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Fragmentation functions: final-state counterpart to PDFs

e−H → e−X e+e− → HX

▶ Parton Distribution Function: fi/H(x , µ
2)

parton i is emitted from hadron H carrying longitudial momentum fraction x of H
▶ DGLAP evolution amounts to resumming initial-state collinear divergences:

▶ Fragmentation Function: DH
i (z , µ

2)

hadron H is emitted from parton i carrying longitudial momentum fraction z of i
▶ DGLAP evolution amounts to resumming final-state collinear divergences:
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e−H → e−X e+e− → HX

▶ Parton Distribution Function: fi/H(x , µ
2)

parton i is emitted from hadron H carrying longitudial momentum fraction x of H
▶ Scale: µ2 = −q2 [space-like]
▶ DGLAP evolution with space-like (S) splitting kernels:

∂

∂ lnµ2
fi/H(x , µ

2) =
∑
j

∫ 1

x

dx ′

x ′ P
S
ij

( x

x ′ , αs(µ
2)
)
fj/H

(
x ′, µ2

)
▶ Fragmentation Function: DH

i (z , µ
2)

hadron H is emitted from parton i carrying longitudial momentum fraction z of i
▶ Scale: µ2 = q2 [time-like]
▶ DGLAP evolution with time-like (T) splitting kernels:

∂

∂ lnµ2
DH

i (z , µ
2) =

∑
j

∫ 1

z

dz ′

z ′
PT
ji

(
z ′, αs(µ

2)
)
DH

j

( z

z ′
, µ2

)
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Splitting kernals

▶ The kernals Pi j(x) describes the splitting of parton j into parton i carrying
momentum fraction x of j

▶ At LO accuracy in αs PS
i j = PT

i j = Pi j :

Pqq(x) = 2CF

(
1+x2

(1−x)+
+ 3

2
δ(1− x)

)

Pqg (x) = 2TR

(
x2 + (1− x)2

)
Pgq(x) = 2CF

(
1+(1−x)2

x

)

Pgg (x) = 4CA

(
x

(1−x)+
+ 1−x

x
+ x(1− x)

)
+ δ(1− x) 11CA+4Nf TR

3

where CF = 4
3
, TR = 1

2
, and CA = 3
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Heavy hadron (HQ) production: pT ≫/ mQ

Nucl.Phys.B 421 (1994) 530-544; slides from Ingo Schienbein

HQ production via Fixed Flavour Number Scheme (FFNS):

dσ

dpT ,HQ

=
∑
i ,j ,Q

fi/A(µF )⊗ fj/B(µF )⊗
d σ̂ij→QX

dpT ,Q
(µF , µR ,mQ)⊗ D

HQ

Q

▶ ⊗ denotes a Mellin Convolution: f ⊗ g(x) =
∫ 1

0
dy

∫ 1

0
dz f (y)g(z)δ(x − yz)

▶ PDF:
▶ Only light flavours in initial state: i , j ∈ {q, q̄, g}, where q = u, d , s
▶ perturbative µF evolution which absorbs initial-state collinear singularities
▶ non-perturbative boundary condition: fi/H(x , µ0) at µ0 = O(1 GeV)

▶ Owing to mQ , no final-state collinear singularities in σ̂ or D
HQ

Q !

▶ However, logs of the kind αs ln(pT/mQ) appear in σ̂

▶ For pT ≫ mQ , these logs are large and should be resummed
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Heavy hadron (HQ) production: pT ≫ mQ

HQ production via Zero Mass Variable Flavour Number Scheme
(ZM-VFNS):

▶ For large scale (pT ≫ mQ) we can treat the quarks as massless in σ̂ up
to corrections O((mQ/pT )

2):

dσ

dpT ,HQ

≃
∑
i ,j ,k

fi/A(µFi
)⊗ fj/B(µFi

)⊗
d σ̂ij→kX

dpT ,k
(µFi

, µFf
, µR)⊗ D

HQ

k (µFf
)

