UPC and far-forward detection

Ronan McNulty Quarkonia as Tools, Aussois, Jan 6-10 2024

Overview

- Introduction to UPC
- (Comments on Odderon at LHC)
- Search for saturation
- Far-forward detection in UPC

pp collision

Most collisions at the LHC, pp, pA, AA have enormous multiplicities due to colour flow. However, when colourless propagators are involved, multiplicities are low and events have large **rapidity gaps**.

UPC J/ ψ at forward rapidity in ALICE PbPb data

(from Evgeny Kryshen talk at INT workshop)

It's QCD – but not as we normally see it. It's colour-free

Central Exclusive Production

Central Exclusive Production

Colourless propagators

Hadron colliders: Generally, to ensure no (colourful) QCD interaction, $d > R_1 + R_2$ (1.5 - 6 fm).

Large impact parameter \leftrightarrow Small p_T

Electron-hadron collider: ~70% of total cross-section is diffractive

UPC and far-forward detection

Odderon search: partner of pomeron

C-odd

C-even meson

Method 1: High p_T exclusive C- production

Proton dissociation b~1 GeV⁻²

Odderon b small

Odderon contribution might be 1-10% at LHC and would dominate at high p_T ….. but experimentally this is difficult to see

14 Angular distribution of muons due to polarisation may also differ (R. Schnicker) UPC and far-forward detection

Method 2: Photoproduction of C+

Czyzewski, Kwiecinski, Motyka, PLB398 (1997) 400. Berger, Donnachie, Dosch, Kilian, Nachtmann, EPJ C9 (1999) 491. Ryskin EPJ C2 (1998) 339. Kilian & Nachtmann, EPJ C5 (1998) 317. Harland-Lang, Khoze, Martin, Ryskin PRD 99 (2019) 3, 034011

Acta Phys. Polon. B33, 3499 (2002). (Conference proceeding.)

Might be seen forward in p-Pb / PbPb

(Role of survival factors and nuclear break-up important here)

Gluon recombination (saturation)

Fractional momentum of the parton

Energy Scale

Ridzikova Alexandra FNSPE CTU PRAGUE

Photoproduction

Photoproduction

- Rise in σ related to Pomeron intercept
	- \circ σ ~ Μδ
	- \circ δ=4(α_P(t)-1) \circ α_P(t)=α_P(0)+α't
- Compare slopes ρ,ω,ϕ to J/ψ,ψ',ϒ
- Extract $g(x,Q^2)$

low-x

600

500

400

300

200

100

 $[up] (d \uparrow \! \uparrow \! \downarrow \! \rightarrow \! \uparrow \! \uparrow)$

Implications: Saturation

Saturation effects become visible at low-x. Onset of saturation expected to scale with nucleon density $\sim A^{1/3}$ so **may be easier to see in nuclear collisions**

Saturation is not inconsistent with the data, but is also not required.

UPC and far-forward detection

Looking for saturation in nuclear collisions

Coherent interaction: all nucleons behave as one.

- $b \sim 2R = 13.2$ fm so $p_T \sim 15$ MeV
- nucleus remains intact*.

*additional EMD can excite or break nucleus

All things being equal, $\sigma_{\gamma A \rightarrow VA} = N_A \sigma_{\gamma p \rightarrow Vp}$

Saturation would decrease cross-section at high-W (low-x) Nuclear suppression observed...

How much is due to saturation and how much to 'nuclear effects'?

Incoherent interaction with nucleon or parton

- p_T distribution follows exp(bt) b smaller than for coherent
- break-up is observed
- sensitive to smaller structures saturation gives deviations from isotropy.

Coherent J/ ψ in PbPb

H. Mäntysaari, F. Salazar, B. Schenke: Phys.Rev.D 109 (2024) 7, L071504

"We predict strong saturationdriven nuclear suppression at high energies, while LHC data prefers even stronger suppression."

