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General Introduction
Theory
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What is Cosmology?

❑Fundamental questions about the origin and 
destiny of the Universe:

❑What is the Universe made up of?
❑How did the matter and structures form in the 

Universe
❑Why is the Universe as we see it?
❑What is our place in the Universe?
❑Did the Universe always exists, and if not, 

what is its age
❑Questions that appear in all cultures/religions
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Open questions, observables

❑ Evolution of the Universe

❑ Formation of structures

❑ Big bang Nucleosynthesis

❑ Supernova 1a: distance 
versus recession velocity

❑ CMB

❑ Abundances of light elements

ΩT=ΩM=2

ΩT=ΩM =1

ΩT=ΩM =0

ΩM =0,3
ΩΛ=0,7
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Evolution of a matter Universe

F⃗ (R)=
−G M (R)m

R2 u⃗R

❑ Radial force due to inner matter
(Gauss theorem)

❑ Evolution of a  “bubble”: 

❑ Matter Universe:

❑ Evolution Equation

d2 R

d t 2
=

−G M (R)

R2

M (R)=
4
3

ρm(t)R3
=C ste

( R̈
R )=−

4 π

3
ρm G ⇒ Ṙ R̈=−

4 π

3
(ρm R3

)G
Ṙ

R2

⇒ ( Ṙ
R )

2

=
8π

3
(ρm R3)

G

R3
+

C

R2

R (t)
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Evolution of a matter Universe

❑ Evolution Equations:

❑ Can be written as function of current values

❑ Solutions depend on the value of Ω
m
, expansion of the Universe is 

decelerated by matter content

( Ṙ
R )

2

=
8π

3
(ρm R3)

G

R3
+

C

R2
and R̈<0

( Ṙ
R )

2

−
8πGρm

3
=H 0

2 R0
2

R2 (1−Ωm) , Ωm=
ρ

ρc

=
8πGρ

3 H 0
2

NO static Universe is possible

q=( R̈
R )=

−8πGρm

3
=−H 2 Ωm

2

Acceleration
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Evolution of a matter Universe
❑  Ω

m
=0, monotonic expansion

❑  Ω
m
=1 (critical Universe)

Decelerating expansion

❑  Ω
m
>1 (critical Universe)

Collapsing Universe

ΩT=ΩM =2

ΩT=ΩM =1

ΩT=ΩM =0

ΩM =0,3
ΩΛ=0,7

a
(t

)/
a

0

(t-t
0
)/t

H

R (t )=R0 H 0×t

R (t)=R0( 3
2

H 0×t)
2/3

Rmax=R0
Ω

(Ω−1)
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Equivalence Principle
(A. Einstein)

❑ No difference could be found between inertial mass (in acceleration) 
and gravitation mass (in gravity forces)

❑ Implies that acceleration of a body in a gravitational field is independent 
of the nature of the body

❑ Thus there is no way to distinguish
between a free-fall movement in 
gravity field from a accelerated 
movement in absence of field

❑ Implies that Gravity can be
understood as a property of space
and not of the falling body
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General Relativity
❑ Newtonian Gravity: Universe is flat, trajectories are curved due to a 

force (non-inertial movement)

❑ General relativity: Gravity is a geometric property of space, not a force. 
Trajectories are always inertial (geodesics) in a curved space

❑ Major conclusion: massless particles (light) are also affected, confirmed 
by measure of deflection of stars (Eddington, 1919)
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Evolving Universe – Tensor Algebra

❑ We consider a space time, in which we have a base of vectors

❑ The metric is defined by the cross-product of vectors:

❑ Any vector can be decomposed on the base:

❑ Several bases can describe the same Universe, transformation given by

❑ Tensors are objects of higher rank (2, 3, ....) which transform in a similar 
manner 

