Quarkonia production in AA collisions

Stéphane Delorme (University of Silesia)

Quarkonia as Tools 2025

Quarkonium suppression

- Matsui & Satz (1986): Sequential suppression
- Quarkonium states have different binding energies
 Different dissociation temperatures
- Quarkonia viewed as thermometer

$$R_{AA} = rac{N_{AA}}{\langle N_{
m coll}
angle N_{
m pp}}$$

Spectral functions

S. Kim, P. Petreczky, A. Rothkopf (2018)

- Encode in-medium properties of quarkonia
- Broadening of the peaks
- Mass shifts

Screening

ReV [GeV] 6 54 3 • $T=0.86T_C$ • $T=0.95T_C$ • $T=1.06T_C$ • $T=1.19T_C$ • $T=1.34T_C$ • $T=1.41T_C$ • $T=1.66T_{C}$ 0 ŏ.0 1.50.51.0D. Lafferty, A. Rothkopf (2020)

 $T \neq 0 \rightarrow$ Suppression of color attraction

Melting of pairs at high T \Rightarrow Suppression

Screening?

- Reconstruction of spectral functions heavily dependent on the extraction strategy
- Different extraction, using a Lorentzian parametrization
- No screening observed!
- Which picture is correct?

A. Bazavov et al. (HotQCD Collaboration) (2024)

Dynamical effects

- Collisions with medium partons
 - \rightarrow Pair dissociation
 - \Rightarrow Suppression

Often described by an imaginary potential

Dynamical effects

A. Bazavov et al. (HotQCD Collaboration) (2024)

$$ho_r^{ ext{peak}}(\omega, \mathcal{T}) = rac{1}{\pi} \operatorname{Im} rac{A_r(\mathcal{T})}{\omega - \operatorname{Re} V(r, \mathcal{T}) - i \Gamma(\omega, r, \mathcal{T})}$$

- Same lattice extraction
- No saturation observed at higher temperatures
- No screening, but stronger imaginary part?

Recombination

- Picture more complex
- ► Higher energy → more pairs produced ⇒ Recombination
- Effect that cannot be neglected at LHC energies

Recombination

Bottomonia

- ▶ Low amount of *bb* pairs
- Only quarks initially close to each other will lead to bottomonia states
- Full quantum treatment possible

Charmonia

- High amount of $c\bar{c}$ pairs
- Recombination can also happen from originally uncorrelated quarks
- Full quantum treatment out of reach

- When does recombination happens?
- Different models and viewpoints

Models

3 main classes of models aim to describe quarkonia in AA

Statistical Hadronization

- Classical quarkonium
- No in-medium bound states
- Only generated at the phase boundary

Transport

- (Semi)classical quarkonium
- Dissociation and recombination during QGP phase

Open Quantum Systems

- Fully quantum quarkonium
- Dissociation and (diagonal) recombination during QGP phase

Models

Eur. Phys. J. A (2024) 60:88 https://doi.org/10.1140/epja/s10050-024-01306-6

Review

Comparative study of quarkonium transport in hot QCD matter

A. Andronic^{1,a}, P. B. Gossiaux^{2,b}, P. Petreczky^{3,c}, R. Rapp^{4,d}, M. Strickland^{5,e}, J. P. Blaizof⁶, N. Frambilla⁷, P. Braun-Munzinge^{6,9}, B. Chen¹⁰, S. Delorme¹¹, X. Du¹³, M. A. Escobedo^{3,12}, E. G. Ferreiro¹², A. Jaiswal⁴, A. Rothkop¹⁷, T. Song², J. Stache⁰, P. Vander Griend⁶, N. Vogl¹⁷, B. Wu⁴, J. Zhao³, X. Yao¹⁸

Institut für Kernphysik, Universität Münster, Münster, Germany

- ² SUBATECH, IMT Atlantique, Nantes Université, CNRS-IN2P3, Nantes, France
- ³ Physics Department, Brookhaven National Laboratory, Upton, USA
- ⁴ Cyclotron Institute and Department of Physics and Astronomy, Texas A&M University, College Station, USA

