Comparative study of resistive MPGD technologies

<u>Darina Zavazieva^{1,2}, Ilia Ravinovich², Luca Moleri²,</u>

Maryna Borysova², Edward Brendan Shields², Oz Arie²,

Michael Kwok Lam Chu², Shikma Bressler²

¹Ben Gurion University of the Negev ²Weizmann Institute of Science

The 8th International Conference on Micro Pattern Gaseous Detectors (MPGD2024) October 14— 18, 2024 Hefei, China

Single stage resistive MPGDs

- Single stage amplification
- Lower material budget, thinner structure
- Simpler power supplying scheme
- Resistive material to quench discharges energy and protect R/O electronics from discharge damage

Single stage resistive MPGDs

- Single stage amplification
- Lower material budget, thinner structure
- Simpler power supplying scheme
- Resistive material to quench discharges energy and protect R/O electronics from discharge damage
- Potentially a sampling element for digital hadronic calorimeters with fine 3D segmentation spin-off from to <u>RD51 Common project</u>, <u>MPGD2024 talk</u> given by Anna Stamerra

Single stage resistive MPGDs

- Single stage amplification
- Lower material budget, thinner structure
- Simpler power supplying scheme
- Resistive material to quench discharges energy and protect R/O electronics from discharge damage
- Potentially a sampling element for digital hadronic calorimeters with fine 3D segmentation spin-off from to <u>RD51 Common project</u>, <u>MPGD2024 talk</u> given by Anna Stamerra
- Variety of technologies
- So far, no systematic comparison in similar conditions and controlled environment
 - Same readout
 - Same p/T, humidity
 - Radiation source

Micromegas, MM

- Double DLC layer
- ~ 50 M Ω / \Box
- Grounding points through vias under the pillars

Micromegas, MM

- Double DLC layer
- ~ 50 M Ω / \Box
- Grounding points through vias under the pillars

uRWELL

- Single DLC layer
- ~ 100 M Ω / \Box
- Gounding lines between GEM HV sectors

Micromegas, MM

- Double DLC layer
- ~ 50 M Ω / \Box
- Grounding points through vias under the pillars

uRWELL

- Single DLC layer
- ~ 100 MΩ/□
- Gounding lines between GEM HV sectors

- Fe-dopped glass
- 2 GΩ·cm
- Grounding through pads with epoxy-graphite mixture

- Pad readout
 - 1×1 cm² pad area
 - 384 pads routed to three Hirose connectors
- 6 mm amplification gap drift
- Optimal* gas mixtures
 - MM, RPWELL: ArCO₂iC₄H₁₀ (93/5/2)
 - uRWELL: ArCO₂CF₄ (45/15/40) *based on previous studies

Methodology

- Common <u>VMM3a/SRS</u> readout system
 - Continuous acquisition mode
 - 3 mV/fC VMM gain
 - 200 ns shaping time
- Common analysis framework
 - Reference timestamp of the trigger, coincidence of three scintillators
 - Cluster timing defined as charge weighted cluster hits time
 - |dt| = |t_cluster t_trigger|
- Cosmic test bench in the lab
 - One detector at a time, power supply from DVMM through HDMIs
 - Efficiency defined relative to trigger time
- H4 SPS NA test beam (total 2688 channels)
 - External power supply for VMM hybrids
 - Tracking with RD51 telescope
 - Efficiency defined relative to trigger time and distance from track

Lab results

[presented in June 2024, at DRD1 collaboration meeting]

- Efficiency as a function of various parameters, e.g. amplification voltage
 - MM and RPWELL > 90%
 - uRWELL ~ 80%
 - dead area, observed with large statistics in the beam
- Time resolution estimation
 - Similar values for all technologies
 - uRWELL and MM slightly better due to smaller amplification gap
- Saturated signals
 - Imposed electronic dead time and effciency loss
 - Recovered by adjusting dt cut

H4 SPS NA Test Beam

- Common settings
 - 3 mV/fC gain
 - 200 ns shaping time
- Tracking triple GEMs
 - 3-4 mV peak-to-peak noise \rightarrow 40mV threshold
 - Neigbouring logic enabled
 - Tracking efficiency ~75%
- Tested detectors
 - 1 mV peak-to-peak noise \rightarrow 10 mV threshold
 - signal amplitude at the efficiency plateau > 220mV
 - \rightarrow factor of 5 above the threshold

Example of track accumulation in Hough space

Tracking software

- Two independent packages seeded with clusters
 - Standalone based on Hough Transform (<u>tb24-tracking</u>)
 - <u>Corrryvreckan</u>
- Consist of several steps
 - Event building associating cluster to trigger based on dt
 - Track reconstruction
 - Including tracking chambers alignment
 - Track interpolation to tested detectors' plane
- Similar tracking performance
- No effect on measured performance of tested detectors

Tracking detectors residuals after alignment and rotation fix in Corry

Analysis

• Cluster matching to a track within a given distance

Residuals obtained for tested detectors with Python script

- Tested detectors residuals dictated by the pad size (1 cm²)
- In case >1 clusters match, considering the closest (min residual)

The 8th International Conference on Micro Pattern Gaseous Detectors (MPGD2024) October 14—18, 2024, Hefei, China

Beam results – Efficiency

- Average efficiency as a function of amplification voltage for different drift fields
- Efficiency = matched clusters / total number of selected tracks
 - Matching distance ±10mm
 - Tracks selection based on slope cut (straight tracks)