{e⃗μ}

gμ ν=e⃗μ⋅⃗e ν

x⃗=xμ e⃗μ

Covariant coordinates

d xμ
=

∂ xμ

∂ yν d yν
=Λ  ν

μ d yν , e⃗μ=Λμ
 ν f⃗ ν

T μν
=Λ  α

μ
Λ  β

ν T 'αβ
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Norm & Invariants

❑ Scalar are invariant by change of coordinate, for instance:

❑ The elementary distance, defining the metric, can be expressed as:

And is invariant by coordinate changes (such as the scalar product)

d s2=d xμ⋅d xμ=gμν d xμ d xμ

A=U μ
⋅V μ=gμ ν U μ V μ
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Curved Universe

❑ In a flat Universe, the metric can be 
expressed in a diagonal form.

e.g. Minkowski space (flat space-time):

❑ This is not the case any more in curved 
Universe

❑ The “curvature” is a mathematical concept 
that is obtained from derivatives of the 
metric:

❑ Ricci tensor

❑ Scalar curvature

gμ ν=(
1    
 −1   
  −1  
   −1

)

Rμ ν

R=gμν Rμ ν
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Uniform, Isotropic Universe

❑ Uniform, isotropic universes, can be described by the Friedman-
Lemaitre-Robertson-Walker metric

❑ k = 1: Spherical space
(Sum of angles > π)

❑ k = -1: Hyperbolic space
(Sum of angles < π)

❑ k = 0: Euclidean space
(Sum of angles = π)

d s2=d t 2−a2(t )[ d r2

1−k r2
+r2 dθ2+r2 sin2θdϕ2]
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Einstein Equation
❑ Start for the Poisson equation for gravitational potential

❑ Construct a Lorentz-invariant  (Covariant) version

❑ Both Energy and Volume are affected by Lorentz transformation so 
covariant energy density must be a tensor

Gμ ν=Rμν−
1
2

R gμν=8 πG T μ ν

Curvature of Universe Energy Content

∇ 2Φ p=−4πρg

( ∂2

∂ t2 −∇
2) Aμ

=4 π jμ

Field Matter Content

Matter Quadri-current
(Density is NOT Lorentz
invariant)

Covariant Derivative
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Energy Momentum Tensor?

❑ Covariant (Lorentz invariant) formulation of energy conservation

❑ Energy momentum tensor for a perfect fluid

❑ In the rest frame of fluid, uμ=(1,0,0,0) and thus:

∇μ T  ν
μ
=0

T μν=n( x̃)
pμ pν

E
=ρuμ uν+P (gμ ν+uμ uν)

uμ  is the four velocity

T μ ν=(
ρ(t)    
 −P (t )   
  −P (t)  
   −P (t )

)
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Energy Momentum Tensor

Energy
Density

Momentum
Density

Energy
Flux

Momentum
Flux

Pressure

Viscosity
T μν=(

T 00 T 01 T 02 T 03

T 10 T 11 T 12 T 13

T 20 T 21 T 22 T 23

T 30 T 31 T 32 T 33

)
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Einstein Equation

❑ Minimum Covariant Equation

❑ Energy Content:

❑ One can add a Cosmological Constant to make the universe static
(Compensates for matter)

Gμ ν=Rμν−
1
2

R gμν=8 πG T μ ν

Curvature of Universe Energy Content

T μν= ∑
species

(ρuμ uν+P (gμ ν+uμ uν))

Gμ ν+Λ gμ ν=8πG T μ ν
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Matter Equation of State
Evolution of density

❑Exercise:

From the work of pressure

and the expression of energy

Show the evolution of density:

In particular,
 

❑Using equation of state:

d ρ

d t
=−3

ȧ
a

( p+ρ)

P=wρ ⇒ ρ(t)=ρ0( a
a0

)
−3(1+w)

δW =− pd V

E=ρV

d ρ

d t
=0 ⇒ p=−ρ
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General relativity in Friedman-Lemaitre-
Robertson-Walker metric

❑ Einstein Equation (Isotropic Uniform Universe)

❑ Acceleration

❑ Evolution of density

❑ Equation of state

H 2=( ȧ
a )

2

=
8πG

3 ∑
i

ρi−
k

a2

ä
a

=−
4 πG

3 ∑
i

(ρi+3 pi)

∂ρ

∂ t
+3 H (ρ+ p)=0

p=wρ
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Matter, radiation, ...