▶ In σ̂ take i , j , k ∈ {q, q̄, g ,Q, Q̄} but consider them to be massless
▶ We introduce an additional scale, µFf

, and the large logs from the
prevoious partonic cross section are effectively split into 2 terms
ln(pT/mQ) = ln(pT/µFf

) + ln(µFf
/mQ):

▶ ln(pT/µFf
) : contained within σ̂, this is small provided µF ∼ pT

▶ ln(µFf
/mQ) : resummed to all orders by evolution equations in D

HQ

k (µFf
)

▶ The mass dependance is absorbed into the FF

▶ This results in a better control of the theortical uncertainty at large pT
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Quarkonia in NRQCD in FFNS and ZM-VFNS picture
▶ FFNS approach valid for pT ≫/ mQ

dσ

dpT ,Q
=

∑
i ,j ,n

fi/A(µFi
)⊗ fj/B(µFi

)⊗
d σ̂ij→QQ̄[n]X

dpT ,QQ̄[n]

(µFi
, µR ,mQ)⟨OQ

QQ̄[n]
⟩

▶ σ̂ij→QQ̄[n]X computed within NRQCD
▶ Non-pertubative physics contained in LDME no convolution, just a number

▶ ZM-VFNS valid for pT ≫ mQ

dσ

dpT ,Q
≃

∑
i ,j ,k

fi/A(µFi
)⊗ fj/B(µFi

)⊗
d σ̂ij→kX

dpT ,k
(µFi

, µFf
, µR)⊗ DQ

k (µFf
)

▶ In practice, fragmentation functions are computed in NRQCD up to the
LDME

DQ
i (z , µ0) =

∑
n

D
QQ̄[n]
i (z , µ0)⟨OQ

QQ̄[n]
⟩

▶ To describe the full pT spectrum should combine FFNS & ZM-VFNS
using a matching scheme

▶ However, in what follows we focus on the large pT region/ZM-VFNS
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Fragmentation functions
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Inclusive quarkonium production cross section at large pT
Fragmentation function enters cross section as a convolution with d σ̃k

dσ

dpT ,Q
≃

∑
k

∑
i ,j

fi (µFi
)⊗ fj(µFi

)⊗
d σ̂ij→kX

dpT ,k
(µFi

, µFf
, µR)︸ ︷︷ ︸

∝p−4
T ,k at LO︸ ︷︷ ︸

d σ̃k∝p−n
T ,k

⊗DQ
k (µFf

)

where pT ,k =
pT ,Q
z

dσ

dpT ,Q
≃

∑
k

d σ̃k ⊗ DQ
k

∝
∑
k

(
pT ,k =

pT ,Q
z

)−n
⊗ DQ

k

∝
∑
k

∫
dz zn−1DQ

k (z)︸ ︷︷ ︸
nth Mellin Moment!

▶ Cross section sensitive to the nth Mellin Moment of the fragmentation
function: n = 5.5, 4.5 according to fits to HERA, LHC data
Bracinik, Cacciari, Corradi, Grindhammer, ”Heavy Quark Fragmentation”
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Q fragmentation function shapes
▶ Different channels have different shapes at µ0

3S
[1]
1

1S
[8]
0

3S
[8]
1

0.0 0.2 0.4 0.6 0.8 1.0
z

10 8

10 7

10 6

10 5

10 4

10 3

10 2

10 1

100

zD
g

J/
(z

,
)

= 0 = 2mc 

zmin

g J/ [3S[8]
1 ]; LDME = 0.01 GeV3; 0 = 2.0 × mc GeV

g J/ [1S[8]
0 ]; LDME = 0.10 GeV3; 0 = 2.0 × mc GeV

g J/ [3S[1]
1 ]; LDME = 1.79 GeV3; 0 = 2.0 × mc GeV

▶ Observable discriminant in the different production channels?
▶ Isolation-like observable: amounts to a zmin cut
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Computation of fragmentation functions

