

Beam Diagnostics

Anne Dabrowski CERN PH/CMX

Material in these slides included from

T. Lefevre, E. Bravin, (DITANET instrumentation school 2009) R. Jones, U. Raich (CAS 2008 & ASP2010 school) H. H. Braun (CAS 2008), P. Frock (CAS 2008) M. Minty (CAS 2003)

http://cas.web.cern.ch/cas/CAS_Proceedings.html http://www.liv.ac.uk/ditanet/events/ https://espace.cern.ch/juas/SitePages/Home.aspx

Why do we need diagnostics?

Accelerator design relies on well established physics !

H. H. Braun (CAS 2008)

Why do we need diagnostics?

Protection & monitoring of machine

Modern accelerators are expensive, powerful and can contain many components

LHC contains > 1600 superconducting magnets and connections

Collateral damages due to pressure rise

Monitor changes in the temperature and pressure throughout the machine diagnose a problem and correct for it

kW of power from x-rays produced by synchrotron radiation in a light source at BNL

Medical treatment with beams

Damage to accelerator components or screens due to high charge density CTF3 (CERN)

 Damaged X-ray ring front end gate valve. The power incident on the valve was approximately 1 kW for a duration estimated to 2-10 min and drilled a hole through the valve plate.

Mistakes during building and integration

• Connect magnet polarity with the wrong polarity

- Cables connected to the wrong equipment
- Wrong values in the controls database .. etc

Component tolerances and random errors

Correct for environmental effects

Earth's magnetic field

Seismic vibrations

• Magnet field has been measured with a finite error

Mechanical vibrations induced by water flow

Vibrations due to trains / airplane landing

- The survey people have aligned relatively the center of neighboring magnets with a finite transverse and angular (roll) error
- The RF wave amplitude has a ripple due to another ripple from a high voltage power supply
- The resonance frequency of an accelerating structure has drifted due a temperature increase (expansion by a few microns)

Constantly need to measure and adjust the beam orbit

Stray fields from neighboring instruments or magnets

Verification of optics model with beam based measurements

- Measure the difference between predicted trajectory / angle and measured trajectory
- Measure the dispersion pattern in the machine
- Keeping the beam within < 100 um for many hours (billions of km) in a modern storage ring
- Verify you are staying away from a tune resonance
- Understand why you loose the beam ...
- Etc ...

$$x_{\max}(s) = D_x(s) \cdot \delta + \sqrt{\varepsilon_x \beta_x(s)}$$

LHC Ramp Commissioning

- Tune diagnostics throughout the ramp
 - Early ramps had poor tune control
 - Beam loss observed every time tune crossed resonance line

R. Jones

LHC Beam Diagnostics

Instrumentation for CLIC

More than 200kms of beamline requiring > 50 000 instruments

T. Lefevre

Position; Current; Energy; Transverse Profile (emittance and TWISS parameters); Longitudinal Profile (Bunch length, Bunch shape, Bunch spacing); Beam Loss ...

What skills are needed?

Beam Instrumentation == "eyes" of the machine operators

- i.e. the instruments that observe beam behaviour
- An accelerator can never be better than the instruments measuring its performance!
- What does work in beam instrumentation entail?
 - Design, construction & operation of instruments to observe particle beams
 - R&D to find new or improve existing techniques to fulfill new requirements
 - A combination of the following disciplines
 - Applied & Accelerator Physics;
 - Material science, thermodynamics, Electro-magnetism, Optics, Mechanics, Electronics, Nuclear Physics, Controls and Software engineering ...
 - A multi-disciplinary field!

C. Welsch

- In a modern storage ring particles travel billions of km within < 100 μ m of the ideal orbit
- In linear colliders nano-beams from independent accelerators must be made to collide
- Must employ stability principles for beam dynamics and accurate components and diagnostics

for frequencies above 4 Hz

- At the SLS 73 "button" BPMs measure orbit deviations to better than 1 μm @ 4 kHz sampling rate.
- LHC BPM resolution ~ 5μm (depending on location in machine & measurement purpose)
- CLIC BPMs, resolution requirements:
 - 100µm (injectors) down to 3 nm (at IP)

LHC Beam Diagnostics

Position Measurement for Beam Threading

- Threading the beam round the LHC ring
 - One beam at a time, one hour per beam.
 - Collimators were used to intercept the beam (1 bunch, 2×10^9 protons)
 - Beam through 1 sector (1/8 ring)
 - correct trajectory, open collimator and move on.