S. Klein, J. Nystrand, Physics Today 70,

However, away from y=0, there is a two-fold ambiguity in the photon emitter and two-fold ambiguity in the value of W.

$$
\frac{d\sigma_{PbPb\rightarrow PbJ/\psi Pb}}{dy}=\left(k\frac{dN_{\gamma}}{dk}\right)^{+}\sigma_{\gamma Pb\rightarrow J/\psi Pb}(W^{+})+\left(k\frac{dN_{\gamma}}{dk}\right)^{-}\sigma_{\gamma Pb\rightarrow J/\psi Pb}(W^{-})
$$

UPC and far-forward detection

Electromagnetic 'pile-up' interactions

The electromagnetic field of the nucleus is so intense that long-range photon interactions often occur in addition to hadronic interactions.

Excites the nucleus.

Can lead to Electomagnetic Dissociation (EMD) of the nucleus. **This is more probable at low impact parameter,** *b***, and photon flux depends on** *b*

Emission of one or more neutrons

- Possibly proton emission too
- Nuclear break-up

Need far-forward detectors to see these.

UPC and far-forward detection 25

ZDC calorimeters installed in CMS, ALICE, STAR

Detection of neutrons when ion breaks up allows identification of Electromagnetic Dissociation (EMD)

Resolving the two-fold ambiguity in PbPb

EMD is more likely at small impact parameters. So fluxes for 0n and (X>=1)n different.

R

oldy

 Ω

 0.6

 0.4

 0.2

 0.0

UPC and far-forward detection

Re-expressed in terms of nuclear Suppression factors

None of the models does a perfect job. QCD/Starlight not too bad. Models with saturation also reasonable

UPC and far-forward detection

28

The case for saturation....

Comment: Would be nice to plot LTA too

Results may be similar, which begs the question about how to separate saturation from higher-order QCD effects.

Require precise photon fluxes for 0,1,2... neutron emissions

Comput.Phys.Commun. 253 (2020) 107181 Calculated eg. in NooN generator

Emission of neutrons

Analysis for rho photoproduction just considered 00, 0X, X0, XX emissions.

But you can count the number of neutrons on either side....

Cross-section for emission of just neutrons

Vetoing on the response in the proton ZDC....

(Validation of the models used for the photoproduction analysis)

Emission of protons

You can count the number of protons on either side....

Cross-section for emission of *k* protons and >0 neutrons

Cross-section for emission of *k* protons and >0 neutrons

Thus turning lead into gold....

Conclusions

- Far forward detection at the LHC allows first measurements of EDM of Pb nuclei
- Can then be used as a tool to lift the twofold ambiguity in symmetric collisions
- Relate photoproduction on the proton to photoproduction on the nucleus
-and search for saturation

backup

UPC and far-forward detection 38

Incoherent scatters also interesting

Intact target: sensitive to **average** colour Breakup: sensitive to fluctuations (**rms**)

$$
\begin{aligned} \frac{\mathrm{d}\sigma^{\gamma^*p\rightarrow J/\Psi p}}{\mathrm{d}t} &= \frac{1}{16\pi} \left| \langle A(x_\mathbb{P}, Q^2, \boldsymbol{\Delta}) \rangle \right|^2 \\ \frac{\mathrm{d}\sigma^{\gamma^*N\rightarrow J/\Psi N^*}}{\mathrm{d}t} &= \frac{1}{16\pi} \left(\left\langle \left| A(x_\mathbb{P}, Q^2, \boldsymbol{\Delta}) \right|^2 - \left| \langle A(x_\mathbb{P}, Q^2, \boldsymbol{\Delta}) \rangle \right|^2 \right) \right. \end{aligned}
$$

Mäntysaari, Schenke, Phys. Rev. Lett. 117, 052301 (2016)

- Original model based on gluonic fluctuations around three hot-spots (valence quarks)
- Hot-spot evolution model (
- Energy-dependent hot-spots (J. Cepila, J. G. Contreras, J. D. Tapia Takaki Phys. Lett. B766 (2017) 186–191)
- The onset of saturation? (J. Cepilaa, J. G. Contrerasa, M. Matasa, A. Ridzikova, arXiv:2313.11320)

CMS-TOTEM: Simultaneous reconstruction of central system and protons

arXiv:2401.14494

Precision determination of pomerons interactions

Shape distinctive of interference due to additional pomeron interactions

Measurements performed in non-resonant regions: (<0.7, >1.8 GeV).

Eagerly await compelling spectroscopy of the complicated resonance region:

- photoproduced ρ , ω , ρ' , ρ''
- DPE f0,f2, , glueball candidates