Particle Accelerators

Lyn Evans – *CERN/IC*

ASP2012 Kumasi Ghana 30th July 2012

The first circular accelerator Lawrence and Livingston's 80 keV cyclotron (1930)

Ernest O. Lawrence

Different approaches fixed target vs collider

Fixed target

Storage ring/collider

History/energy line vs discovery

Behind the history plot is hidden the technological development required for each step

Obs: you can notice different particle species used in the different colliders electron-positrons and hadron colliders (either p-p as Tevratron, p-p as LHC)

Lyn Evans

The proper particle for the propre scope

Electrons (and positrons) are (so far) point like particles: no internal structure

The energy of the collider, namely two times the energy of the beam colliding is totally transferred into the collision

Ecoll= Eb1+ Eb2= 2Eb = 200 GeV (LEP)

<u>Pros</u>: the energy can be precisely tuned to scan for example, a mass region

Precision measurement (LEP)

<u>Cons</u>: above a certain energy is no more convenient to use electron because of too high synchrotron radiation (last lecture) Protons (and antiprotons) are formed by quarks (uud) kept together by gluons

The energy of each beam is carried by the proton constituents, and it is not the entire proton which collides, but one of his constituent

Ecoll < 2Eb

Pros: with a single energy possible to scan different processes at different energies

Discovery machine (LHC)

<u>Cons</u>: the energy available for the collision is lower than the accelerator energy

Lyn Evans

CMS Muon Pairs Mass

Colliding counter-rotating beams of hadrons

Lyn Evans

Acceleration principle

- TRANSITION ENERGY: The increase of energy has 2 contradictory effects
 - An increase of the particle's velocity
 - An increase of the length of the particle's trajectory

According to the variations of these 2 parameters, the revolution frequency evolves differently

- Below transition energy: The velocity increases faster than the length The revolution frequency increases
- Above transition energy: It is the opposite case frequency decreases
- At transition energy: The variation of the velocity is compensated by the variation of the trajectory ⇒ A variation of energy does not modify the frequency

No RF, debunching in ~ 25*10 turns, i.e. roughly 25 mS

File Edit View Project	Operate Tools Window He	ep In in wy con			
H3 Mountain Range					
			снз	INVERTED	D!!!
			Choose Cha CHI C OFF (File Inde	annels to acquire: H2 CH3 C OFF ON ex for next Save	Date: 2008-09-11 Time: 21:20:25
			First Trigg	ger]	
			10 Turn Multiply D Scale Fac ∯ D Bunch Let	ata with tor (dB)	Min Estimated Bunch Ler
			NaN Trace Separat \$0.300	ion	Correction: (select before acquisition
				be released	without cable
0.0 2.0n 4.0n 6.	0n 8.0n 10.0n 12.0n 14.0	un 16.0n 18.0n 20.0n 22.0	n 25.0n	Purch Log - 14	142 Desilian 2

14

First attempt at capture, at exactly the wrong injection phase...

Capture with corrected injection phasing

Capture with optimum injection phasing, correct reference

		li è		
🗘 🐼 🛑 🔢 13pt Application Font 🖃 🏎 📾 🦉				
	CH1 INVERTED !!!			
Mountain Range	Choose Channels to acquire: Date:			
0 2.0n 4.0n 6.0n 8.0n 10.0n 12.0n 14.0n 16.0n 18.0n 20.0n 22.0n 25.0	n			

Adiabatic damping during acceleration

$\Rightarrow x''(s) + Kx(s) = 0$: Equation of a harmonic oscillator

From this equation, one can already anticipate the elliptical shape of the particle trajectory in the phase space (x, x') by integration

$$x'^{2}(s) + K x^{2}(s) = \text{Constant}$$

Alternating gradient focusing

Lyn Evans

Schematic layout of one LHC cell (23 periods per arc)

