Quarkonia production in AA collisions

Stéphane Delorme (University of Silesia)

Quarkonia as Tools 2025

Quarkonium suppression

- \blacktriangleright Matsui & Satz (1986): Sequential suppression
- ▶ Quarkonium states have different binding energies ⇒ Different dissociation temperatures
- Quarkonia viewed as thermometer

$$
R_{\text{AA}} = \tfrac{N_{\text{AA}}}{\langle N_{\text{coll}} \rangle N_{\text{pp}}}
$$

Spectral functions

[S. Kim,P. Petreczky, A. Rothkopf \(2018\)](https://link.springer.com/article/10.1007/JHEP11(2018)088)

- ▶ Encode in-medium properties of quarkonia
- Broadening of the peaks
- Mass shifts

Screening

 $T \neq 0 \rightarrow$ Suppression of color attraction

Melting of pairs at high T ⇒ Suppression

Screening?

- \blacktriangleright Reconstruction of spectral functions heavily dependent on the extraction strategy
- \blacktriangleright Different extraction, using a Lorentzian parametrization
- ▶ No screening observed!
- Which picture is correct?

[A. Bazavov et al. \(HotQCD Collaboration\) \(2024\)](https://journals.aps.org/prd/abstract/10.1103/PhysRevD.109.074504)

Dynamical effects

- \triangleright Collisions with medium partons
	- \rightarrow Pair dissociation
	- ⇒ Suppression

Often described by an imaginary potential

Dynamical effects

[A. Bazavov et al. \(HotQCD Collaboration\) \(2024\)](https://journals.aps.org/prd/abstract/10.1103/PhysRevD.109.074504)

$$
\rho_r^{\text{peak}}(\omega, T) = \frac{1}{\pi} \text{ Im } \frac{A_r(T)}{\omega - \text{Re } V(r, T) - i\Gamma(\omega, r, T)}
$$

- ▶ Same lattice extraction
- No saturation observed at higher temperatures
- \blacktriangleright No screening, but stronger imaginary part?

Recombination

- ▶ Picture more complex
- \blacktriangleright Higher energy \rightarrow more pairs produced ⇒ Recombination
- \blacktriangleright Effect that cannot be neglected at LHC energies

Recombination

Bottomonia Charmonia

- Low amount of $b\bar{b}$ pairs
- Only quarks initially close to each other will lead to bottomonia states
- Full quantum treatment possible

- ▶ High amount of *cc*¯ pairs
- Recombination can also happen from originally uncorrelated quarks
- Full quantum treatment out of reach

- \blacktriangleright When does recombination happens?
- Different models and viewpoints

Models

▶ 3 main classes of models aim to describe quarkonia in AA

Statistical Hadronization

- \blacktriangleright Classical quarkonium
- \blacktriangleright No in-medium bound states
- \triangleright Only generated at the phase boundary

Transport

- \blacktriangleright (Semi)classical quarkonium
- \triangleright Dissociation and recombination during QGP phase

Open Quantum Systems

- \blacktriangleright Fully quantum quarkonium
- ▶ Dissociation and (diagonal) recombination during QGP phase

Models

Eur. Phys. J. A. (2024) 60:88 https://doi.org/10.1140/epia/s10050-024-01306-6

Review

Comparative study of quarkonium transport in hot OCD matter

A. Andronic^{1,a}, P. B. Gossiaux^{2,b}, P. Petreczky^{3,c}, R. Rapp^{4,d}, M. Strickland^{5,e}, J. P. Blaizot⁶, N. Brambilla⁷, P. Braun-Munzinger^{8,9}, B. Chen¹⁰, S. Delorme¹¹, X. Du¹², M. A. Escobedo^{13,12}, E. G. Ferreiro¹², A. Jaiswal¹⁴, A. Rothkonf¹⁵, T. Song⁸, J. Stachel⁹, P. Vander Griend¹⁶, R. Vogt¹⁷, B. Wu⁴, J. Zhao², X. Yao¹⁸

¹ Institut für Kernphysik, Universität Münster, Münster, Germany

- ² SUBATECH IMT Atlantique Nantes Université CNRS-IN2P3 Nantes France
- ³ Physics Denartment, Brookhaven National Laboratory, Unton, USA
- ⁴ Cyclotron Institute and Department of Physics and Astronomy. Texas A&M University, College Station, USA

