}\right]^{2}$
for a 1 MeV neutron and different scattering substances we obtain:

As you can see all the neutrons that would be scattered through 90° or more are basically stopped (and thermalised) in one collision with a hydrogen nucleus (proton). In the case of carbon the maximum energy loss is only about 300 keV even for a scattering angle of 180° (π) so several collisions would be necessary to thermalise the neutrons.

Elastic scattering

Exercise 36

A neutron with an energy of 1 MeV is scattered by the moderator in a light water reactor. In other words in a reactor where the moderator is ordinary $\mathrm{H}_{2} \mathrm{O}$.

Suppose that it is scattered through an angle of 45°.
Calculate:

1. Its energy after scattering if it were scattered by the oxygen.
2. Its energy after scattering if it were scattered by the hydrogen.

In the second case, what is the energy of the proton after the scattering?

[^0]: Elastic scattering
 In order to do this, we
 $a x^{2}+b x+c=0 \quad \begin{gathered}\text { We can find } x \text { in } \\ \text { terms of } a, b \text { and } c:\end{gathered} \quad x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
 quadratic equation:
 So let's get $M\left(E_{0}-E_{f}\right)=m E_{0}-2 m E_{0}-2 m \sqrt{E_{0} E_{f}} \cos \theta+m E_{f} \quad$ into this form with
 So let's get $M\left(E_{0}-E_{f}\right)=m E_{0}-2 m E_{0}-2 m \sqrt{E_{0} E_{f}} \cos \theta+m E_{f} \quad \sqrt{E_{f}}$ playing the part of x.

 Move the terms to the left $\quad-(M+m) E_{f}+2 m \sqrt{E_{0}} \cos \theta \sqrt{E_{f}}+(M-m) E_{0}=0$
 and group the factors
 or $(M+m) E_{f}-2 m \sqrt{E_{0}} \cos \theta \sqrt{E_{f}}-(M-m) E_{0}=0$
 We can now apply the above formula for a quadratic to write:

 $$
 \sqrt{E_{f}}=\frac{2 m \sqrt{E_{0}} \cos \theta \pm \sqrt{4 m^{2} E_{0} \cos ^{2} \theta+4\left(M^{2}-m^{2}\right) E_{0}}}{2(M+m)}
 $$

 $$
 =\frac{2 m \sqrt{E_{0}} \cos \theta \pm 2 \sqrt{m^{2} E_{0} \cos ^{2} \theta+\left(M^{2}-m^{2}\right) E_{0}}}{2(M+m)}
 $$