5 Kent State University, Kent, USA

6 CEA Saclay, Saclay, France

- ⁷ TUM School of Natural Sciences, Technical University of Munich, Munich, Germany
- ⁸ Research Division and EMMI, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
- ⁹ Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
- 10 Tianjin University, Tianjin, China
- 11 IFJ-PAN, Krakow, Poland
- 12 IGFAE, University of Santiago de Compostela, Santiago, Spain
- ¹³ Universitat de Barcelona i Institut de Ciències del Cosmos, Barcelona, Spain
- ¹⁴ National Institute of Science Education and Research, An OCC of Homi Bhabha National Institute, Jatni 752050, India
- 15 University of Stavanger, Stavanger, Norway
- ¹⁶ University of Kentucky and Fermilab, Lexington, USA
- 17 LLNL and UC Davis, Davis, USA
- ¹⁸ InQubator for Quantum Simulation, Department of Physics, University of Washington, Seattle, WA 98195, USA

- Review from the EMMI Rapid Reaction Task Force
- Global comparison of models

Statistical Hadronization Model

- Assumes that all heavy quarks are produced in primary hard collisions and thermalize.
- > Yield $N_{c\bar{c}}^{dir}$ computed in NLO pQCD for pp collisions and then scaled to AA collisions.

 $N_{car{c}}^{dir}=rac{1}{2}g_cN_{cc}^{th}rac{l_1(g_cN_{cc}^{th})}{l_0(g_cN_{cc}^{th})}+g_c^2N_{car{c}}^{th}$ g_c : fugacity parameter

Statistical Hadronization Model

- Similar formalism for bottomonia
- Investigation of the potential partial thermalization of bottom quarks

Around 30% of b quarks aren't thermalized (lower estimate)

Transport models

2 main types of transport models
 Boltzmann

 $\boldsymbol{\rho}^{\mu}\partial_{\mu}\boldsymbol{f}_{\Psi} = -\alpha\boldsymbol{f}_{\Psi} + \beta$

- ▶ αf_{Ψ} : gluon-dissociation
- \blacktriangleright β : regeneration
- Detailed balance
- Tsinghua model
- Can be obtained from open quantum systems (Duke-MIT)

Rate equation

$$rac{d \mathsf{N}_{\Psi}(au)}{d au} = -\mathsf{\Gamma}_{\Psi}(\mathcal{T}(au)) \left[\mathsf{N}_{\Psi}(au) - \mathsf{N}_{\Psi}^{eq}(\mathcal{T}(au))
ight]$$

- Γ_{Ψ} : dissociation rate
- \triangleright N_{Ψ}^{eq} : equilibrium limit
- TAMU model

Transport models

Transport models reproduce well recent experimental data from ALICE

Open quantum systems

- System (QQ) in interaction with an environment (QGP)
- System building correlation with the environment over time
- $\blacktriangleright H = H_0 + H_{QGP} + H_{int}$

Open quantum systems

Lindblad equation

 \blacktriangleright Case of a Markovian time-evolution \Rightarrow Lindblad equation

$$\frac{\mathrm{d}}{\mathrm{d}t}\rho_{Q\bar{Q}}(t) = -i\left[H_{Q\bar{Q}},\rho_{Q\bar{Q}}(t)\right] + \sum_{i}\gamma_{i}\left[L_{i}\rho_{Q\bar{Q}}(t)L_{i}^{\dagger} - \frac{1}{2}\left\{L_{i}L_{i}^{\dagger},\rho_{Q\bar{Q}}(t)\right\}\right]$$

 $H_{Q\bar{Q}}$: $Q\bar{Q}$ kinetics + vacuum potential V + screening

 L_i : Collapse operators (or dissipators), depend on the properties of the medium

$$\langle n | \rho_{Q\bar{Q}} | n \rangle \ge 0 \ \forall \ n \qquad \rho_{Q\bar{Q}}^{\dagger} = \rho_{Q\bar{Q}} \qquad \text{Tr} \left[\rho_{Q\bar{Q}} \right] = 1$$
(Positivity) (Hermiticity) (Norm conservation)