Content
State 

Equation
Dilution Law Evolution

Matter

Radiation

Curvature

Cosmological 
constant

Generic

p≈0 ρ∝a(t)−3 a (t)∝t 2/3

p=
ρ

3 ρ∝a(t)−4 a (t)∝t1 /2

( ȧ
a )

2

=−
k

a2 a (t)∝t

p=−ρ ρ=C ste=
Λ

8πG N
a (t)∝eH × t

p=wρ ρ∝a(t)−3(1+w) a (t)∝t1 /3 (1+w)
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Cosmological Constant

❑Introduced by Einstein to allow for a static Universe 
(counteracting the mass)

❑Positive energy density, independent of size, implying 
negative pressure, Kind of “vacuum energy”

❑But in 1929 Edwin Hubble showed that the Universe is 
in expansion

Much later, when I was discussing cosmological 
problems with Einstein, he remarked that the 
introduction of the cosmological term was the 
biggest blunder of his life. 

 -- George Gamow, My World Line, 1970
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Deceleration parameter

❑ One defines dimensionless densities using critical density:

❑ Deceleration parameter

❑ Matter and radiation  decelerates expansion

❑ Cosmological constants accelerates expansion

❑ Curvature  is neutral

❑ Null deceleration if 

q=−
1

H 2 [ ä
a ]=Ωm

2
+Ωr−ΩΛ

Ωm+2Ωr=2ΩΛ

Ωi
0
=

ρi
0

 ρcritic  
=

8 πG

3 H 0
2 ρi

0,
Ωk

0
=

−k

a0
2 H 0

2
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Epochs

❑ Matter:

❑ Radiation:

❑ Curvature:

❑ Cosmological Constant

( H
H 0

)
2

=Ωm
0 ( a0

a )
3

+Ωr
0( a0

a )
4

+ΩΛ+(1−Ωtot
0

)( a0

a )
2

Ωm
0

(a0/a )
3

Ωr
0

(a0/a )
4

(1−Ωtot) (a0/a )
2

ΩΛ

Dominates in the early Universe
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Epochs
❑ Universe starts by a radiation 

dominated era

❑ After some times, matters dominates 
over the radiation and expansion 
slows down

❑ If Ω
T
 > 1 and  Ω

Λ
 ~ 0, the Universe 

re-collapses and radiation dominates 
again

❑ If Ω
T
 < 1 and  Ω

Λ
 ~ 0, the Universe 

ends in free expansion governed by 
curvature

❑ If Ω
T
 < 1 and  Ω

Λ
 > 0, the Universe 

ends in accelerated exponential  
expansion governed by 
cosmological constant

GUT epoch

−25
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ρ
Λ
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Observational Pillars
I – Expansion



Mathieu de Naurois 26

Redshift

❑ During the propagation of a photon, the universe gets diluted and the 
wavelenght increases by the same amount:

1+ z=
ar

ae

=
λr

λe
where {e=emission

r=reception

emission Reception
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Distance Ladder – I

❑ Measuring the distance is not an easy task

❑ Several methods valid only in a given distance range

❑ Precise crosscalibration needed in overlapping range

❑ First level: parallax measurements (up to ~ 200 pc = 1/40 of the distance
to the Galactic Centre). 10  stars measured by Hipparcos⁵

re
fe

re
nc

e 
sta

r
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Distance Ladder – II

❑ Second level (in the 
Galaxy): luminosity of 
stars as function of spectral 
type(need correction for 
absorption)

❑ One can measure distance 
of a cluster by studying its 
star population
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Distance Ladder – III
❑ Variables stars (Cepheids) with periodic luminosity behaviour 

related to the period (calibrated on those measured by Hipparcos)

❑ Helium heating ionizes it. It becomes more opaque, and ionized 
further, until it expands, cools and becomes transparent.