▶ From the decay of a virtual particle:
▶ computed as the ratio of the cross

sections
▶ Example g → ηc

Int.J.Mod.Phys.A 21 (2006) 3857-3916

▶ Using the Collins-Soper definition Nucl. Phys. B 194 (1982) 445

▶ Gauge-invariant definition that includes an eikonal coupling in Feynman
rules
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Fragmentation functions at lowest order in αs

⊗ g → cc̄(3S8
1 ): Phys. Rev. Lett. 74 (1995) 3327

D
J/ψ[3S

[8]
1

]
g (z, µ0) = δ(1 − z)

παs (µ0)

24m3
Q

⟨OJ/ψ
8 (3S1)⟩ (1)

⊗ g → cc̄(1S8
0 ): Phys. Rev. D 89 (2014) 094029, Phys. Rev. D 55 (1997) 2693, JHEP 11 (2012) 020

D
J/ψ[1S

[8]
0

]
g (z, µ0) = =

(N2
c − 4)α2

s (µ0)

4Ncm
3
Q

[2(1 − z) log(1 − z) + 3z − 2z2]⟨OJ/ψ
8 (1S0)⟩ (2)

⊗ g → cc̄(3S1
1 ): Phys. Rev. Lett. 71 (1993) 1673, Phys. Rev. D 96, 094016 (2017)

D
J/ψ[3S

[1]
1

]
g (z, µ0) =

128(N2
c − 4)π3α3

s (µ0)

3N2
c (2mQ )3

CI13 +
11∑
i=0

Ci Li

 ⟨OJ/ψ
1 (3S1)⟩

L0 = 1 , L1 = ln z , L2 = ln(1 − z) , L3 = ln(2 − z) , L4 = ln2 z , L5 = ln2(1 − z) , L6 = ln2(2 − z) ,

L7 = ln z ln(1 − z) , L8 = ln z ln(2 − z) , L9 = Li2(1 − z) , L10 = Li2

(
z − 1

z − 2

)
, L11 = Li2

(
2(z − 1)

z − 2

)
...

(3)

▶ All LO expressions for g , q, c ,Q to 3S
[1]
1 , 3S

[8]
1 , 3P

[8]
J , and 1S

[8]
0 collected

in Phys. Rev. D 89, 094029 (2014)
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Evolution of fragmentation function I
▶ The fragmentation function is computed at µ0 ∼ mQ and is convoluted

with the hard partonic cross section at µF ∼ pT where pT ≫ mQ

d σ̂ij→kX

dpT ,k
(µF )⊗ DQ

k (µF )

▶ Must evolve from µ0 to µF

0.2 0.4 0.6 0.8 1.0
z

0

1

2

3

4

5

zD
(z

,
)

1e 5

= 0 = 3.0 GeV

g J/ [3S[1]
1 ]; LDME = 1 GeV3; 0 = 2.0 × mc GeV

g J/
(u J/ ) + (u J/ )

▶ Initial condition for DQ
g (µ0) via

3S
[1]
1 chanel Phys. Rev. Lett. 71 (1993) 1673,

Phys. Rev. D 89 (2014) 094029

▶ DQ
k (µ0) = 0 for k ∈ {q, q̄,Q, Q̄}
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Evolution of fragmentation function II

0.2 0.4 0.6 0.8 1.0
z

0

1

2

3

4

5

zD
(z

,
)

1e 5

LO DGLAP
= 5.0 GeV

g J/ [3S[1]
1 ]; LDME = 1 GeV3; 0 = 2.0 × mc GeV

g J/
(u J/ ) + (u J/ )

▶ Effect of evolution:
▶ Large-z gluon shrinks
▶ Low-z gluon grows
▶ Low-z quark grows
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Evolution of fragmentation function III

0.2 0.4 0.6 0.8 1.0
z

0

1

2

3
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5

zD
(z

,
)

1e 5

LO DGLAP
= 10.0 GeV

g J/ [3S[1]
1 ]; LDME = 1 GeV3; 0 = 2.0 × mc GeV

g J/
(u J/ ) + (u J/ )

▶ Effect of evolution:
▶ Large-z gluon shrinks
▶ Low-z gluon grows
▶ Low-z quark grows
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Evolution of fragmentation function IV