Can be turned into a Stochastic Schrödinger Equation

Stéphane Delorme - QaT2025 - January 10th 2025

Timescales

- 3 relevant timescales:
- > τ_R : system relaxation time
 - $\tau_R = \frac{1}{\Gamma} \sim \frac{1}{\alpha_s T}$
- > τ_E : environment autocorrelation time
 - $au_E \sim rac{1}{m_D} pprox rac{1}{CT}$ C pprox 2
- ▶ τ_S : system intrinsic time
 - $au_{\mathcal{S}} \sim rac{1}{E_{bind}}$
- ► Markovianity realized if $\tau_E \ll \tau_R$ (environment correlation losing memory during the system relaxation)
- Hierarchy between scales leads to different temperature regimes

Temperature regimes

m _D « E _{bind}	$m_D \sim E_{bind}$	$m_D \gg E_{bind}$ ~	<i>m_Q</i> ⊤		
$ au_{E} \ll au_{R}$ $ au_{S} \ll au_{R}$	Transition regime	$ au_{E} \ll au_{R} \ au_{E} \ll au_{S}$	Relativistic		
Quantum optical regime		Quantum brownian regime			
 Well identified states 		 Broader states 			
Long quantum decoherence	e time	 Short quantum decoherence time 			
 Realm of transport models 		▶ QME for Q and \overline{Q}			
► Classical limit → Boltzmann/Rate equatio	ns	► Classical limit → Fokker-Plank equations			

How to deal with the transition regime?

Schematic view

Overview

► 3 main ways of solving QMEs

- Approaches either using NRQCD (Nantes-Saclay, Osaka) or pNRQCD (TUM-KSU, Duke-MIT)
- Almost all in Quantum Brownian regime, with the exception of Duke-MIT

Overview

regime	SU3 ?	Dissipation ?	3D / 1D	Num method	year	remark	ref
NRQCD ⇔ QBM	No	No	1D	Stoch potential	2018		Kajimotoet al. , Phys. Rev. D 97, 014003 (2018), 1705.03365
	Yes	No	3D	Stoch potential	2020	Small dipole	R. Sharma et al Phys. Rev. D 101, 074004 (2020), 1912.07036
	Yes	No	3D	Stoch potential	2021		Y. Akamatsu, M. Asakawa, S. Kajimoto (2021), 2108.06921
	No	Yes	1D	Quantum state diffusion	2020		T. Miura, Y. Akamatsu et al, Phys. Rev. D 101, 034011 (2020), 1908.06293
	Yes 🗸	Yes 🗸	1D	Quantum state diffusion	2021		Akamatsu & Miura, EPJ Web Conf. 258 (2022) 01006, 2111.15402
	No	Yes	1D	Direct resolution	2021		O. Ålund, Y. Akamatsu et al, Comput. Phys. 425, 109917 (2021), 2004.04406
	Yes 🧹	Yes 🧹	1D	Direct resolution	2022		S Delorme et al, https://inspirehep.net /literature/ 2026925
pNRQCD (i)	Yes	No	1D+	Direct resolution	2017	S and P waves	N. Brambilla et al, Phys. Rev. D96, 034021 (2017), 1612.07248
(i) Et (ii)	Yes	No	1D+	Direct resolution	2017	S and P waves	N. Brambilla et al, Phys. Rev. D 97, 074009 (2018), 1711.04515
(i)	Yes	No	Yes	Quantum jump	2021	See SQM 2021	N. Brambilla et al., JHEP 05, 136 (2021), 2012.01240 & Phys. Rev. D 104 (2021) 9, 094049, 2107.06222
(i)	Yes 🗸	Yes 🗸	Yes 🗸	Quantum jump	2022		N. Brambilla et al. 2205.10289
(iii)	Yes 🗸	Yes 🗸	Yes 🗸	Boltzmann (?)	2019		Yao & Mehen, Phys.Rev.D 99 (2019) 9, 096028, 1811.07027
NRQCD & « pNRQCD »	Yes	Yes	1D	Quantum state diffusion	2022		Miura et al. http://anxiv.org/abs/2205.15551v1
Other	No	Yes	1D	Stochastic Langevin Eq.	2016	Quadratic W	Katz and Gossiaux