❑ Come in different flavours (fondamental, first harmonic)
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What distance?

❑ Distance at emission time? At reception time?

❑ Best definition: distance travelled by photon as Universes expands
(Comoving distance)

Emission

Reception

d =a0∫
t e

t e

d t
a (t )

= ∫
a0/(1+z)

a0

a0 d a

a ȧ
∝∫ d z

H (z )

Depends on expansion 
evolution of the Universe
=> Probe for expansion
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Distance Ladder – IV

❑ Standard Candles:

❑ Type 1a supernova
(Accreting white dwarf 
exploding when reaching 
the Chandrasekhar mass)

❑ Light-curves have to be 
calibrated (different 
composition, ...)

❑ Larger distance: redshift is 
the only information, but 
relies on a cosmological 
model
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Edwin Hubble, 1929

Hubble Law
❑ Galaxies are separating apart at a speed proportional to their distance

d R
d t

=H 0 R+v p

Hubble flow Proper Motion
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Expansion

❑ It's the space itself that gets diluted, not the galaxies that are moving in 
the space!
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Observational Pillar
II – Dark Matter
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Rotation Curve

❑ For Kepler Motion

❑ Dark Matter represents ~ 85% of matter, and ~ 25% of total energy

V (R)=√ G M (R)

R
Exercise!

Visible

gaz

Dark Matter



Mathieu de Naurois 36

Other evidences

❑ Gravitational Lensing

❑ Temperature distribution of hot gas in galaxies and clusters of galaxies

❑ CMB
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Observational Pillars
III – CMB
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Predicted in the 1950 s,
detected in 1964

❑ Thermal emission emitted at the time of decoupling (transition from an 
nuclei-electron plasma to neutral atoms)

❑ Diluted and redshifted by the expansion of the Universe

Penzias and Wilson, 1964
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Recombination & Decoupling (z = 1100)

Plasma p+ e-

High temperature
- 

Low Temperature 

Photons

Neutral Hydrogen 

“ ” 

No Thompson 
scattering of light off 
neutral hydrogen
→ Decoupling
@ 3000 K
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The Cosmic Microwave Background
❑Discovered 1965 (Penzias & Wilson)

❑ 2.7 K blackbody
❑ Isotropic (<1%)
❑ Relic of hot “big bang”

❑1970’s and 1980’s
❑ 3 mK dipole (local Doppler)
❑  δT/T < 10-5 on arcminute scales

❑ COBE 1992
❑ Blackbody 2.728 K
❑ ℓ < 30 : δT/T ≈ 10-5
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COBE
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CMB Spectrum
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From COBE to WMAP
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Is CMB Homogeneous?

❑ Wmap temperature Map
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CMB
❑ Oscillations due to 

coupling between matter 
and radiation
(radiation pressure)

❑ Wave travelling at

❑ Small fluctuations 
oscillate faster

❑ At the time of 
decoupling, situation is 
frozen => characteristic 
angular scale appear

❑ Density fluctuation 
translate into 
temperature variations

c /√3
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Spherical Harmonics

❑ l correspond to angular scale

❑ Large values correspond to 
small scales

The lower WMAP harmonics...
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CMB Angular Spectrum
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Hubble Constant

❑ Large expansion speed makes larger redshifts correspond to smaller 
distance. Structures appear larger

CM
B S

tru
ctu

re

Large h

Small h

Small Large

d ∝∫ d z
H (z)
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Cosmological Constant

❑ Cosmological constant increases expansion speed, structures appear 
larger

CM
B S

tru
ctu

re

Large Λ

Small Λ

Small Large
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Matter Content

❑ Coupling between matter and 
radiation affects oscillation 
pattern
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WMAP Parameters

Baryons (2.27+/- 0.06) /h2 %

CDM  (10.99+/-0.62)/h2 %

Optical Depth 0.087+/- 0.017

Spectral Index 0.965+/-0.014

σ8   0.796+/-0.036 

Λ   0.742

+/− 0.036

The simple 6-parameter 
fit still works (yawn).  
Values are consistent with 
Spergel et al. (2007) and 
precision has  doubled 
with 5-year data.