⁵ Kent State University, Kent, USA

⁶ CEA Saclay, Saclay, France

- ⁷ TUM School of Natural Sciences, Technical University of Munich, Munich, Germany
- ⁸ Research Division and EMMI, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
- ⁹ Physikalisches Institut, Runrecht-Karls-Universität Heidelberg, Heidelberg, Germany
- ¹⁰ Tianiin University, Tianiin, China
- ¹¹ IFJ-PAN, Krakow, Poland
- ¹² IGFAE, University of Santiago de Compostela, Santiago, Spain
- ¹³ Universitat de Barcelona i Institut de Ciències del Cosmos, Barcelona, Spain
- ¹⁴ National Institute of Science Education and Research, An OCC of Homi Bhabha National Institute, Jatni 752050, India
- ¹⁵ University of Stavanger, Stavanger, Norway
- ¹⁶ University of Kentucky and Fermilab. Lexington, USA
- ¹⁷ LLNL and UC Davis, Davis, USA
- ¹⁸ InOubator for Ouantum Simulation, Department of Physics, University of Washington, Scattle, WA 98195, USA
- ▶ Review from the EMMI Rapid Reaction Task Force
- \blacktriangleright Global comparison of models

Statistical Hadronization Model

- Assumes that all heavy quarks are produced in primary hard collisions and thermalize.
- ▶ Yield *N_{cc}* computed in NLO pQCD for pp collisions and then scaled to AA collisions.

 $N_{c\bar{c}}^{dir} = \frac{1}{2}$ $\frac{1}{2} g_c N_{oc}^{th} \frac{I_1(g_c N_{oc}^{th})}{I_0(g_c N_{oc}^{th})}$ $\frac{I_1(g_cN^{\omega_c}_{g_c})}{I_0(g_cN^{\theta_c}_{g_c})}+g_c^2N^{\textit{th}}_{c\bar{c}}\quad g_c$: fugacity parameter

Statistical Hadronization Model

- Similar formalism for bottomonia
- Investigation of the potential partial thermalization of bottom quarks

 \blacktriangleright Around 30% of b quarks aren't thermalized (lower estimate)

Transport models

 \triangleright 2 main types of transport models Boltzmann

 $\rho^{\mu}\partial_{\mu}f_{\Psi} = -\alpha f_{\Psi} + \beta$

- $\blacktriangleright \alpha f_{\Psi}$: gluon-dissociation
- \triangleright β : regeneration
- Detailed balance
- \blacktriangleright Tsinghua model
- Can be obtained from open quantum systems (Duke-MIT)

Rate equation

$$
\tfrac{dN_\Psi(\tau)}{d\tau} = - \Gamma_\Psi(\,T(\tau)) \left[N_\Psi(\tau) - N_\Psi^{\text{eq}}(\,T(\tau)) \right]
$$

- \blacktriangleright Γ_w : dissociation rate
- $\blacktriangleright N_v^{eq}$ $\mathcal{L}_{\Psi}^{\text{eq}}$: equilibrium limit
- **TAMU model**

Transport models

 \triangleright Transport models reproduce well recent experimental data from ALICE

Open quantum systems

- \triangleright System (\overline{QQ}) in interaction with an environment (QGP)
- \triangleright System building correlation with the environment over time
- \blacktriangleright *H* = *H*₀ + *H*_{oGP} + *H*_{int}

Open quantum systems

Lindblad equation

▶ Case of a Markovian time-evolution \Rightarrow Lindblad equation

$$
\frac{\mathrm{d}}{\mathrm{d}t}\rho_{Q\bar{Q}}(t) = -i[H_{Q\bar{Q}},\rho_{Q\bar{Q}}(t)] + \sum_{i}\gamma_{i}\Big[L_{i}\rho_{Q\bar{Q}}(t)L_{i}^{\dagger} - \frac{1}{2}\Big\{L_{i}L_{i}^{\dagger},\rho_{Q\bar{Q}}(t)\Big\}\Big]
$$

 H_{Ω} \bar{Q} kinetics + vacuum potential V + screening

Li : Collapse operators (or dissipators), depend on the properties of the medium

$$
\langle n|\rho_{Q\bar{Q}}|n\rangle \ge 0 \,\forall n \qquad \rho_{Q\bar{Q}}^{\dagger} = \rho_{Q\bar{Q}} \qquad \text{Tr}\left[\rho_{Q\bar{Q}}\right] = 1
$$
\n(Positivity)

\n(Hermiticity)

\n(Norm conservation)

\nCan be turned into a Stochastic Schrödinger Equation

[Stéphane Delorme - QaT2025 - January 10](#page-0-0)th 2025 17/26

Timescales

- ▶ 3 relevant timescales:
- \blacktriangleright τ _R : system relaxation time
	- $\tau_R = \frac{1}{\Gamma} \sim \frac{1}{\alpha_s T}$
- \blacktriangleright τ _F : environment autocorrelation time
	- \bullet $\tau_E \sim \frac{1}{m_D} \approx \frac{1}{CT}$ $C \approx 2$
- \triangleright τ_S : system intrinsic time
	- \bullet $\tau_S \sim \frac{1}{E_{\textit{bina}}}$
- **► Markovianity realized if** τ ≤ τ _{*R*} (environment correlation losing memory during the system relaxation)
- ▶ Hierarchy between scales leads to different temperature regimes

Temperature regimes

How to deal with the transition regime?