► Not fully exhaustive

Nantes-Saclay approach

NRQCD formalism in the Quantum Brownian regime in 1D

 $\frac{d}{dt} \begin{pmatrix} \mathcal{D}_{s} \\ \mathcal{D}_{o} \end{pmatrix} = \mathcal{L} \begin{pmatrix} \mathcal{D}_{s}(\mathbf{s}, \mathbf{s}', t) \\ \mathcal{D}_{o}(\mathbf{s}, \mathbf{s}', t) \end{pmatrix}$

$$\mathcal{L} = egin{pmatrix} \mathcal{L}_{ss} & \mathcal{L}_{so} \ \mathcal{L}_{os} & \mathcal{L}_{oo} \end{pmatrix}$$

- Assume screening of potential
- Different medium configurations and initial states
- Application to $c\overline{c}$ and $b\overline{b}$
 - *bb* : Phenomenological study using EPOS4
 - cc : Benchmark for semi-classical treatment (see Pol's talk)

$$\begin{split} \mathcal{L}_{0}\mathcal{D} &= -i[H_{Q},\mathcal{D}] \\ \mathcal{L}_{1}\mathcal{D} &= -\frac{i}{2} \int_{xx'} V(x-x') \left[n_{x}^{a} n_{x'}^{a}, \mathcal{D} \right] \\ \mathcal{L}_{2}\mathcal{D} &= \frac{1}{2} \int_{xx'} W(x-x') \left(\left\{ n_{x}^{a} n_{x'}^{a}, \mathcal{D} \right\} - 2n_{x}^{a} \mathcal{D} n_{x'}^{a} \right) \text{ Fluctuations} \\ \mathcal{L}_{3}\mathcal{D} &= -\frac{i}{4T} \int_{xx'} W(x-x') \left(\dot{n}_{x}^{a} \mathcal{D} n_{x'}^{a} - n_{x}^{a} \mathcal{D} \dot{n}_{x'}^{a} + \frac{1}{2} \left\{ \mathcal{D}, \left[\dot{n}_{x}^{a}, n_{x'}^{a} \right] \right\} \right) \\ \mathcal{L}_{4}\mathcal{D} &= \frac{1}{32T^{2}} \int_{xx'} W(x-x') \left(\left\{ \dot{n}_{x}^{a} \dot{n}_{x'}^{a}, \mathcal{D} \right\} - \dot{n}_{x}^{a} \mathcal{D} \dot{n}_{x'}^{a} \right) \\ \text{Positivity preservation} \end{split}$$

J.-P. Blaizot, M. A. Escobedo (2018)

R.Katz, S.Delorme, P.-B. Gossiaux (2022)

S. Delorme et al. (2024))

Nantes-Saclay approach

 Initial singlet in-medium 1S state at T = 300 MeV

- Octet populated via dipolar transitions
- ► Repulsive octet potential ⇒ delocalization
- Delocalization in singlet channel via transitions
- Surviving central peak in singlet channel

No dipole approx: can model the pair at finite distance

Nantes-Saclay approach

- 2S and 1P states generated during the evolution
- Faster evolution with increasing T
- Close asymptotic values as T increases (D_s nearly diagonal)

Conclusion

- ► The finite-temperature potential encodes the in-medium properties of quarkonia. Recent work points to a non-screened real part and a stronger imaginary part.
- Several models aim at describing the evolution of quarkonia in the Quark-Gluon Plasma.
- The statistical hadronization model and transport models can reproduce fairly well experimental data
- Open Quantum Systems models aim at developing a real-time evolution framework from first principles, including all quantum effects.
- Lots of progress made but important problems left to solve: treatment of multiple pairs, description of the transition regime