- MQ: Lattice Quadrupole
- MO: Landau Octupole
- MQT: Tuning Quadrupole
- MQS: Skew Quadrupole
- MSCB: Combined Lattice Sextupole (MS) or skew sextupole (MSS) and Orbit Corrector (MCB)
- BPM: Beam position monitor
- MBA: Dipole magnet Type A
- MBB: Dipole magnet Type B
- MCS: Local Sextupole corrector
- MCDO: Local combined decapole and octupole corrector

Transverse Beam Dynamics

The motion of a charged particle (proton) in a beam transport channel or a circular accelerator is governed by the LORENTZ FORCE

$$\vec{F} = e\left(\vec{E} + \vec{v} \times \vec{B}\right)$$

The motion of particle beams under the influence of the Lorentz force is called BEAM OPTICS

Transverse Beam Dynamics

CHROMATICITY = Variation of the tune with the momentum

$$Q_x' = \frac{\Delta Q_x}{\Delta p / p_0}$$

- The control of the chromaticity (using a SEXTUPOLE magnet) is very important for 2 reasons
 - Avoid shifting the beam on resonances due to changes induced by chromatic effects (see later)
 - Prevent some transverse coherent (head-tail) instabilities (see also later)

SEXTUPOLE = 1st nonlinear magnet

Layout of high-luminosity collision region

High-luminosity insertion Preassembly of inner triplet

Interactions per bunch crossing

 $N_c = \frac{L \,\sigma_I}{n_b \,f_{rev}}$ $\sigma_T = \sigma_E + \sigma_I$ $\sigma_T = 100 \ mb$ $\sigma_I = 60 mb$ *Rate* = $L\sigma_I$ = 10³⁴.6.10⁻²⁶sec⁻¹ $N_{c} = 19$

Luminosity lifetime

Intrabeam scattering produces transverse emittance growth and dominates the luminosity lifetime at the beginning of a run.

However the main limitation of luminosity lifetime at high luminosity is the total cross section

Intrabeam Scattering

Lab frame $\sigma_{x'}$ $\sigma_{y'}$ σ_p Rest frame $\sigma_{x'}$ $\sigma_{y'}$ σ_p/γ

Intrabeam scattering in the SPS. Top Bunch lengthening with time for a strong proton bunch (left) and weak antiproton bunch (right) Bottom. IBS growth rate compared with theory.

Instability driven by the chamber wall

Transverse Feedback with One-Turn Delay

Vacuum System

The LHC presents several original requirements compared with classical vacuum systems. It has to ensure adequate beam lifetime in a cryogenic system where heat input to the 1.9 K helium circuit must be minimized and where significant quantities of gas can be condensed on the vacuum chamber. The main heat sources are:

- Synchrotron light radiated by the beam at high energy (0.2 W.M-1 per beam, with a critical energy of about 44 eV;
- Image currents (0.2 W.M-1 per beam);
- Energy dissipated by the development of electron clouds.
- Energy loss by nuclear scattering (30 mW.M-1 per beam).

In order to remove the heat from all these processes but the last with high thermodynamic efficiency, the 1.9 K cold bore of the magnets is shielded with a beam screen cooled to between 5 and 20 K. This beam screen is perforated with about 4% of the surface area to allow the cold bore of the magnets at 1.9 K to act as a distributed cryopump, allowing gas to be condensed on the cold bore surface protected against desorption by bombardment with synchrotron radiation photons.

LHC Beam Screen

Copper-coated beam screens

75 μm copper colaminated on 1mm stainless steel, operated < 20 K

The electron cloud effect

Simulated heat load as a function of SEY

average arc heat load [W/m]

Vacuum pressure evolution with 50 ns

Reduction of one decade in about 17h (periods with constant number of bunches)

Emittance preservation

Limited blow-up observed after some hours at injection (injected emittances are in the range 2.5-3 mm), even with 800 and >1000 bunches. Clear improvement due to reduced activity in the arcs. Low chromaticity (~4)

Day 3 – 800 bunches

We started like that... Day 1 – 300 bunches

Lyn Evans