Dunkley et al. 0803.0586
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The CMB is polarized (~10%)

❑ Since photons only have two polarization states, the Compton scattering 
results into linear polarisation for  orthogonal scattering.

❑ Isotropic distribution of seed photons results in NO polarisation

observer

W. Hu, N. Ponthieu
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The CMB is polarized

❑ Temperature anisotropies at the last scattering surface are induce partial 
polarisation

❑ Polarisation map is correlated with temperature map

observer
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After WMAP: Planck
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Planck Capabilities
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Polarisation @ Planck
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Observational Pillars
IV – Formation of large 

structures
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Distribution of matter

SDSS 2D Map,
of galaxies

3D Map contains 
930 000 Galaxies

Earth
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Baryonic Oscillations
❑ The acoustic peak of the CMB is also visible in the Galaxy distribution

position of baryon
sound wave at
recombination

position of initial CDM−baryon perturbation
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Clustering....

Lyα

LSS

Clusters

Lensing

Tegmark & Zaldarriaga, astro-ph/0207047 + 
updates

CMB
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http://cosmicweb.uchicago.edu

Formation of structures
❑ Massive simulations try to reproduce the distribution of matter in 

Universe
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Simulated Universe

Millennium Simulation, Springel et al. (2005) ,

❑ Dark matter is the driver for structure formatione
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Mass Function
❑ Observed mass distributions well reproduced when incorporating dark 

matter

❑ In the absence of dark matter, predicted structures are too small
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Observational Pillars
V – Type 1A Supernova,
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Type Ia Supvernova

❑ Accreting white dwarf 
exploding when reaching the 
Chandrasekhar mass

❑ Almost Standard Candles

❑ Luminosity – redshift relation is 
related to history of the 
Universe

d ∝∫ d z
H (z)
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Hubble Diagram

SNLS 3-years (2011)

redshift

-l
og

(f
lo

u x
) 

~ 
2 

l o
g(

di
st

a n
ce

)
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SNI1a: Universe in accelerated Expansion
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CFHTLS / SNLS
❑ Toward a FLAT universe, with cosmological constant (only usng 

supernova and baryonic oscillations)
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Observational Pillars
VI – Big Bang 

Nucleosynthesis
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Baryogenesis

❑ The observed abundances of light elements according to mass fraction 
are:

❑ Hydrogen 75%

❑ Helium 24%

❑ Metals ~1%

❑ Why?

❑ BBN happens on small scales at energies below 10 MeV, hence we 
should have complete control over the physics (unlike the very early 
Universe).

❑ BBN predictions are very sensitive to ambient conditions at t ~ 1 sec 
(T~ 1 MeV). Hence the constraints on new physics are some of the best 
available...
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Baryogenesis
❑ Relative abundances:

❑ Equilibrium ratio of neutrons to protons

❑ At high T, n ~ p, whereas at low T, n/p → 0

❑ In competition with expansion of the Universe

❑ In competition with neutron decay

M i∝(mi T )
3/ 2 exp(−mi

T )

n
p
≈exp(−Q

T ) where Q=mn−m p≈1,29 MeV
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Equilibrium ?
❑ Equilibrium condition valid only when reaction rate is large enough

❑ Freeze-out temperature

Γ>H=( ȧ
a ) n+νe⇔ p+e−

1 

n/
p 

T ~ 1 MeV 

Equilibrium
predictionNon-equilibrium 

Γ=GF
2 T 5∼10−10 GeV4 T 5

H ∼T 2
/M pl where M pl=1019 GeV}⇒T c=0,8 MeV
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Predicted Ratio