0.2 0.4 0.6 0.8 1.0
z

0

1
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zD
(z

,
)

1e 5

LO DGLAP
= 100.0 GeV

g J/ [3S[1]
1 ]; LDME = 1 GeV3; 0 = 2.0 × mc GeV

g J/
(u J/ ) + (u J/ )

▶ Effect of evolution:
▶ Large-z gluon shrinks
▶ Low-z gluon grows
▶ Low-z quark grows
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FFNS vs. ZM-VFNS: pT hierarchy

Fixed Flavour Number Scheme:

3S
[1]
1

1S
[8]
0

3S
[8]
1

α3
sp

−8
T α3

sp
−6
T α3

sp
−4
T

▶ v2-supressed terms (1S
[8]
0 , 3S

[8]
1 )

are leading and subleading in pT

Zero Mass Variable Flavour Number Scheme:

...

▶ All contributions enter with same
scaling in pT

▶ Number of couplings modifies FF
at µ0

3S
[1]
1

1S
[8]
0

3S
[8]
1

α3
s (µ0) α2

s (µ0) αs(µ0)
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What about higher order terms?
▶ The first term is valid up to corrections O(m2

Q/p
2
T )

dσAB→QX =
∑
i

d σ̃AB→iX ⊗ Di→Q

+
∑
κ

d σ̃AB→QQ̄[κ]X ⊗ DQQ̄[κ]→Q

+O(m4
Q/p

4
T )

▶ Leading power (single parton fragmentation): a single parton i decays
into the observed Q

▶ Next-to-leading power (double parton fragmentation): two partons in
a spin and colour state κ decay into the observed Q
▶ can in principle be any partons, however, expect that DQQ̄ ≫ Dij for

i , j ∈ {u, d , s, g , ū, d̄ , s̄}

▶ Expect that double parton fragmentation of a QQ̄ is more likely than
single parton fragmentation

▶ 3S
[1]
1 : LP first appears at O(α3

s ) vs. NLP first appears at O(α1
s )

Phys. Rev. Lett. 113, 142002 (2014)
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Relevance of higher order terms
▶ Therefore at intermediate pT , NLP contributions are important
▶ Only at very large pT , can we neglect NLP contributions O(m2

Q/p
2
T ) suppressed

Ma et. al., Phys.Rev.Lett. 113 (2014) 14, 142002

NLP/(LP + NLP)

pT [GeV]
3S

[1]
1

1S
[8]
0

3S
[8]
1

3P
[8]
J

10 90% 90% 3% -60%
50 45% 35% 0% 0%
100 20% 10% 0% 0%

Caveat:
▶ No evolution of FF initial shape does not change

▶ LP 3S
[8]
1 : DQ

i (z , µ) ∝ αs(µ)δ(1− z); anticipate higher order corrections
will modify this conclusion

No phenomenology at next-to-leading power accuracy with evolution!
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1S
[8]
0

3S
[8]
1

3P
[8]
J

10 90% 90% 3% -60%
50 45% 35% 0% 0%
100 20% 10% 0% 0%

Caveat:
▶ No evolution of FF initial shape does not change

▶ LP 3S
[8]
1 : DQ

i (z , µ) ∝ αs(µ)δ(1− z); anticipate higher order corrections
will modify this conclusion

No phenomenology at next-to-leading power accuracy with evolution!
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Phenomenological applications of fragmentation

functions
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pp̄ data comparisons

4 6 8 10 12 14 16 18 20
pT, J/  [GeV]

10 5

10 4

10 3

10 2

10 1

100

101

(J/
)×

d
/d

p T
,J/

 [n
b/

Ge
V]

 Kramer
 Fleming 
 Artoisenet

CDF, PRL 79 4 (1997)
g 3S[1]

1
c 3S[1]

1
g 3S[8]