BPM availability ~ 99%

parameters

Stability of transverse (betatron) oscillations

The transfer matrix of a beamline that consists of elements with individual matrices M_1 , M_2 , ... M_n $M_{tot} = M_n \cdot ... \cdot M_2 \cdot M_1$ (N.B. the order in which matrices are multiplied!)

Full turn matrix M

$$\begin{pmatrix} x \\ x' \end{pmatrix}_n = M^n \begin{pmatrix} x \\ x' \end{pmatrix}_0$$

After n turns must remain finite for arbitrarily large n

L. Rivkin

Position Measurement for Beam Threading

- Threading the beam round the LHC ring
 - One beam at a time, one hour per beam.
 - Collimators were used to intercept the beam (1 bunch, 2×10^9 protons)
 - Beam through 1 sector (1/8 ring)
 - correct trajectory, open collimator and move on.

BPM availability ~ 99%

Physics : Electricity and magnetism

- Relativistic beams:
 - Measure the relative difference in the strength of the electric field (image charge density on beam pipe) moving in disk with and at right angles to the beam' s velocity direction
 - (other method's too e.g. cavity BPMs)

Basic principle exploited in inductive and electrostatic BPMs and wall current monitors

Slide by R. Jones

Slide by R. Jones

Principle of Signal Generation of electrostatic / capacitive BPMs

Bunch length should be smaller than the shoebox length, w to be linear

W d $\mathbf{X} \propto \frac{\mathbf{U}_{\mathrm{L}} - \mathbf{U}_{\mathrm{R}}}{\mathbf{U}_{\mathrm{L}} + \mathbf{U}_{\mathrm{R}}} = \frac{\mathbf{D}}{\mathrm{S}}$

Linear cut through a shoebox

- Can measure horizontal and vertical position at once
- Has 4 electrodes

Slide by R. Jones

Important Effects:

- Non-linearity
- Geometrical center ≠ electrical center
- Errors in difference of small numbers
 - Amplification before sum and difference
- System bandwidth
 - Convolution of the transfer impedance and frequency response of the cables, amplifier, filters, ADC
- Saturation
- Sampling resolution of ADC
- Noise on electronics
- Average position measurement or single shot
- Goodness of calibration circuit
- Cross talk between adjacent electrodes

$$X = \frac{1}{S_x} \frac{(U_a + U_c) - (U_b + U_d)}{SU} + O'_x \qquad Y = \frac{1}{S_y} \frac{(U_a + U_b) - (U_c + U_d)}{SU} + O'_y$$

Important Concepts:

• Accuracy, Resolution, Analog Bandwidth, Acquisition bandwidth, Dynamics range, Signal-to-noise ratio

Excellent Lecture "Analog to Digital" at CAS2008 School by Belleman

- Digital electronics contributes to the resolution
- Appears now in most diagnostics
- Important subject in itself requires dedicated lecture

From this BPM signal – how do you measure the current?

Any other way to measure the current?

Rate at which charge passes a fixed point

DC current transformer

(Measures magnetic field produced by the current)

Faraday cup (measured the total beam charge)

- At very low energies and low intensities the Faraday Cup is an often used device for intensity measurements.
- It acts as a beam stopper and is therefore fully destructive
- Very low intensities down to a few pA can be measured, even for a DC beam, with low noise current to voltage amplifiers

Physics : Understanding particles interact with matter

Measure directly the stopped charge as a current in a metallic block To measure the full charge \rightarrow must stop the full beam

Bethe Bloch formula: Stopping Power dE/dz /p

$$-\frac{dE}{dx} = 4\rho N_A r_e^2 m_e c^2 \frac{Z_T}{A_T} r \frac{Z_p^2}{b^2} \left[\ln \frac{2m_e c^2 g^2 b^2}{I} - b^2 \right]$$

Variables in design:

- ρ: material density
- A_T and Z_T: the atomic mass and nuclear charge
- Z_p: particle charge
- β : the particles velocity and γ $g = \frac{1}{\sqrt{1-b^2}}$

Chose conducting material to fully the particles and contain the beam shower

Example for various electron beam energies into a tungsten sample

Beam Diagnostics

Current Measurement – Faraday Cup – Electron Beam

Simulation of time to stop particles GEANT 4

Beam charge converted into a current

The voltage measured across resistor R to ground

The time response \rightarrow design of signal transmission line:

- Resistance R
- The capacitance C of the cables (~ 100pF/m)
- The inductance H of the cables (μH/m)
- The length of the cable
- Bandwidth of connectors
- Sampling rate of ADC / scope

Current Measurement – Faraday Cup – Electron Beam

Faraday cup + RC circuit by cables ... need better diagnostics for bunch length measurement

What if you segmented the faraday cup, and put it after a dipole magnet?