❑At freeze-out

❑With time this decreases slightly to ~ 1/6. due to neutron 
decay:

❑Hence, at most we could form 33% of 4He by 
mass(using all available neutrons)  which is significantly 
larger than the observed 24%. Why is there only 24% 
helium?

n
p
≈exp(− Q

T c
)=exp(−1,29

0,8 )≈1/5
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Going to Heavy Elements

❑ No through

❑ But through Deuterium 

2 n+2 p→ 4 He
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Deuterium Bottleneck
❑Production of Deuterium

is at equilibrium at ~ 1 MeV

❑Equilibrium depends on the photon to baryon ration. This is 
the only free parameter in the model:

❑The theory then predicts, at T ~ 1 MeV, the following 
abundances:

❑The Universe is still too hot, Deuterium is immediately 
destroyed by encounter with high energy photons

p+n⇔ D+γ

η=nB /nγ∼10−8ΩB h2

X D∼η X p X n 10−12 where X D=2 nD /nB
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Deuterium

❑Helium production starts later in time, when the number 
of photons above Deuterium binding energy (2.2 MeV) 
becomes small.

❑This happens at T = 0.06 MeV

❑Question: if T = 1 MeV at t = 1s,  at what age the 
Universe temperature reaches T = 0.06 MeV?
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Deuterium formation

❑So... D formation starts later, at t ~ 156 s

❑At that time, all neutrons are used to produce Deuterium

❑What is the neutron fraction at this time?

❑Neutron decay decreased the number:

❑At t = 200 s, the neutron ration decreased to

❑So we expect

τn=885,7±0,8s

n
p
=

n0

p0

×exp (− t
τ )≈ 1

6
exp(−200

886 )=0.125

H 4 He≈2×(n / p)=0.25
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Baryogenesis caveats

First Bottleneck

Second Bottleneck

Third 
 Bottleneck
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Formation of elements

❑ At 1 MeV, feeeze out of 
neutron – proton 
equilibrium

❑ Neutrons fraction decrease 
due to decay up to 
T = 0.06 MeV

❑ D forms at T 0.08 MeV;∼

❑ nuclear chain produced 
heaver elements
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The Miracle

❑The abundance of light elements is very sensitive to two 
things:

❑The age of the universe when the temperature drops to 
0.08 MeV (why?)

❑The expansion rate of the cosmos at T ~ 1MeV (why?)

❑Why does the expansion rate permits freeze-out at 
T = 1 MeV? Later freeze out would result in no neutrons at 
all, thus no life

❑Why is the neutron life time such as the fraction at 
T = 0.08 MeV is still significant? Shorter life-time will result 
in no matter
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Relative Abundances
❑ Evolution of abundances as

function of baryonic content 
of the Universe

❑ When taking everything into 
account, observed 
abundances match well the 
predictions

❑ They are self-consistent and 
give Ω

B
 ~ 0.04-0.05, 

consistent with other 
measurements

❑ Only free parameter: photon 
to baryon ration 

Measured 
abundances
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ΛCDM Model
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Composition of the Universe

❑ Robust model based on several 
pillars:

❑ Expansion measurement 
(Supernova, ..)

❑ Astronomical observation of 
dark matter (rotation curves, ...)

❑ CMB

❑ Formation of large structures

❑ Big bang nucleosynthesis
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ΛCDM model

❑ Baryons,electrons,photons,neutrinos

❑ Ω
baryon

 = 0.0456 ± 0.0015

❑ Cold Dark Matter

❑ Ω
CDM

 = 0.228 ± 0.013

❑ Dark Energy (expansion is accelerating !)