1

▶ g → J/ψ: Kramer and Fleming are
comparable

▶ c → J/ψ: Fleming and Artoisenet are
∼ 10 apart

▶ g → J/ψ: LDME is fit to data

▶ Kramer: Prog. Part. Nucl. Phys., 47:141–201, 2001

▶ CTEQ5l
▶ LO evolution
▶ ⟨OJ/ψ

1 (3S1)⟩ = 1.16 GeV3

▶ d σ̂ at α2
s

▶ Fleming: PhD thesis, 1995

▶ MRS-D0
▶ LO evolution∗ [only diagonal splitting

functions Pii ]

▶ ⟨OJ/ψ
1 (3S1)⟩ = 1.00 GeV3

▶ ⟨OJ/ψ
8 (3S1)⟩ = 0.02 GeV3

▶ d σ̂ at α2
s
∗

[dσ̂c at α3
s ]

▶ Artoisenet, Lansberg, Maltoni:

Phys. Lett. B, 653:60–66, 2007

▶ MRS-D0
▶ No evolution!
▶ ⟨OJ/ψ

1 (3S1)⟩ = 1.16 GeV3

▶ d σ̂ at α2
s
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More recent data comparisons
Bodwin et. al.; Phys.Rev.D 93 (2016) 3, 034041, Phys.Rev.D 92 (2015) 7, 074042

▶ LP+NLO: FFNS 1S
[1]
1 +

matched FFNS and LP 3P
[8]
J , 3S

[8]
1 , 1S

[8]
0

▶ LP/ZM-VFNS:
▶ d σ̂ at α3

s

▶ DQ
i at α2

s

▶ LO evolution/LL resummation

▶ FFNS:
▶ d σ̂ at α4

s 23 / 28



Matching Scheme Bodwin et. al.; Phys.Rev.D 93 (2016) 3, 034041, Phys.Rev.D 92 (2015) 7, 074042

▶ In order to describe the whole pT region one should combine the FFNS
and ZM-VFNS contributions

▶ However, there is a double counting between the FFNS and ZM-VFNS
▶ This double counting is removed by introducting a matching term

▶ Let us sketch out what this matching term looks like taking the example

of the g → Q(3S
[8]
1 ) at Leading order

dσLP+NLO = dσZM-VFNS︸ ︷︷ ︸
α2
s⊗α2

s

+ dσFFNS︸ ︷︷ ︸
α3
s

−dσmatching

▶ Double counting is O(α3
s )

▶ Matching term is the O(α3
s ) component of the ZM-VFNS contribution

without evolution
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Q polarisation at large PT

Phys.Rept. 889 (2020) 1-106, Phys. Rev. D 96, 094016 (2017)

▶ dN
d cos θ ∝ 1 + λθ cos

2 θ where λθ =
1/2σT−σL
1/2σT+σL

▶ λθ = +1 transverse; λθ = −1 longitudinal; λθ = 0 unpolarised
▶ Fixed Flavour Number Scheme results:

▶ transversely polarised at LO
▶ longitudinaly polarised at NLO, NNLO∗

▶ What about FF? 3S
[1]
1 FF at µ0

▶ z = 0.1: λθ ≈ −0.1 and z = 0.9: λθ ≈ 0.4
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Q in jet and fragmentation functions

See talk of Paul Caucal on Monday
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Available computing tools for the study of fragmentation
functions

▶ Fragmentation function evolution (LHAPDF grid format):
▶ APFEL++ (https://github.com/vbertone/apfelxx)

▶ Input: zDQ
i (z , µ0)

▶ Must be a continuous function

▶ MELA (https://github.com/vbertone/MELA)

▶ Input: D̃Q
i (N, µ0)

▶ Can be discontinuous (e.g. contain δ functions/plus distributions)

▶ Tools for phenomenological studies:
▶ INCNLO (https://lapth.cnrs.fr/PHOX_FAMILY/readme_inc.html)

▶ FMNLO (https://fmnlo.sjtu.edu.cn/)
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Conclusion

▶ Fragmentation functions (FF) appear as a natural description of
heavy-hadron production for pT ≫ mQ

▶ It is believed that Q FF can be computed within the NRQCD framework
modulo the LDMEs

▶ There is no existing phenomenology for NLP (double parton) FF evolution is

complicated

▶ What is the relative size of the evolved LP and NLP contributions?

