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Slowing down the neutrons

Clearly, an obvious way to make a reactor work, and to make use of this
characteristic of the 235U(n,f) cross-section, is to slow down the fast, fission

neutrons. This can be accomplished, for example, when the neutrons
collide with nuclei and scatter in some substance (a moderator).

If this could be achieved, neutron-induced fission would be very much more
likely.

It moderates the neutrons
(slows them down).

Lecture 32

© J. Watterson, 2007
52

Slowing down the neutrons

Say that the neutrons could be slowed down until they are in
thermal equilibrium with the surrounding material in the reactor.

They would then have the same distribution of energies as the molecules
in the material.

What would such a distribution look like?

This is the same distribution of energies as for the atoms or molecules of a
gas, say, in thermal equilibrium at the same temperature.
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Thermal neutron distribution

Originally Boltzmann analysed the statistics of a number of particles at
different energies in thermal equilibrium (actually for the molecules in a gas).

This produced the Maxwell-Boltzmann distribution.
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Thus one talks of “300 K neutrons”
for example.

kB is Boltzmann’s constant.
kB = 1.38 x 10-23 J.K-1

n(E)dE is the number of
neutrons with energies
between E and E + dE.

The total number of
neutrons, n.

E is the neutron
energy in Joules

T is the temperature of the moderator
and hence of the neutron distribution in

equilibrium with the moderator.
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Thermal equilibrium

.

Once again, to express this as a flux distribution we multiply by v.

Maxwell-Boltzmann
flux distribution at

300K.

The most probable energy at an
absolute temperature T is 1/2kT.
(0.025eV for T = 300 K)

The average energy at an
absolute temperature T is
3/2kT
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Slowing neutrons down

We will examine this process in some detail remembering that the
momentum and the kinetic energy are both conserved in such an elastic

collision.

In order to see how this can be done let’s consider what happens in an
elastic collision (elastic scattering).

Let’s work out the energy of a particle of mass m after it collides with a
stationary particle of mass, M.

So, we have decided that we have to slow the neutrons down from the
fission spectrum energy distribution to something like the thermal

distribution.

Lecture 32

© J. Watterson, 2007
56

Elastic scattering

The energy of the scattered neutron depends on the
scattering angle, θ, and the mass of the scattering nucleus.

Before collision

nucleusneutron

mass, M
mass, m

energy, E0

θ

φ

After collision

recoiling
nucleus

scattered
neutron

energy, Er

energy, Ef

mass, M

mass, m

We apply the equations for conservation of momentum and energy.
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Elastic scattering

Before collision

neutron

nucleus

mass, Mmass, m

After collision

scattered
neutron

θ
φ

recoiling
nucleus

Conservation of momentum in
the x direction
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Conservation of momentum in
the y direction
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Remember we want to find the final energy of the neutron, Ef in terms of
the masses, the scattering angle θ and, of course, the initial energy, E0.

Conservation of energy
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This is the physics
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Elastic scattering

! 

0 = 2mE
f
sin" + 2ME

r
sin#

We want to get rid of the φ 
terms, so lets put them on the

left hand side.

Using this we get for the two
momentum equations

Notice that we can get rid of the angle φ by squaring and adding the momentum
equations, because                                   .
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First, it probably makes it easier if we
express everything in terms of energies using:
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2 for non-relativistic speeds
and energies.
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Squaring and adding:
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Conservation of momentum in the
x direction

Conservation of momentum in the
y direction

Now, doing the maths
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Elastic scattering

Our last equation was:
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Now since:
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We have:
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Remember, we want Ef in terms of E0 and θ  (as well as M and m) so we have to get rid of Er.

We do this by going back to the original equations and
using the one for conservation of energy:
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E
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Then substituting for Er and
cancelling out the 2, we have:

! 

M E
0
" E

f( ) = mE
0
" 2m E

0
E

f
cos# +mE

f

Now we have an equation that only contains Ef, E0 and cosθ  (as well as M and m) but
it is not in a convenient form – we would like to have Ef by itself on one side.

Doing the maths

using

! 

cos
2" + sin

2" =1 as well
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Elastic scattering
In order to do this, we

remember that if we have a
quadratic equation:

So let’s get
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We can now apply the
above formula for a
quadratic to write:
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Doing the maths
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Elastic scattering
Continuing to simplify

this equation:
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step-by-step.

! 

E
0

Take          out of the
square root.

Elastic scattering Doing the maths
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Elastic scattering

Thus we obtain:
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Finally, the result

Squaring both sides and

dropping the minus sign

because it is not meaningful

or
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Because the masses always
occur in ratios.
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For a neutron scattering off
a nucleus with mass number

A we can take:
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Elastic scattering
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Final energy of the
neutron, after

scattering.

Initial energy of the
neutron.

Mass number of the
scattering nucleus

Scattering angle –
angle through which

the neutron is scattered
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Elastic scattering

If we plot:
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2 for a 1 MeV neutron and
different scattering

substances we obtain:

As you can see all the neutrons that would be scattered through 90º or more are basically
stopped (and thermalised) in one collision with a hydrogen nucleus (proton). In the case of
carbon the maximum energy loss is only about 300 keV even for a scattering angle of 180º

 (π) so several collisions would be necessary to thermalise the neutrons.
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Elastic scattering

A neutron with an energy of 1 MeV is scattered by the moderator in a
light water reactor. In other words in a reactor where the moderator is
ordinary H2O.

Suppose that it is scattered through an angle of 45º.
Calculate:

1. Its energy after scattering if it were scattered by the oxygen.
2. Its energy after scattering if it were scattered by the hydrogen.

Exercise 36

In the second case, what is the energy of the proton after the scattering?
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