Schematic view

Overview

▶ 3 main ways of solving QMEs

- ▶ Approaches either using NRQCD (Nantes-Saclay, Osaka) or pNRQCD (TUM-KSU, Duke-MIT)
- ▶ Almost all in Quantum Brownian regime, with the exception of Duke-MIT

Overview

\blacktriangleright Not fully exhaustive

Nantes-Saclay approach

▶ NRQCD formalism in the Quantum Brownian regime in 1D

 $\frac{d}{dt}\begin{pmatrix} \mathcal{D}_s \\ \mathcal{D}_o \end{pmatrix}$ D*^o* $= \mathcal{L}\left(\frac{\mathcal{D}_s(\mathbf{s}, \mathbf{s}', t)}{\mathcal{D}(\mathbf{s}, \mathbf{s}', t)}\right)$ $\mathcal{D}_o(\mathbf{s}, \mathbf{s}', t)$ \setminus

$$
\mathcal{L} = \begin{pmatrix} \mathcal{L}_{ss} & \mathcal{L}_{so} \\ \mathcal{L}_{os} & \mathcal{L}_{oo} \end{pmatrix}
$$

- Assume screening of potential
- Different medium configurations and initial states
- \triangleright Application to $c\overline{c}$ and $b\overline{b}$
	- \cdot $b\overline{b}$: Phenomenological study using EPOS4
	- *cc* : Benchmark for semi-classical treatment (see Pol's talk)

$$
\mathcal{L}_{0}\mathcal{D} = -i[H_{Q}, \mathcal{D}]
$$
\n
$$
\mathcal{L}_{1}\mathcal{D} = -\frac{i}{2} \int_{xx'} V(x - x') [n_{x}^{a} n_{x'}^{a}, \mathcal{D}]
$$
\n
$$
\mathcal{L}_{2}\mathcal{D} = \frac{1}{2} \int_{xx'} W(x - x') (\{n_{x}^{a} n_{x'}^{a}, \mathcal{D}\} - 2n_{x}^{a} \mathcal{D} n_{x'}^{a}) \text{ Fluctuations}
$$
\n
$$
\mathcal{L}_{3}\mathcal{D} = -\frac{i}{4T} \int_{xx'} W(x - x') \left(\{n_{x}^{a} \mathcal{D} n_{x'}^{a} - n_{x}^{a} \mathcal{D} n_{x'}^{a} + \frac{1}{2} \{ \mathcal{D}, [\{n_{x}^{a}, n_{x'}^{a}]\} \right)
$$
\n
$$
\mathcal{L}_{4}\mathcal{D} = \frac{1}{32T^{2}} \int_{xx'} W(x - x') (\{n_{x}^{a} n_{x'}^{a}, \mathcal{D}\} - n_{x}^{a} \mathcal{D} n_{x'}^{a})
$$
\nDissipation
\nPositivity preservation

[J.-P. Blaizot, M. A. Escobedo \(2018\)](https://link.springer.com/article/10.1007/JHEP06(2018)034)

[R.Katz, S.Delorme, P.-B. Gossiaux \(2022\)](https://link.springer.com/article/10.1140/epja/s10050-022-00846-z)

[S. Delorme et al. \(2024\)\)](https://link.springer.com/article/10.1007/JHEP06(2024)060)

Nantes-Saclay approach

No dipole approx: can model the pair at finite distance

- Initial singlet in-medium 1S state at $T = 300$ MeV
- Octet populated via dipolar transitions
- Repulsive octet potential ⇒ delocalization
- Delocalization in singlet channel via transitions
- Surviving central peak in singlet channel

Nantes-Saclay approach

- ▶ 2S and 1P states generated during the evolution
- Faster evolution with increasing T
- \triangleright Close asymptotic values as T increases (D*^s* nearly diagonal)

Conclusion

- \triangleright The finite-temperature potential encodes the in-medium properties of quarkonia. Recent work points to a non-screened real part and a stronger imaginary part.
- \triangleright Several models aim at describing the evolution of quarkonia in the Quark-Gluon Plasma.
- \triangleright The statistical hadronization model and transport models can reproduce fairly well experimental data
- ▶ Open Quantum Systems models aim at developing a real-time evolution framework from first principles, including all quantum effects.
- \triangleright Lots of progress made but important problems left to solve: treatment of multiple pairs, description of the transition regime