M. Olvegaard et al Nuclear Instruments and Methods in Physics Research A, Volume 683, p. 29-39.

Beam Diagnostics

Know the calibration of dipole magnet Measure the average **central energy & energy spread**

Transverse Phase Space and Beam Profile

 $e_{x(y)}$ = area in [x(y); x'/(y')] plane occupied by beam particles divided by p

$$\begin{aligned} \theta_x^{rms} &= \frac{1}{b_x(s)} \left[S_x^2(s) - \left(D(s) \frac{Dp}{p} \right)^2 \right] \\ \theta_y^{rms} &= \frac{1}{b_y(s)} \left[S_y^2(s) \right] \end{aligned}$$

measure:
$$S_x^2(s_i)$$

know the optics: $b_x(s_i); D(s) \frac{Dp}{p}$
calculate the emittance

DITANET school - Transverse profiles - E. Bravin

H. H. Braun (CAS 2008)

DITANET school - Transverse profiles - E. Bravin

SEM (secondary emission) grids

Detector: SEM grid (parallel wires)

Physics process: Secondary emission or e-

Complex mechanical assembly:

- Insert grid into the beam, in vacuum
- Single shot
- Profile scale determined by wire position
- Profile sampling determined by distance between wires, wire thickness
- Wires stretched tight

Wire signal detection:

- Current flowing back onto the ribbons is measured
- Electrons ejected are taken away by polarization voltage
- One amplifier / ADC per channel

Single shot profile

Wire scanner

Detector: Wire Scanner

Physics process:Reconstruct transverseSecondary emission or e-profile

Complex mechanical assembly:

- Scan wire, across beam, in vacuum
- Speeds up to 20 m/s!
- Profile scale determined by wire position
- Profile sampling determined by speed of the wire w.r.t. frequency of beam
- Perturbs the beam, not suited to follow the emittance evolution

Wire signal detection:

- Either measure the current from wire
- Or deflect (capture) secondary electrons, create photons, image the photons

Scintillating screen

Detector:

Insert screen + optical system

First full turn as seen by the BTV 10/9/2008

Single shot profile

Image	detection:
-------	------------

- Image the light of the screen
- Multiple scattering in screen increase beam size
- Emission of photons ns to micro seconds
- Calibrate optical system with known target
- Correct for optical aberrations (screen 45 degrees)

Mechanical assembly move screen into vacuum chamber:

Туре	Composition	Decay	/ Time
		Decay of Lig	ght Intensity
		from 90 % to	from 10 % to
		10 % in	1 % in
P 43	Gd ₂ O ₂ S:Tb	1 ms	1,6 ms
P 46	Y ₃ Al ₅ O ₁₂ :Ce	300 ns	90 µs
P 47	Y ₂ SiO ₅ :Ce,Tb	100 ns	2,9 µs
P 20	(Zn,Cd)S:Ag	4 ms	55 ms
P 11	ZnS:Ag	3 ms	37 ms

 $1 MeV e^{-}$ on $5 \mu m$ P43 yields ~ 60 ph.

Transition Radiation

Detector: Insert radiator (e.g. thin Al foil / SiC wafer) + optical system

Physics process: Radiation emitted when a charged particle crosses a material with a different dielectric constant

$$\frac{d^2 W}{d \Omega d \omega} \approx \frac{N q^2}{\pi^2 c} \left(\frac{\theta}{\gamma^{-2} + \theta^2}\right)^2$$

Image detection:

- Image the light at the focus of the screen
- Screen can be thin & emission instantaneous
- Angular pattern of emission depends on beam energy
- Thermal damage to screen charge density > 10^6nC/cm^2
- Number of photos emitted depends on electron energy ~0.3 photons/electron (50 MeV), 0.001 photon/electon (100 keV) [400 – 600 nm]

Transition Radiation

Cerenkov Radiation

Detector:

Insert radiator, with index of refraction matching beam energy requirements, with correct optical system

Image detection:

Physics process: Radiation emitted when a charged particle crosses a material, when

Radiation has a defined angular distribution, not very suitable for transverse imaging

Threshold effect

- Fast emission charged beam polarizes material, then de-excites back to ground state
- Emitted light travels slower than charged particles (source dispersion)
- Good light production yield-Sent to Streak Camera

$$\frac{d^2 N}{dx \, d \, \omega} = \frac{\alpha \, z^2}{c} \sin^2 \theta_c(\omega) = \frac{\alpha \, z^2}{c} \left(1 - \frac{1}{\beta^2 \, n^2(\omega)} \right)$$