❑ Ω
Λ
 = 0.726 ± 0.015

❑ Critical density (spatially flat universe)

❑ Ω
T
 = 1.01 ± 0.01

❑ Inhomogeneities : gravitational potential flucturations



Mathieu de Naurois 85

(Ω
M

 , Ω
Λ
) constraints (2003)

Supernova
Cosmology
Project

CMB (WMAP)

Baryon fraction
in galaxy clusters
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Thermal History
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Brief thermal history of the Universe

❑ 1019 GeV – The Planck energy. Quantum gravity required.

❑ 1016 GeV – The GUT scale; inflation

❑ 100 GeV – Electroweak symmetry breaking

❑ 100 MeV – Quark-gluon plasma

❑ 1 MeV – Big Bang Nucleosynthesis

❑ 1 eV – Formation of the CMB

❑ 10-3 eV – Cosmic acceleration, dark energy
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Main Problems
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Cosmic Problem 1 : Isotropy & Horizon

❑ The Universe is surprisingly homogeneous at large scale, 
though the horizon at decoupling time was about 1 degree

❑ How is it possible?

COBE satellite

Size of causal domain at
The formation of the CMB 
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Cosmic Problem 2: flatness

❑ We know that our universe is flat to within a few percent…

❑ But gravity makes space curve…So the flatness of the cosmos is is a 
mystery

ä<0

ϵ̇=−2ϵ( ä
ȧ ) ä>0ϵ=Ωtot−1
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Flatness problem

❑Today

❑@ t = 10-43 s, this requires

❑Such a precise tuning 
seems completely unlikely 

ϵ=0.01±0.02

ϵ<10−60
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Cosmic Problem 3: Birth of fluctuations

❑ The simple big-bang Model does 
not provide enough seeds for the 
formation of structures

❑ One need to assume seed 
fluctuation much larger than 
simple quantum fluctuation at 
decoupling time
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Cosmic Problem 4: the baryonic universe

❑ There must have been a tiny matter—anti-matter asymmetry  in the 
early universe which yielded    1 proton per ~ 1010  photons today – why 
and how did this happen?

❑ We should expect no baryons at all…since they should have annihilated 
with an equal number of anti-baryons…

❑ To get an asymmetry requires non-equilibrium physics and violation of 
CP and B conservation
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Inflation – The solution?
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●Inflation – the solution?

❑ If the universe was accelerating it would become flat…

❑ Acceleration: Raychaudhuri
equation (c=1)

❑ Inflation requires negative pressure:

❑ But cosmological constant in negligible in early Universe

( ä
a )=−

4
3

πG∑
i

(ρi+3 pi )

ρi+3 pi<0
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Inflation field

V (ϕ)
Inflation

Reheating

❑A scalar field, the
 so-called inflaton, 
dominates the early 
Universe

❑Inflation is produced 
by slow-roll of the field
Flat potential => 
Uniform energy density => equivalent to a slowly 
decreasing cosmological constant

❑Inflation stops around minimum of potential, released 
energy by inflaton decay reheats the medium and gives 
rise to particle production

❑Then Universe follows a classical Universe
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Inflation

❑ Inflation begins around  10-33 seconds after the  big bang and 
expands  the Universe by a factor  1030 to solve the cosmological 
problems

❑ The quantum seeds for 
structures are expanded 
by the same factor

❑ Inflation naturally leads
to a flat Universe

❑ Inflation increases 
naturally the size of
homogeneous regions

❑ It could be related to 
the Higgs field Time

S
iz

e

Inflation

Classical
Acceleration

no inflation
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Conclusion

❑ The ΛCDM hot big-band model is well established by a large number of 
observations, relying on several consistent  pillars

❑ The Universe has entered an accelerated expansion phase

❑ BUT the very early days of the Universe remains mysterious. Several 
problems point toward an inflation. 

❑ What is the inflation field? What is its potential form? Where does it 
come from? Do we actually need inflation?

❑ What is the Dark Matter?

❑ What is the Dark Energy?
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