▶ LP FF should be sufficient to describe latest ATLAS data, which extends
up to 360 GeV Eur.Phys.J.C 84 (2024) 169, 2024 (in this region we assume σLP ≫ σNLP)

▶ Large-pT observables can be described using Q FF
▶ Isolated Q
▶ Q in jets
▶ Q polarisation
▶ ...

▶ We are currently re-examining existing phenomenology with LP FF

28 / 28



Backup
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Example: computation of g → J/ψ(3S
[8]
1 ) FF using

Collins-Soper definition I

1. Compute Amplitude on LHS of cut line: [eikonal coupling]

Aνα = −iδab [gνα(n · k)− pνnα]
(
igµϵγαT b

)

30 / 28



Example: computation of g → J/ψ(3S
[8]
1 ) FF using

Collins-Soper definition II

2. Contract with colour and spin projector:

Tr
[
AναΠ

c
8Π

δ
1

]
,

Πc
8 =

√
2T c , Πδ1 =

1

4m2
Q

(
��pQ
2

−mQ

)
γδ

(��pQ + 2mQ)

4mQ

(
��pQ
2

+mQ

)
3. Compute amplitude square:

|A|2 = Tr
[
AναΠ

c
8Π

δ
1

] (
Tr

[
Aν′α′Πc ′

8 Π
δ′
1

])†
Πδδ′δ

cc ′(−gνν′)δ
aa′

▶ Πδδ′δ
cc′ : colour and spin polarisation of QQ̄

[
3S

[8]
1

]
▶ (−gνν′)δaa

′
: contract eikonal indicies
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Example: computation of g → J/ψ(3S
[8]
1 ) FF using

Collins-Soper definition III

4. Integrate over phase space and multiply by normalisation factors:

D
J/ψ[3S

[8]
1 ]

g (z , µ0) =
NCS

k4
|A|2dϕ0

⟨OJ/ψ
8 (3S1)⟩

(D − 1)(N2
c − 1)

▶ dϕ0 =
8πmQ

k·n δ(1− z): normalisation of 0-body phase space

▶ NCS = zD−3

(N2
c−1)(k·n)2π(D−2) : Collins-Soper normalisation

▶ k4 = (2mQ)
4: off-shellness of fragmenting gluon

▶ ⟨OJ/ψ
8 (3S1)⟩: LDME

▶ (D − 1)(N2
c − 1): spin and colour averaging

to obtain final expression at µ0 ∼ 2mc :

D
J/ψ[3S

[8]
1 ]

g (z , µ0) = δ(1− z)
παs(µ0)

24m3
Q

⟨OJ/ψ
8 (3S1)⟩
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When is σFFNS ≲ σZM-VFNS?
Phys.Rev.Lett. 71 (1993) 1673-1676

▶ At what values of pT does the fragmentation function contribution become

important?
▶ i.e. for what value of pT does this hold:

dσgg→gηc

dt
≈ dσgg→gg

dt
× Pg→ηc (4)

▶ In the limit mc → 0 and ŝ = 4p2
T

dσgg→gηc

dt
=

81πα3
s |R(0)|2

256Mηcp
6
T

&
dσgg→gg

dt
=

243πα2
s

128p4
T

▶ The probability for a gluon to decay to ηc is given by:

Pg→ηc =

∫ 1

0

dzDηc
g (z , µ0) =

1

9π
α2
s (µ0)

|R(0)|2

M3
ηc

Dηc
g (z , µ0) =

1

3π
α2
s (µ0)

|R(0)|2

M3
ηc

(
3z − 2z2 + 2(1− z) log(1− z)

)
▶ Hence we find eq(4) holds for pT ≈ 3Mηc
▶ For J/ψ we find pT ≈ 2MJ/ψ

▶ From these arguments FF can be used for pT ≳ O(10 GeV)
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Slide couresy of Yelyzaveta Yedelkina
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