Synchrotron Light

Extract light from a dipole magnet (or undulator or wiggler) Optical system + camera /PMT

resolution $\approx \lambda \gamma$ Dipole magnet Source Beam

Physics process:

Charge particles emit electromagnetic radiation when accelerated Synchrotron radiation: change in direction

 ω_c

Image detection:

- Image the light from the entrance or entrance edge of the magnet higher frequency components, edge radiation
- Must implement a "virtual" target to image the source of the radiation in the magnet
- Resolution limited by diffraction

The Synchrotron Light Monitor

The Synchrotron Light Monitor

Important instrument design:

- 1. Simulation:
 - Synchrotron radiation source
 - Optical line transport through all lenses, mirrors, filters
 - Camera response
- 2. Calibration target.
- 3. Remote control of all devices
- 4. Filters for variable bunch intensity

Beam Diagnostics

Electrostatic Pick-up (BPE) – CTF3

 $\hat{V}(t) = \frac{1}{v} \times \frac{I_{eff}}{C_{Elec}} i(t)$

Electrostatic PU

10/8/2003

Lars Soby

Electrostatic PU

Electrostatic PU (BPE)

CTF3 bunch spacing 3 GHz >> F_low

Electrodes charging up due to beam halo!

Pickup	Transformer	Button	Matched Stripline	RF Cavity
Spectrum	E(f) M D f	E(f) M D f		
Monopole Mode Suppression	Modal (hybrid) / electronics	Modal (hybrid) / electronics	Modal (hybrid) / electronics	Modal (coupler), frequency,
Typical RMS Noise, 10pC, <u>*20mm pipe*</u>	>50µm	>100µm	~60µm	<1µm
Typical Electronics Frequency	0.1200MHz	300800MHz	300800MHz	1-12GHz
Pictures				

H. H. Braun (CAS RF 2010)

Measure profile in a dispersive region \rightarrow energy spectrum

PHIN Spectrometer

- \circ Segmented dump at 78 cm
- $\bullet~{\sf OTR}$ screen at 58 ${\rm cm}$

Beam Diagnostics

Beam Intensity - Toroids

¶f

Beam Intensity - Toroids

$$e = \frac{\Pi \Pi}{\P t}, \text{ where } f = \hat{0} B \cdot da$$
$$e = \frac{MA}{2pr_0} \frac{\P i_b}{\P t}$$
 Faraday's law

w of induction

Coil is wound around the core Lenz's law This coil senses the induced emf, and acts to appose the magnetic field induced by the beam Add a resistor in series ->

turn coil

$$\mathbf{V}_{\mathrm{r}} = \mathbf{I}_{\mathrm{r}}\mathbf{R} = (\mathbf{I}_{\mathrm{b}}/\mathbf{N})\mathbf{R}$$

What about the bandwidth of this signal?

The ideal transformer

The AC transformer

Beam Profile Monitoring using Screens

- Screen Types
 - Luminescence Screens
 - destructive (thick) but work during setting-up with low intensities
 - Optical Transition Radiation (OTR) screens
 - much less destructive (thin) but require higher intensity

Sensitivities measured with protons with previous screen holder, normalised for 7 px/ σ

Туре	Material	Activator	Sensitivity
Luminesc.	CsI	T1	6 10 ⁵
"	Al ₂ O ₃	0.5%Cr	3 107
٠.	Glass	Ce	3 109
٠.	Quartz	none	6 10 ⁹
OTR [bwd]	Al		2 1010
**	Ti		2 1011
**	С		2 1012
Luminesc. GSI	P43: Gd ₂ O ₂ S	Tb	2 107

Rhodri Jones – CERN Beam Instrumentation Group

Introduction to Beam Instrumentation - CAS2011

- Usual configuration
 - Combine several screens in one housing e.g.
 - Al₂O₃ luminescent screen for setting-up with low intensity
 - Thin (~10um) Ti OTR screen for high intensity measurements
 - Carbon OTR screen for very high intensity operation

- Advantages compared to SEM grids
 - allows analogue camera or CCD acquisition
 - gives two dimensional information
 - high resolution: ~ 400 x 300 = 120'000 pixels for a standard CCD
 - more economical
 - Simpler mechanics & readout electronics
 - Time resolution depends on choice of image capture device
 - From CCD in video mode at 50Hz to Streak camera in the GHz range

Luminescence Profile Monitor

Beam Diagnostics

Phadri lance (PEDN Roam Instrumentationski (Proute

Luminescence Profile Monitor

• Local Pressure at ~5×10⁻⁷ Torr

Rhodri Jones – CERN Beam Instrumentation Group

Introduction to Beam Instrumentation - CAS2011

170,000

180,000