The 8th International Conference on Micro Pattern Gaseous Detectors (MPGD2024) October 14— 18, 2024, Hefei, China

Beam results – Efficiency

- Average efficiency as a function of amplification voltage for different drift fields
- Efficiency = matched clusters / total number of selected tracks
 - Matching distance ±10mm
 - Tracks selection based on slope cut (straight tracks)
- MM
 - Plateau @ 98% efficiency for all drift filed
 - @ low drift field the turn on curve start early
 - @ high drift filed the turn on curve is steeper

Beam results - Efficiency

- Average efficiency as a function of amplification voltage for different drift fields
- Efficiency = matched clusters / total number of selected tracks
 - Matching distance ±10mm
 - Tracks selection based on slope cut (straight tracks)
- MM
 - Plateau @ 98% efficiency for all drift filed
 - @ low drift field the turn on curve start early
 - @ high drift filed the turn on curve is steeper
- uRWELL
 - Plateau @ 84% due to large dead area
 - Higher efficiency for higher drift fileds

Beam results - Efficiency

- Average efficiency as a function of amplification voltage for different drift fields
- Efficiency = matched clusters / total number of selected tracks
 - Matching distance ±10mm
 - Tracks selection based on slope cut (straight tracks)
- MM
 - Plateau @ 98% efficiency for all drift filed
 - @ low drift field the turn on curve start early
 - @ high drift filed the turn on curve is steeper
- uRWELL
 - Plateau @ 84% due to large dead area
 - Higher efficiency for higher drift fileds
- RPWELL
 - Plateau @ 96% due to small dead area and a few dead channels
 - Efficiency loss at high gain probably due to staturated signals induing electronic dead time
 - Intermediate (2.5 kV) drift fields are optimal

Beam results – Time resolution

- Time resolution as a function of amplification voltage for different drift fields
- Estimated as σ_{dt}

- Time resolution higher than the one measured in the lab (~13ns for MM, uRWELL) to be understood
- Otimal time resolution and optimal efficiency obtained for similar drift fields

A closer look at the MM

- 490V in ArCO₂iC₄H₁₀
- 1.0 kV/cm drift field
- Av. Efficiency = 98%
- Periodical / uniform response

The 8th International Conference on Micro Pattern Gaseous Detectors (MPGD2024) October 14—18, 2024, Hefei, China

A closer look at the MM

- Charge distribution of 5×5 mm² areas
 - Without a pillar
 - With a pillar MPV drop by 20%

- Cluster size distribution
 - Pad center
 - 2 pads border 1.5 mm effect
 28% of the total area

A closer look at the uRWELL

- 560V in ArCO₂CF₄
- 4.0 kV/cm drift field
- Periodicity consistent with the DLC grounding lines
- Av. Efficiency = 0.844 (2 mm wide dead horizontal lines, 19% of the tested area)

The 8th International Conference on Micro Pattern Gaseous Detectors (MPGD2024) October 14— 18, 2024, Hefei, China

A closer look at the uRWELL

- Charge distribution for two 2 mm wide lines
 - In the middle of HV sector
 - On the edge of the gounding line
 - MPV increases by a factor of two To be understood, higher gain on the edge might explain part of the effect

- Cluster size distributions
 - Pad's center
 - 2 pads border narrow vertical structure is observed
 - 4 pads corner

A closer look at the RPWELL

- 1180V in $ArCO_2iC_4H_{10}$ •
- 2.5 kV/cm drift field ٠
- Av. Efficiency = 96% consistent with ~ 3% dead area •
 - 2.5 fully dead channels •
 - 3 gluing points ٠
 - 2 lines separating HV sectors ٠

10³

 -10^{2}

10

160

^{pos_x} 23

140

A closer look at the RPWELL

- Charge distribution for two areas
 - Center of a pad
 - Edge of the pad

Charge saturation due to higher field as reported originally by the Trieste group

- Cluster size distributions
 - Pad center
 - 2 pads border 2 mm effect for a total of 38% of the area
 - 4 pads corner

Operation at high pion rate

- Operation conditions
 - MM
 - @470V
 - 0.5 kV/cm
 - uRWELL
 - @ 550V
 - 3.5 kV/cm
 - RPWELL
 - @ 1170V
 - 2.5 kV/cm
- RPWELL gain drops earlier due to higher resistivity

Instabilities

- Out of spill hits observed in all technologies
 - Much higher rate in RPWELL
- Saturated out of spill hits observed in RPWELL and MM
- RPWELL instabilities might be due to the gap between the bottom WELL electrode and the resistive plate
 - Hole shaped patterns are observed on the glass

Glass surface pictures, holes pattern can be seen

Disscussion and outlook

- Measurements with resisstive MM, uRWELL and RPWELL detectors were carried out in similar conditions
 - In the laboratory, in muon and high rate pion beams
 - With 1 cm² pad readout with VMM3/SRS readout electronics
- Laboratory and beam results are mostly in agreement
- Preliminary comparison of the performance of the three technologies is reported
- Efficiency plateau is reached with all technologies
 - Actual values point out towards the need to optimize the design of some of the components
- Observed gain and cluster size variations are consistent with the design of all technologies
- Sources of instabilities needs further investigation
 - RPWELL is mostly affected

Thank you!

Tracking algorithms

Tracker resolution ~ 40 um obtained with both algorthms

Third tracking station is ~85 cm far from the first station \rightarrow most weight, biased residuals

The 8th International Conference on Micro Pattern Gaseous Detectors (MPGD2024) October 14— 18, 2024, Hefei, China